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Abstract: The paper presents a novel linear, high-fidelity millimetre displacement-to-
frequency transducer, based on the resistive conversion of displacement into a proportional 
voltage, and then frequency. The derivation of the nonlinearity, fidelity and sensitivity of 
the transducer is presented. Experimental results confirm that a displacement of 0–100 mm 
is converted into a frequency range of 0–100 kHz, with a normalised fidelity factor of 
99.91%, and a worst-case nonlinearity of less than 0.08%. Tests using laboratory standards 
show that a displacement of 10 mm is transduced with an accuracy of ±0.6%, and a 
standard deviation of 530 Hz. Estimates included in the paper show that the transducer 
could cost less than 1% of existing systems for millimeter displacement measurement. 
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1. Introduction 

Several ultrasound, optical or laser-based devices exist for the measurement of displacements larger 
than one metre [1–4]. The cost of the modifications required for the use of these systems for measuring 
displacements in the range of a few micrometres to millimetres (submetre) is only justifiable in a few 
circumstances. For affordable submetre displacement measurements, capacitive and inductive position 
sensors are often used. However, the frequency dependence of capacitive and inductive sensors limits 
their domains of application [5–7]. In fact, a comparative discourse relating the range of displacement 
measurable versus the sensor recommended, could be found in [8]. 
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In process and industrial instrumentation systems, several variables are detected using elastic 
sensors as primary sensing elements. Elastic sensors often generate displacements in the range of 
several micrometres to millimeters, which have to be conditioned further. Table 1, derived from 
information available in Chapter 8 of [9], shows example applications of elastic sensors resulting in an 
intermediate displacement variable. Moreover, physiological changes in biological tissues resulting 
from dehydration, accumulation of fluid due to disease, etc., can be studied using submetre 
displacement measurements [10]. Millimeter displacement is also encountered in the analysis of the 
integrity of civil structures [11,12], where such measurement systems as the GPS-RTS are currently 
used. A key challenge in the current systems for millimeter-displacement measurement is the high cost 
of acquisition of such measurement systems. Hence, there is significant motivation for the exploration 
of cheaper systems for use in small displacement measurement. Moreover, the transducers most 
suitable for the conditioning of such small displacement signals must have high sensitivity, high 
fidelity and minimum nonlinearity for acceptable accuracy of transduction. This paper presents the 
design, analysis and experimental validation of a submetre displacement-to-frequency transducer. The 
system is based on the sensitivity of some resistive elements to displacement. Resistive sensors are 
relatively cheap; and their zero-order dynamics make them suitable for both static and dynamic 
measurements. Unlike time-of-flight devices or phase-based measurement systems, resistive millimeter 
displacement transducers need be coupled physically to the displacement being measured. 

In the rest of the paper, the circuit design, analysis of the basic displacement-to-voltage converter, 
and the implementation of the primary conditioning amplifier circuit are presented in Section 2. The 
voltage-to-frequency conversion design is presented in Section 3 of the paper. Circuit realisation, 
experimental results, and discussions of these results form Section 4 of the paper. Section 5 presents 
conclusions and the limitation of the transducer circuit. A list of references concludes the paper.  

Table 1. Example of elastic sensors producing submtre displacement as output [9]. 

Elastic Sensor Primary Variable 
Strain gauge Force 
Parallel plate capacitor Pressure 
Diaphragms Pressure 
Bellows Pressure 
Bourdon tubes Pressure 
Load cells Pressure 
Cantilever sensors Force 
Cylindrical shafts Torque 
Proving ring Force 

2. The Basic Displacement Sensor, and the Design and Analysis of the Primary  
Conditioning Circuit 

The basic displacement-to-voltage sensor is shown in Figure 1. The sensor consists of a  
three-terminal potentiometer of total resistance RP, supplied by a DC voltage Vs. The resistance 
between terminals A and B of the potentiometer is directly related to the displacement d(t) 
(alternatively, the normalised displacement x), where 0 ≤ x = ௗௗ೅ ≤ 1; and d(t) = xdT. Then:  
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(1) 

Note that, the maximum value of ETH is Vs, when x = 1. The Thevenin’s resistance of the equivalent 
sensor circuit, RTH, is evaluated to yield [9]: 

 
(2) 

The sensitivity of ETH to the normalised displacement x is given by: 

 
(3) 

To avoid excessive power dissipation in the resistance of the potentiometer, Vs is usually  
kept small.  

Figure 1. Arrangement of potentiometer-type displacement sensor. 

 

Consequently, the sensitivity ܵா೟೓௫  of this basic sensor is small. Additional conditioning is required to 
improve the sensitivity of the sensor. Now, the normalised sensitivity is given by: 

 
(4) 

2.1. Primary Conditioning of Sensor Output 

The equivalent circuit resulting from the connection of a primary amplifier of input resistance RL, 
across terminals AB of the sensor circuit is shown in Figure 2. Loading effects tend to degrade the 
performance of amplifiers. The loading effect of the conditioning circuit modifies the Thevenin’s 
voltage to:  
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The normalised value of this voltage is also derived to be: 

 
(6) 

Figure 2. Equivalent circuit of sensor with primary conditioning amplifier. 

 

In the next sub-section of the paper, Equations (5) and (6) are used to analyse the quality of the 
displacement-to-voltage conversion amplifier, and to show any additional condition(s) that could be 
imposed on the conditioning circuit to further improve the performance of the transducer.  

2.2. Quality Analysis of the Primary Conditioning Circuit 

In this subsection, the analysis of the quality of the primary signal amplification, based on  
Equation (5), is presented. 

2.2.1. Fidelity of Primary Amplifier  

Fidelity is a measure of how faithfully a circuit has processed a given signal to minimize 
distortions. The concept of fidelity is usually used in the analysis of high frequency amplifiers. In the 
current paper, the concept of fidelity is used to quantify the loading effect of the primary conditioning 
amplifier on the signal produced by the sensor. Now, the voltage drop due to the loading effect of RL is 
obtained to be: 

 
(7) 

or, in normalised form: 

 
(8) 

The normalised fidelity factor is then given as: 
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For perfect fidelity, K = 0. Practically, this requires that: 

 
(10) 

2.2.2. Sensitivity Analysis 

The sensitivity of the conditioned output is derived to yield: 

 
(11) 

The normalised sensitivity is found to be: 

 
(12) 

It is required to select the value of K in such a manner, as to minimize variations in ܵ௏ಽഋ௫  within the 

range of measurements. 

2.2.3. Nonlinearity Effects  

From Equation (5), VL is nonlinear in x. The nonlinearity N(x) can be quantified by using: 

 (13) 

where the linear part of VL is defined by the following parameters: 

 

(14) 

and the nonlinearity N(x) is given as: 

 

(15) 

Nonlinearity is not desirable, and is eliminated as in Equation (10). In fact, it is evident from 
Equations (9), (10) and (15) that K ՜ 0 improves linearity and fidelity. This contradicts the 
requirement for enhanced sensitivity as in Equation (12), for which K ՜ ∞.The approach in this paper 
is to select K ՜ 0 for fidelity and linearity enhancement; and to effect sensitivity improvement using 
voltage to frequency conversion. 
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2.2.4. Practical Realisation of the Signal Conditioning Amplifier 

The practical implementation of the primary conditioning amplifier uses the summing amplifier 
shown in Figure 3 [13,14], with the amplified voltage given by:  

 

(16) 

Figure 3. Summing amplifier used as the primary conditioning circuit. 

 

An amplifier gain of 10 was used for the current work. This yields the normalised sensitivity 
parameter given in Equation (17). 

 
(17) 

Table 2 summarises the parameters of the sensor and the amplifying circuit.  
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Combining the parameter values in Table 2 with Equations (5) and (10) yields: 

 
(18) 

Therefore, within an accuracy of ±0.6%:  

 (19) 

Similarly:  

 
(20) 

and the sensitivity of the amplified voltage is given by:  

 (21) 

In Section 3, we present a technique to further improve the sensitivity of the transducer, using 
voltage-to-frequency conversion.  

3. Sensitivity Enhancement 

As observed above, a small value of K (0.0056) was required to both minimize nonlinearity effects, 
and to enhance fidelity of the primary conditioning circuit. This value of K however, lowers the 
sensitivity of the transduction process. Since submetre displacements can be very small, a very high 
sensitivity transducer is required (as shown in Table 2, ideal sensitivity required is ∞). In the sequel, 
we present a voltage-to-frequency converter circuit that is used to further enhance the sensitivity of the 
developed transducer.  

3.1. Voltage-to-Frequency (VFC) Conversion 

Apart from sensitivity enhancement, the conversion of v0 into a frequency signal has several other 
advantages, including: high noise immunity, high output power, wide dynamic range, and ease  
of interfacing with digital data acquisition systems. Table 3 shows key values of v0 and their 
corresponding frequency representations. 

Table 3. Voltage-to-frequency table. 

d (mm) x v0 (V) Frequency (kHz) 
0 0 0 0 

100 1 10 100 

The linear relationship between v0 and frequency in Table 3 is expressed mathematically as:  

 (22) 

Applying Equation (20) in Equation (22) we obtain: 
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It is evident from Equation (23) that: 

 
(24) 

The AD 650 voltage-to-frequency converter (VFC) was used for the implementation of the 
displacement-to-frequency conversion circuit satisfying Equation (23). The pin layout of the AD 650 
VFC is obtained from the manufacturer’s manual for the device [15]. The selection of components for 
the VFC circuit is presented in the sequel. 

3.2. Component’s Selection for the AD 650 VFC 

For the AD 650, only four component values must be selected by the user [15]. Using the 
manufacturer’s notation, these are the input resistance RIN, the timing capacitor COS, the logic resistor 
R2 and the integration capacitor CINT. The first two are determined by the input voltage range and  
full-scale frequency. Additional relationship between RIN and COS is provided through graphs 
obtainable in [15]. Sample design for a maximum frequency of 100 KHZ in the data sheet of the AD 
650 VFC used RIN = 40 kΩ and this has been adopted for the realization in this study. Table 4 
summarizes the components used for the design of the VFC circuit, with CINT calculated using  
the equation: 

 
(25) 

Table 4. Parameters of the voltage-to-frequency converter. 

Parameter Value 
fmax 100 kHz 
Rin 40 kΩ 

CINT 1,000 pF 
COS 330 pF 
R2 1.75 kΩ 

The frequency conversion improves the sensitivity of the transducer from the value given by 
Equation (17) to: 

 
(26) 

and has also improved the resolution to = 10−3 mm/bit.  
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4.1. Simulations 
 

MATLAB simulation of the transducer fidelity, sensitivity and nonlinearity, based on  
Equations (9), (12) and (15) is presented in Figures 4–6. 

 
Figure 4. Fidelity of primary voltage conditioning amplifier. 

 

 
 

Figure 5. Sensitivity analysis in displacement-to-voltage conversion. 
 

 

Figure 6. Analysis of nonlinearity in displacement to voltage conversion. 
 

 

4.2. Experimental Validation 

The experimental setup is shown in Figure 7. For the experiments, a slide wire potentiometer was 
used as the submeter displacement sensor. It had a maximum displacement dT = 100 mm = 10−1 m, and 
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a total resistance of 11.2 kΩ (instead of the design maximum resistance of 10 kΩ). The potentiometer 
was supplied by a 1volt DC supply. The Thevenin voltage of the sensor, as a function of displacement, 
is shown in Figure 8. A plot of the amplified sensor voltage as function of detected displacement is 
shown in Figure 9. The overall displacement-to-frequency transduction is shown in Figure 10. For the 
analysis of the accuracy and precision of transducing displacement inputs into frequency, repeated 
measurements of 10 mm displacement were undertaken. The results are shown in Figures 11 and 12. 

 
Figure 7. Experimental setup of transducer. 

 

 
 

Figure 8. Basic sub-meter-to-voltage conversion. 
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Table 5. Cost analysis per unit of the millimeter-to-frequency transducer. 

Potentiometer sensor: 
$11.0/unit 

 $48.70 

Components 
5× Resistors: 
$7.50 

2× Capacitors: 
$6.0 

2× Op Amp: 
$2.0 

1× AD 650: 
$11.00 

Labour costs at 
30% 

Total transducer cost 

Strain gauge: 
$3.50/unit 

 $39.00 

To put the above costs in perspective, Table 6 compares the cost of the reported transducer with 
those of existing displacement sensors. 

Table 6. Cost comparison with some existing position sensors 

Sensor Cost Source of Information 
Potentiometer millimeter-to-
frequency converter 

$39,00 Table 5 in the paper 

Strain gauge type Millimeter-to-
frequency transducer 

$48.7.00 Table 5 in the paper 

SwissRanger 4000 (SR4000) $9,000 
http://www.hizook.com/blog/2010/03/28/low-cost-depth-
cameras-aka-ranging-cameras-or-rgb-d-cameras-emerge-2010 

PMD Technologies CamCube 2.0 $12,000 
http://www.hizook.com/blog/2010/03/28/low-cost-depth-
cameras-aka-ranging-cameras-or-rgb-d-cameras-emerge-2010 

Hewlett Packard model 5525A 
Laser system 

$11,500  http://www.n4mw.com/hp5526/hple.htm 

It is evident from Table 6, that the reported transducer has a very significant financial advantage 
over several existing systems for displacement measurements. 

5. Conclusions  

It is concluded that a cheap, linear, millimetre displacement-to-frequency transducer with both high 
sensitivity and high fidelity has been successfully realised.  

Limitations  

The design sensor resistance of 10 kΩ was not available. A sensor of total resistance of 11.2 kΩ 
was used instead. Whereas this larger resistance value did not directly affect the accurate performance 
of the transducer, it was observed that, the maximum output frequency was 120 kHz (instead of the 
design maximum frequency of 100 kHz). Temperature variations constitute a significant random 
impact on sensor performance. Temperature effects have not yet being characterized. The effect of 
supply voltage variation is also still under investigation. Test measurements were undertaken using 
laboratory standards. Traceability of accuracy shall be undertaken in subsequent development, using 
facilities at a national metrology centre. 
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