Supplementary Information

Synthesis of Bioactive Microcapsules Using a Microfluidic Device. Sensors 2012, 12, 10136–10147

Byeong Il Kim 1,2,†, Soon Woo Jeong 1,2,†, Kyoung G. Lee 1, Tae Jung Park 3, Jung Youn Park 4, Jae Jun Song 5, Seok Jae Lee 1,* and Chang-Soo Lee 2,*

1 Center for Nanobio Integration & Convergence Engineering (NICE), National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 305-806, Korea; E-Mails: kbiset@nnfc.re.kr (B.I.K.); swjeong@nnfc.re.kr (S.W.J.); kglee@nnfc.re.kr (K.G.L.)

2 Department of Chemical Engineering, Chungnam National University, 220 Gung-Dong, Yuseong-gu, Daejeon 305-764, Korea

3 Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Korea; E-Mail: tjpark@cau.ac.kr

4 Biotechnology Research Division, National Fisheries Research & Development Institute (NFRDI), 408-1 Sirang-ri, Gijang, Busan 619-705, Korea; E-Mail: jypark@nfrdi.go.kr

5 Microbe-based Fusion Technology Research Center, KRIIBB, 1404 Sinjeong-dong, Jeongeup, Jeonbuk 580-185, Korea; E-Mail: jjsong@kribb.re.kr

† These authors contributed equally to this work.

* Authors to whom correspondence should be addressed; E-Mails: sjlee@nnfc.re.kr (S.J.L.); rhadum@cnu.ac.kr (C.-S.L.); Tel.: +82-42-879-9722 (S.J.L.); Fax: +82-42-879-9609 (S.J.L.); Tel.: +82-42-821-5896 (C.-S.L.); +82-42-822-8995 (C.-S.L.).

Received: 8 June 2012; in revised form: 4 July 2012 / Accepted: 18 July 2012 / Published: 26 July 2012
Figure S1. (A) Schematic illustration of microfluidic device and its dimensions; (B) Photograph of microfluidic device.

Dimensions
W1=180 μm, W2=280 μm, W3=50 μm, W4=580 μm, Channel Height=100 μm
Figure S2. Photomicrographs showing the droplets of different sizes at the fixed DP (1 μL/min) with five different flow rates of CP. (A) $Q_{CP1} = 1$ μL/min; (B) $Q_{CP2} = 2$ μL/min; (C) $Q_{CP3} = 3$ μL/min; (D) $Q_{CP4} = 4$ μL/min; (E) $Q_{CP5} = 5$ μL/min. All scale bars are 500 μm.
Figure S3. Photomicrographs showing the droplets of different sizes at the fixed DP (2 μL/min) with five different flow rates of CP. (A) $Q_{CP1} = 1 \mu$L/min; (B) $Q_{CP2} = 2 \mu$L/min; (C) $Q_{CP3} = 3 \mu$L/min; (D) $Q_{CP4} = 4 \mu$L/min; (E) $Q_{CP5} = 5 \mu$L/min. All scale bars are 500 μm.
Figure S4. Photomicrographs showing the droplets of different sizes at the fixed DP (3 μL/min) with five different flow rates of CP. (A) $Q_{CP1} = 1$ μL/min; (B) $Q_{CP2} = 2$ μL/min; (C) $Q_{CP3} = 3$ μL/min; (D) $Q_{CP4} = 4$ μL/min; (E) $Q_{CP5} = 5$ μL/min. All scale bars are 500 μm.
Figure S5. Photomicrographs showing the droplets of different sizes at the fixed DP (4 μL/min) with five different flow rates of CP. (A) $Q_{\text{CP1}} = 1$ μL/min; (B) $Q_{\text{CP2}} = 2$ μL/min; (C) $Q_{\text{CP3}} = 3$ μL/min; (D) $Q_{\text{CP4}} = 4$ μL/min; (E) $Q_{\text{CP5}} = 5$ μL/min. All scale bars are 500 μm.