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Abstract: Performance degradation assessment based on condition monitoring plays an 

important role in ensuring reliable operation of equipment, reducing production downtime 

and saving maintenance costs, yet performance degradation has strong fuzziness, and the 

dynamic information is random and fuzzy, making it a challenge how to assess the  

fuzzy bearing performance degradation. This study proposes a monotonic degradation 

assessment index of rolling bearings using fuzzy support vector data description (FSVDD) 

and running time. FSVDD constructs the fuzzy-monitoring coefficient    which is sensitive 

to the initial defect and stably increases as faults develop. Moreover, the parameter    

describes the accelerating relationships between the damage development and running 

time. However, the index    with an oscillating trend disagrees with the irreversible damage 

development. The running time is introduced to form a monotonic index, namely damage 

severity index (DSI). DSI inherits all advantages of    and overcomes its disadvantage. A 

run-to-failure test is carried out to validate the performance of the proposed method. The 

results show that DSI reflects the growth of the damages with running time perfectly. 

Keywords: performance degradation assessment; fuzzy support vector data description; 

running time; run-to-failure test; operation reliability 
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1. Introduction 

Rolling bearings, as important components of rotating machinery, not only support the load but also 

allow relative motion [1–4]. They are also a common failure unit due to their complex running 

conditions. The performance of bearings directly affects the operation reliability of the whole 

equipment [5–9], therefore, fault diagnosis and degradation assessment based on condition monitoring 

have been a key means to ensure the reliable operation of equipment, reduce the production downtime 

and save maintenance costs, etc. [10].  

Vibration analysis is a powerful tool for fault diagnosis and degradation assessment [11–14]. The 

performance of rolling bearings is influenced by many factors, such as rotation speed, temperature, and 

lubrication conditions [15,16]. The running state is the final results of those factors. The vibrations 

reflect synthetically the present running state of the bearing. Many researches have been developed 

about the feature extraction from the vibration signals to assess the performance degradation. Time-domain 

features and frequency-domain features are the first choice because of the easy calculation and the 

definite physical meaning. Root mean square (RMS), Kurtosis Factor, the average amplitude of the 

defective frequency and its first six harmonics were successively used in [17–19], but the original 

features have different advantages and limitations as well. For example, RMS is a good stability 

feature which steadily grows with the fault development of the bearing. However, it is difficult to 

discover the incipient defects by RMS. On the contrary, Kurtosis Factor is sensitive to impulse faults. 

It distinctly appears at the initial fault stage while it decreases with the fault development. Kurtosis 

Factor has high sensitivity for incipient faults, but the poor stability for the serious damage. Few 

original features satisfy the conditions of sensitivity and stability simultaneously. A composite index is 

necessary which is both sensitive to the initial defect and rises stably as the damage grows. 

One challenge is how to structure an intelligent assessment model based on the original features. 

Several scholars have proposed some comprehensive indexes and obtained impressive results. Qiu et al. 

proposed the minimum quantization error (MQE) for the assessment of the performance degradation of 

rolling bearings based on Self Organizing Map (SOM) and optimal wavelet filters [20]. Huang et al. 

applied MQE to the residual life for ball bearings using a back propagation neural network [21].  

Pan et al. developed three indicators spectral entropy, health index and degradation indicator using 

information entropy, wavelet packet-support vector data description and lifting wavelet packet 

decomposition-fussy c-means, respectively [22–24]. Yu utilized a locality preserving projection for 

feature extraction, and provided the two complementary indexes, exponential weighted moving average 

(EWMA) and negative log likelihood probability–based EWMA statistic (NLLPEWMA) to assess the 

bearing performance degradation [25,26]. Caesarendra et al. proposed the combination of relevance 

vector machine (RVM) and logistic regression (LR) for the performance degradation assessment and 

prediction from incipient defects to final failure [27,28]. These indicators reflect the degradation trends 

of bearing performance to different degrees. However, sometimes a monotonic index is necessary to 

reflect the damage development more accurately. Little research about monotonic indexes is reported. 

The monotonic index should be constructed for two reasons. Firstly, the damage is irreversibly 

growing with the operation time. If the assessment index is oscillating, it is unable to reflect the 

damage development trends perfectly. Secondly, the damage shows accelerated growth with the 

running time. Few indicators reflect these accelerated relationships.  
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This study proposes a monotonic degradation assessment index for rolling bearings using fuzzy 

support vector data description (FSVDD) and running time. FSVDD is the combination of fuzzy 

mathematics theory and SVDD, and deals well with the fuzzy matter in small samples. The 

performance degradation of bearings belongs to this situation. The performance degradation with the 

strong fuzziness is the intermediate process between the normal running and the final failure. The 

initial defect, the final failure and the degrees of damage severity with different moments are hard to 

identify. Meanwhile, the dynamic information which reflects the change of bearing states is fuzzy and 

random. Some deviations appear when the fuzzy matter is dealt with by the deterministic mathematic 

method. Besides, the bearing monitored during its whole life is rare due to the difficulties in 

engineering. Support vector data description (SVDD) is an excellent method of one-class classification 

for small samples, with the advantages of robustness and high computation [29,30]. However, SVDD 

without the fuzzy identification function is unable to discriminate the damage severity degrees of 

samples. FSVDD is the fuzzy computing method based on SVDD. It introduces the fuzzy membership 

degree into the kernel function [31,32]. The fuzzy membership degree indicates the importance 

according to the damage severity degree. FSVDD constructs the fuzzy-monitoring membership which 

describes the accelerating relationships between the damages and running time. In addition, the 

running time is used to construct the monotonous growth of the bearing damage development. 

This paper is organized as follows: In Section 2, the basic theory of FSVDD is introduced, and 

Section 3 presents the performance assessment method based on FSVDD and running time. The 

bearing run-to-failure tests and the related analysis are provided in Section 4. Section 5 provides the 

conclusions from the above studies. 

2. Fuzzy Support Vector Data Description 

2.1. Support Vector Data Description  

Support vector data description proposed by Tax and Duin [29] is an excellent method of one-class 

classification. It is inspired by the idea of the support vector machine machines put forth by Vapnik [33]. 

The basis idea of SVDD is to find a spherically shaped decision boundary with minimum volume 

containing all (or most) targets, as described in Figure 1.  

Figure 1. Schematic diagram of support vector data description. 
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Assuming a training set contains n vectors of objects {xi, i = 1,2,…,n}. We try to find the  

minimum-volume hypersphere which contains all or most normal objects. This hypersphere is 

described by center d and radius R, and satisfies the following function: 

 (1)  

where ξi is slack variable to enhance the robustness and C is a penalty constant which gives the  

trade-off between volume of the hypersphere and errors. Then constraint condition is incorporated into 

the objective function by Lagrange multipliers: 

 (2)  

where αi ≥ 0, γi ≥ 0 are the Lagrange multipliers. L should be minimized with respecting to R, d, ξi. 

Taking the partial derivatives of L and R, d, ξi to zero, new constraints are given as follows: 

 (3)  

Equation (3) deduces: 

 (4)  

Reconstituting Equation (2) by Equation (3) results in: 

 (5)  

All αi are obtained by solving Equation (5) and only a small set of them are not zero. The objects 

with αi > 0 are the support vectors. The radius R is acquired by any support vector xk: 

 (6)  

For a new object z, its distance to the center d is described as follows: 

 (7)  

when the data in the input space are not linearly predicted, a non-linear vector function (x) is needed to 

map them onto a high-dimensional feature space. Consequently, the kernel function, K(xi,xj)  xix, is 

brought in SVM which maps the original data points to a high-dimensional feature space and 

transforms the nonlinear problem to a linear model. When the kernel function is introduced,  

Equations (5)–(7) are transformed to the following form: 
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 (8)  

 (9)  

 
(10) 

Then the monitoring coefficient of new object z to the hypersphere boundary is given by: 

 (11) 

If ε ≤ 0, z is target, or else it is an outlier. 

2.2. Fuzzy Support Vector Data Description 

SVDD only simply identifies the normal samples and the fault samples, but is unable to accurately 

distinguish the samples of different degrees of damage severity. Then FSVDD is generated by 

introducing the fuzzy mathematics theory into SVDD to describe the development process from the 

initial defect to final failure [30–32].  

A fuzzy membership degree si, 0 ≤ si ≤ 1, is introduced with each training sample xi, which is 

regarded as the importance according to the damage severity degree. The bigger the fuzzy membership 

degree si is, the more important the training sample xi becomes. Suppose we are given a training set S 

of labeled training samples with the fuzzy membership degrees: 

 

The fuzzy non-linear vector function is redefined as , and kernel function is also 

recounted as Equation (12): 

 (12) 

Equations (8)–(11) are transformed to the following form: 

 (13) 
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 (15) 
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From the comparison of Equations (8)–(11) and Equations (13)–(15), we find that they are same 

when si = 0. Hence, SVDD could be seen as a special type of FSVDD. 

3. Degradation Assessment Method Based on FSVDD and Running Time 

SVM，SVDD and FSVDD are excellent classifiers for small samples, and have been widely 

applied to fault diagnosis [30–32,34,35]. However, few studies have reported the performance 

degradation assessment based on them, because the degradation assessment is different from fault 

diagnosis. The purpose of fault diagnosis is to identify the bearing faults, while the performance 

degradation assessment is to find an index which truly reflects the damage growth process. The 

performance degradation assessment is the development and the extension of fault diagnosis.  

In this study, FSVDD is applied to construct a degradation assessment indicator with the running time. 

The bearing damage undergoes sustained development with the running time after the initial defect. 

The damage development trend should be an increasing function of time. Hence we consider that the 

running time is used to construct a degradation assessment indicator which could reflect the damage 

development of the bearing more accurately. On the other hand, the vibration signal of bearings 

usually contains lots of random information which may cause some deviations between the signal and 

the true damage. It is able to reduce the influence of the vibration randomness that the running time is 

introduced into the construction of the assessment indicator.  

The performance degradation of the bearing is a continuous process of change. A new bearing is 

installed into the rotating shaft. After a short running-in, it enters a long-term stable working period. 

Then the minor fault appears, and the defect gradually increases as the bearing fault develops. Finally 

the bearing fails with a serious defect. According to the running process, the bearing life is divided into 

three parts: normal stage, degeneration stage and failure stage. In the beginning of the normal stage, 

there may be a short run-in period. The degradation assessment model is provided based FSVDD and 

running time as follows: 

Step 1: Feature extraction and selection: 

The time-domain features of vibration signals are extracted. The stability features, such as RMS, 

square-root amplitude (SRA) and absolute average values (AAV), and the sensitive feature as Kurtosis 

factor are selected as the inputs of FSVDD in the meantime. 

Step 2: Training and testing based on FSVDD 

The function of fuzzy membership degree si associated with each sample xi is given by a rising 

ridge distribution such as Equation (17) due to the rising statistic features, the fuzzy bounds of 

degradation beginning and final failure: 

 (17) 

where E(xi) is the energy of xi, a1 is the maximum energy of normal state and a2 is the minimum energy 

of failure state. 
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The normal samples are trained to construct the hypersphere. Then the fuzzy-monitoring coefficient 

   for each testing sample z is obtained by testing all samples. The fuzzy matter, degradation 

assessment, is made clear by the fuzzy-monitoring coefficient   . 

Step 3: Degradation assessment 

A monotonic degradation assessment index of rolling bearing, damage severity index (DSI), is 

described based on FSVDD and running time as follows: 

 (18) 

where i is the sample number, ti is its corresponding running time, tid is the initial defect time and DSIi 

is the damage severity index of the present moment.  

Two assumptions are necessary for Equation (18). Firstly, the bearing has already used up the run-in 

period, and moved into the latter stage. Secondly, the bearing runs continuously and has a steady 

working condition, that is, the fuzzy-monitoring coefficient    does not have wild points. The 

performance degradation begins at the initial defect time, tid, which is found by the constraint     > 0. 

The non-equality     > 0 means that its corresponding sample is an outlier. If the bearing is still in the 

run-in period, the fuzzy-monitoring coefficient     may be more than zero, but the corresponding 

sample is not the initial defect. After the run-in period, one point corresponds to     > 0, but its neighbor 

points are all     < 0. The point is taken for the wild point. Only when the points with     > 0 

continuously appear three times, the first point among them is considered as the initial defect time. 

After the initial defect, the wild points of the parameter    should also be rejected. The deletion of the 

wild point assures that DSI gets rid of the influence of the vibration randomness. If the amplification of 

one point is more than 150% compared with the amplitude of former point except the initial defect, the 

point is considered as the wild point and its amplitude should be replaced by the mean amplitude of the 

neighbor points. 

In Equation (18), the fuzzy-monitoring coefficient    and the running time are used to construct the 

novel indicator DSI which has at least two meanings. On the one hand, DSIi =     when     is bigger, 

which means the emergence of new fault. On the other hand, the defect of the current moment is not 

less than that of the former moment, even if no new defect appears, because the damage development 

is irreversible. The running time makes DSI increase slowly when the running state of the bearing is 

balanced. DSI inherits the defuzzification ability as good as the fuzzy-monitoring coefficient   , and 

means the quantitative measurement of the fault severity degree. A higher DSI value indicates more 

serious faults.  

4. Experiment and Simulation Verification 

4.1. Bearing Run-to-Failure Test 

The bearing run-to-failure test is carried out under constant load conditions on the bearing tester to 

reflect the defect propagation processes. The test bench shown in Figure 2 is made up of power and 

drive system, main body, hydraulic loading system, lubrication system, control system and an 
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independent data acquisition system, etc. It is designed as a simply supported beam structure, as 

described in Figure 3.  

Figure 2. Test bench for bearing run-to-failure. 

 

Figure 3. Load diagram of four bearings. 

 

The two test bearings, 30311 tapered roller bearings, are installed on both ends of the shaft, while 

the two steady bearings, N312 cylindrical roller bearings, are fixed at the middle of the shaft. The axial 

load Fa is directly inflicted on bearing 4, and transmitted to bearing 1 by the shaft. The radial load Fr is 

exerted on the steady bearings, transferred to the shaft, and finally inflicted on the test bearings. 

Table 1 lists the parameters of test bearings and steady bearings. The vibration signals are acquired 

with a sampling frequency of 10 kHz per channel by YE6267 dynamic data collection and analysis 
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system by Sinocera Piezotronics Inc. The data recorder is equipped with low-pass filters at the input 

stage for anti-aliasing. Each sample with 32,768 points is collected every five min. The acceleration 

sensor, as shown in Figure 4, is the Lance LC0401 High Sensitivity ICP accelerometer. 

Table 1. Parameters of test bearings and steady bearings. 

Bearing 

Type 

Inner 

Diameter 

(mm) 

Outer 

Diameter 

(mm) 

Roller 

Diameter 

(mm) 

Roller 

Number 

Calculating Coefficient 
Basic 

Dynamic 

Load (kN) e Y 

30311 55 120 16.25 16 0.35 1.7 152 

N312 60 130 19.1 16 — — 212 

Figure 4. Location of accelerometer sensors and temperature sensors. 

 

The vibration signals are transmitted by the screw which touches the outer-race of bearing. The 

spring exerts a pre-tightening force to ensure the contact of the screw and the outer-race. The 

acceleration sensor is fixed on the screw with the insulation spacer that insulates electromagnetic 

interference. In addition, the temperatures of four bearings are monitored by the thermocouple sensors. 

The axial load Fa and the radial load Fr of single bearing are 15 kN and 27 kN, respectively. The 

rotation speed is kept constant at 1,500 r/min. The characteristic frequencies are calculated by 

Equations (19)–(22): 
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 (22) 

where fr, fc, fo, fi, fe are the shaft frequency, the cage defect frequency, the outer-race defect frequency, 

the inner-race defect frequency and the rolling element defect frequency, respectively. d, Dp, are the 

rolling element diameter and pitch diameter.  is the number of rolling elements and  is the contact 

angle. Besides, the ball spin frequency is fb = fe. Five characteristic frequencies are shown in Table 2.  

 

Table 2. Bearing characteristic frequencies. 

 (Hz)  (Hz)  (Hz)  (Hz)  (Hz) 

25 10.2393 163.8288 236.1712 65.1061 

 

4.2. Results and Discussion  

 

There are three successful experiments in the present study. In each test, there is only one failure 

bearing which has huge vibration signals overwhelming those of the other three normal bearings. It 

may result from the individual factors of each bearing. The test 1 failure bearing has inner-race defects 

while the tests 2 and 3 failure bearings exhibit rolling element defects. 

Firstly, the original time-domain features are researched. Three stability features, such as RMS, 

square-root amplitude (SRA), absolute average values (AAV), and one sensitive feature as Kurtosis 

factor of three bearings are listed in Figures 5–7. In each Figure, the right subgraph is the local 

enlargement of the left subgraph to describe the variance of each feature in degradation period more 

distinctly. These figures at least tell us the following: (1) The normal periods usually are obviously 

longer than the degradation period which is verified in reference [36]. (2) In the normal period, the 

three stability features have placid trends while they grow continuously with the development of faults 

in the degradation period, but there is not an obvious impulse for each stability feature when the initial 

defect occurs. Three features of test 2 failure bearing have large changes at 7,600 min. It could be 

resulted from a dismounting and reinstallation. (3) Kurtosis factor is bumping up when the incipient 

fault appears, but its subsequent behaviors are bad. Kurtosis factor could be used to roughly 

discriminate the initial defect times, that is, the beginning moments of degradation, which are 

10,000 min, 10,710 min and 3,075 min, respectively. However, the beginning moments of degradation 

may be unfaithful because of the randomness of Kurtosis factor, especially when the impulse in 

Kurtosis factor is very weak, such as in the test 3 failure bearing. (4) The same feature for different 

bearings varies greatly because of the individual differences, even though at the same period. For 

examples, RMS of test 1 failure bearing is clearly less than that of tests 2 and 3 failure bearings at the 

normal period. (5) The overall trend of the original features is fuzzy, while their every point has the 

strong randomness. Therefore, none of the original features are suitable to assess the performance 

degradation over the whole lifetime. 
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Figure 5. Four time-domain features of test 1 failure bearing: (a) RMS during the whole 

life; (b) local enlargement of RMS; (c) SRA during the whole life; (d) local enlargement of 

SRA; (e) AAV during the whole life; (f) local enlargement of AAV; (g) Kurtosis factor 

during the whole life; (h) local enlargement of Kurtosis factor. 
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Figure 6. Four time-domain features of test 2 failure bearing: (a) RMS during the whole 

life; (b) local enlargement of RMS; (c) SRA during the whole life; (d) local enlargement of 

SRA; (e) AAV during the whole life; (f) local enlargement of AAV; (g) Kurtosis factor 

during the whole life; (h) local enlargement of Kurtosis factor. 
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Figure 7. Four time-domain features of test 3 failure bearing: (a) RMS during the whole 

life; (b) local enlargement of RMS; (c) SRA during the whole life; (d) local enlargement of 

SRA; (e) AAV during the whole life; (f) local enlargement of AAV; (g) Kurtosis factor 

during the whole life; (h) local enlargement of Kurtosis factor. 
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Secondly, the vector xi is constructed by the four original features and imported into SVDD to 

compute the monitoring coefficient ε. Figure 8 provides the parameter ε and its local enlargement of 

three bearings.  

Figure 8. Results of SVDD for tests 1–3 failure bearing: (a) ε of test 1 failure bearing 

during the whole life; (b) local enlargement of ε for test 1 failure bearing; (c) ε of test 2 

failure bearing during the whole life; (d) local enlargement of ε for test 2 failure bearing; 

(e) ε of test 3 failure bearing during the whole life; (f) local enlargement of ε for test 3 

failure bearing. 
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that the initial defect time is free from the influence of the vibration randomness, so the moments of  

0 ~ 220 min of test 1 failure bearing are not the degradation beginning time though εi > 0, because of 

the bearing in the run-in period. Likewise, the moments of 5,585 min, 7,340 min, 7,830 min are not the 

initial defect time because they are the exceptional points. Their εi > 0 but their neighbor points are all 

εi < 0. The similar situations appear in the tests 2 and 3 failure bearings. The degradation beginning 

times of three bearings are determined as 9,860 min, 10,710 min and 3,040 min with εi > 0. The new 

initial defect moments are 40 min, 0 min and 35 min earlier than that determined by Kurtosis factor. 

Which initial defect time is more accurate? The contrast experiments shown in Figures 9–11 are 

carried out to verify them.  

Figure 9. The Time-domain waveforms and Hilbert spectrums of test 1 failure  

bearing: (a) Time-domain waveform on 4,000 min; (b) Hilbert spectrum on 4,000 min;  

(c) Time-domain waveform on 9,860 min; (d) Hilbert spectrum on 9,860 min; (e) Time-domain 

waveform on 10,000 min; (f) Hilbert spectrum on 10,000 min; (g) Time-domain waveform 

on 12,250 min; (h) Hilbert spectrum on 12,250 min.  
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Figure 9. Cont. 

 

Figure 10. The Time-domain waveforms and Hilbert spectrums of test 2 failure bearing: 

(a) Time-domain waveform on 4,000 min; (b) Hilbert spectrum on 4,000 min;  

(c) Time-domain waveform on 10,710 min; (d) Hilbert spectrum on 10,710 min;  

(e) Time-domain waveform on 11,400 min; (f) Hilbert spectrum on 11,400 min.  
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Figure 11. The Time-domain waveforms and Hilbert spectrums of test 3 failure bearing: 

(a) Time-domain waveform on 1,000 min; (b) Hilbert spectrum on 1,000 min;  

(c) Time-domain waveform on 3,040 min; (d) Hilbert spectrum on 3,040 min;  

(e) Time-domain waveform on 3,075 min; (f) Hilbert spectrum on 3,075 min;  

(g) Time-domain waveform on 4,685 min; (h) Hilbert spectrum on 4,685 min.  
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The left subgraphs are the time domain waveforms at different moments, and the right subgraghs 

are their corresponding Hilbert spectra. The moment of 4,000 min is the normal stage for the test 1 

failure bearing, and the fault characteristic frequencies are not seen in Figure 9(b). A characteristic 

frequency of 234.7 Hz close to the inner-race defect frequency appears in Figure 9(d), and gradually 

increases along with the damage development in Figure 9(f,h). Therefore, the moment of 9,860 min 

could be more suitable as the initial defect time for the test 1 failure bearing. The two initial defect 

times of test 2 failure bearing are equivalent. The rolling element defect frequency and its second 

harmonic appear at 10,710 min in Figure 10(d). The contrast experiment of test 3 failure bearing 

provides the same results as that of test 1 failure bearing. The time determined by εi > 0, 3,040 min, is 

more suitable as the degradation beginning time. However, the monitoring coefficient ε is not the ideal 

indicator. First of all, the parameter  is oscillating, while the actual damages are irreversible. Then 

the monitoring coefficient ε increases slowly with time, which is not able to reflect the accelerated 

relationship between the damage development and the running time perfectly. That could be as a result 

of the fuzziness of the damage quantitative. SVDD might need an improvement to deal with the fuzzy 

damage development. 

Thirdly, the fuzzy membership degree si is computed by Equation (17). The fuzzy-monitoring 

coefficients    of three bearings are given by FSVDD. The parameter    and its local enlargement are 

described in Figure 12. The fuzzy-monitoring coefficient    is an improvement of the monitoring 

coefficient ε, and adds the function of defuzzification. The parameters    and ε have a certain degree as 

well as lots of differences. The comparisons between ε and    are carried out as shown in Figure 13. 

The parameter ε is blue while the parameter    is green. They are same at the beginning of degradation, 

and much different with the damage development. The overall trend of    − ε is accelerated, but the 

acceleration is not strict and not able to be proved by the second derivative. The fuzzy-monitoring 

coefficient    has a similar accelerated trend, which could agree with the relationship of the damage 

development and running time. On the other hand, the D-value of the neighbor     gets bigger as the 

damage increases. The increasing D-value means that the damage severity of the neighbor moments is 

differentiated easily. However, the fuzzy-monitoring coefficient    is still oscillating and not consistent 

with the irreversible damage development.  

Figure 12. Results of FSVDD for tests 1–3 failure bearing: (a)    of test 1 failure bearing 

during the whole life; (b) local enlargement of    for test 1 failure bearing; (c)    of test 2 

failure bearing during the whole life; (d) local enlargement of    for test 2 failure bearing; 

(e)    of test 3 failure bearing during the whole life; (f) local enlargement of    for test 3 

failure bearing. 
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Figure 12. Cont. 

 

 

Figure 13. Comparisons between ε and   : (a) &    of test 1 failure bearing; (b)    − ε of 

test 1 failure bearing; (c) ε &    of test 2 failure bearing; (d)    − ε of test 2 failure bearing; 

(e) ε &    of test 3 failure bearing; (f)    − ε of test 3 failure bearing.  
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Figure 13. Cont. 

 

Finally, a new index, DSI, is calculated as Equation (18), and Figure 14 shows the DSI and its local 

enlargement. The wild points of fuzzy-monitoring coefficient    should be rejected before the 

computation of DSI. The parameter    in Figure 12 contains lots of exceptional points. The elimination 

of wild points assures that DSI does not suffer from vibration randomness. DSI inherits all advantages 

of the fuzzy-monitoring coefficient   , and overcomes its shortcomings. The monotonic index, DSI, 

reflects the increase of the bearing damages with running time perfectly. Sometimes DSI is jumping 

which means the occurrence of spalling or the emergence of new damages. On the other hand, the 

placid DSI implies that the running state of bearing is balanceable and no new damage occurs. The 

degradation beginning threshold is defined as DSI > 0 according to the monitoring coefficient ε. The 

initial defect occurs at the degradation beginning moment. And the confirmation of the failure 

threshold should consider the running state of the bearing and the synthetic performance of the whole 

rotary machine. In this study, the failure threshold is delimited as DSI ≤ 4 The failure moments of 

three bearings are 12,260 min, 11,385 min and 4,265 min, as shown in Figure 14. 

Figure 14. Results of degradation assessment for tests 1–3 failure bearing: (a) DSI of test 1 

failure bearing during the whole life; (b) local enlargement of DSI for test 1 failure 

bearing; (c) DSI of test 2 failure bearing during the whole life; (d) local enlargement of 

DSI for test 2 failure bearing; (e) DSI of test 3 failure bearing during the whole life;  

(f) local enlargement of DSI for test 3 failure bearing. 
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Figrue 14. Cont.  

 

 

4.3. Outer-Race Defect and Inner-Race Defect Simulation 

In the run-to-failure tests, there are only two faults types, the inner-race defect and the rolling 

element defect. Then the outer-race defect and inner-race defect are simulated by increasing the 

impulse amplitude of the mathematical model to verify again the effectiveness of DSI. 

The rolling bearing transfers the main load through elements in rolling contract than in sliding 

contract [37]. When the defect appears, the characteristic frequencies are seen easily. McFadden 

developed a model to simulate the vibrations of single point defect [38]. The model contains the effects 

of rolling element bearing geometry, shaft speed, load distribution, transfer function, and the 

exponential decay vibration. Then it is extended to describe the vibrations of multiple point defects [39]. 

The above models provide the cyclical shock, and have been successfully utilized to describe faults in 

rolling element bearings [40–43]: 

 (23) 

where T is the period of impulse, s(t) is the vibration waveform and n(t) is external noise, Ai is the 

amplitude modulator to simulate the possible modulated situation, τi is the random fluctuation around 

average period T. 

Simplifying the vibration waveform s(t) to an exponential damping cosine signal: 

 (24) 

where B is the an appropriate value to simulate the attenuation of oscillation waveforms, fn is  

the natural frequency related to bearing or system. The amplitude modulator, Ai, is simplified as a  
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 (25) 

where A0 is the resonance intensity, fm = 1/Q is the shaft speed for inner-race fault and the cage speed 

for rolling element fault, and Q is the modulated period. 

Let fm = 0 Hz, T = 1/fi = 0.061 s to simulate the outer-race defect and let fm = fr = 25 Hz,  

T = 1/fi = 0.042 s to simulate the inner-race defect. The natural frequency fn = 2,000 Hz. Fifty samples 

are simulated for each defect. Each simulation sample contains 32,768 points. The initial defects of the 

outer-race defect and inner-race defect are at about the 40th sample. The original features and 

comprehensive indexes of outer-race defect are shown in Figure 15. The initial defect is considered as 

the 41st sample by Kurtosis factor. The randomness of original features is big due to the strong noise 

in the time-domain waveform. The new initial defect location is determined at the 37th sample by the 

threshold ε > 0 and earlier than that determined by Kurtosis factor. The failure of outer-race defect 

appears at the 48th sample by the threshold DSI ≤ 4. The similar rule is seen for the inner-race defect. 

Kurtosis factor determines the initial defect at 41st sample, while the fuzzy-monitoring coefficient 

confirms the time at 39th sample. The final failure of inner-race defect is confirmed at 48th sample by 

DSI. Besides, the parameters ε and    both have many wild points as result of the randomness of 

original features. DSI is an excellent index which effectively reflects the irreversible development of 

the bearing defect. 

Figure 15. Original features and comprehensive indexes of outer-race defect: (a) RMS; 

(b) SRA; (c) AAV; (d) Kurtosis factor; (e) ε; (f)   ; (g) DSI. 
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Figure 15. Cont. 

 

In a word, DSI is an excellent degradation assessment index for rolling bearings and has at least the 

following advantages: (1) DSI is sensitive to the initial defect and grows stably with the development 

of faults. The stability features, such as RMS, SRA, AAV, reflect the damage development, but it is 

hard to find the initial defect. The sensitivity feature as Kurtosis Factor is the opposite. DSI is an 

excellent indicator which is increasing with the damage development and sensitive to the initial defect. 

Moreover, the run-to-failure experiment and simulation both verify that DSI determines the initial 

defect earlier. (2) DSI with the defuzzification ability reflects the accelerating relation between the 

damage development and running time. This advantage of DSI comes from the fuzzy-monitoring 

coefficient   . The parameter    describes the accelerated development of bearing damage as a result of 

the fuzzy membership degree si. However the acceleration is not strict and unable to be verified by the 

second derivative. (3) The monotonic DSI reflects the irreversible development of the bearing defects. 

The damage development is irreversibly increasing after the initial defect occurs. The monotonic 

indicator is more effective to reflect the degradation process.  

The type and width parameter of the kernel function affect the parameters ε and   , even DSI, as 

described in reference [24]. In this study, Gaussian Raial Basis Function (GRBF) function was adopted 

due to its good property and universality. The width parameter was calculated carefully by the ex-ante 

fault diagnosis experiments. At beginning, we selected some normal samples and several of fault 

samples from the vibration of each failure bearing. The range of width parameters was estimated by 

the rules of thumb [44]. In the range, the width parameter was sampled with the same interval. The 

classification error with each sample of the width parameter was calculated by the classifier. The best 

value range was decided by the minimum error. The width parameter was selected as width = 2 which 

is in the overlay region of the best ranges for the three failure bearings. The selection of type and width 

parameter is worth further study for the better degradation assessment. 
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Figure 16. Original features and comprehensive indexes of inner-race defect: (a) RMS;  

(b) SRA; (c) AAV; (d) Kurtosis factor; (e) ε; (f)   ; (g) DSI.  

 

5. Conclusions 

This paper presents a study of degradation assessment based on FSVDD and the running time. 

SVDD constructs the monitoring coefficient ε with the advantages of sensitivity to the initial defect 

and stable growth as the damages develop, but SVDD could not deal well with fuzzy damage severity 

degree. FSVDD introduces the fuzzy membership degree si to SVDD and provides a better assessment 

index   . It could describe the accelerated relation between the development of the damages and 

running time. However, the index    with a oscillating trend disagrees with the actual damage 

development. Finally a monotonic degradation assessment index, DSI, is constructed. DSI inherits all 
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the advantages of    and reflects the irreversible growth of the bearing damages with running time well. 

Bearing run-to-failure tests and simulation experiments were carried out to validate the proposed 

method. The results show that DSI reflects the running state of rolling bearing in real time and 

effectively guarantees the operation reliability of bearings.  

Although the analysis results in this study are acceptable, more tests are necessary for further 

analysis. Meanwhile, other mathematical methods, such as Principal Component Analysis (PCA), can 

be used to construct some new indexes. PCA uses an orthogonal transformation to convert a set of 

possibly correlated variables into linearly uncorrelated variables. The transformation is defined in such 

a way that the first principal component has the largest possible variance, and each succeeding 

component in turn has the highest possible variance under the constraint which is orthogonal to the 

preceding components. If the statistical features are input into PCA, many separate composite 

characteristics are obtained. Some of the composite characteristics may be excellent assessment indexes. 

In addition, DSI could be applied to the performance degradation assessment of other key machine 

components, such as gears, shafts and ball screws, because their dynamic performance is similar to that 

of bearings. The remaining life prediction could be carried out by the combination of DSI and the 

regression methods such as SVM, ANN etc. DSI is used to determine the time of the initial defect and 

the finial failure, and the regression methods predict the remaining life by inputting one or many fine 

indexes like DSI. It could take all advantages of DSI and the regression methods for accurate 

life prediction. 
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