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Abstract: This paper presents a solution in which a wireless interface is employed to 

replace the cables in bridge-sensor measurement applications. The most noticeable feature 

of the presented approach is the fact that the wireless interface simply replaces the cables 

without any additional hardware modification to the existing system. In this approach, the 

concept of reciprocal topology is employed, where the transmitter side acquires signals 

with its own transfer function and the receiver side reconstructs them with the transfer 

function reciprocal to the transmitter transfer function. In this paper the principle of data 

acquisition and reconstruction is described together with the implementation details of the 

signal transfer from the sensor to the signal-monitoring equipment. The wireless data 

communication was investigated and proprietary data-reduction methods were developed. 

The proposed methods and algorithms were implemented using two different wireless 

technologies. The performance was evaluated with a dedicated data-acquisition system and 

finally, the test results were analyzed. The two different sets of results indicated the high 

level of amplitude and the temporal accuracy of the wirelessly transferred sensor signals. 

Keywords: bridge-sensor measurements; wireless interface; reciprocal topology; sensor 

data integrity and reduction; comparative test methods; signal stream delay testing 
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1. Introduction 

Cable connections can lead to difficulties in many sensor applications [1–3]. The key advantage  

of using wireless technologies in industrial, medical, environmental and other sensor applications is 

that they can significantly improve the flexibility and lower the costs associated with installing, 

maintaining, and upgrading wired systems [4,5]. The commercial promise of such solutions has been 

proved by the vast number of installed applications [6] based on new standards, like IEEE802.15.4 [7], 

and industrial collaborations, like the Zigbee Alliance [8]. All these new installations and wireless 

sensor applications, which are often very application specific, require a new infrastructure or at least 

some degree of adaptation to implement the wireless sensor technology in industrial or other 

environments. Any adaptations or new installations may result in significant investments. Some 

specific environments are very sensitive with regard to the investments, and the costs of going wireless 

are not always justified [9,10]. A good example is hospitals, where sensors are used in intensive care. 

All those sensors, placed on or near the patient, are traditionally connected with wires to the 

monitoring equipment [11]. However, monitors, even modern ones, have no standard wireless 

interfaces to connect to the sensors and the introduction of wireless sensors would require the 

replacement of the monitors [12,13]. 

In this paper we propose a solution in which a wireless sensor interface is employed to replace the 

cable connection of an existing measurement system. The salient feature of the proposed approach is 

that no adaptation or change to the sensor or to the measuring-equipment site is required. We 

developed reciprocal transmitter and receiver architecture which enables simultaneous multiple 

monitoring of a sensor signal. In a running system, only the data at the receiver are available, and the 

delay cannot be estimated. To solve this problem, a dynamic time-adaptation algorithm was developed. 

In the following we outline the advantages of the proposed topology and the requirements for its real 

life applications. In the second part of the paper we describe implemented prototypes and their 

operation in practice. The developed dynamic time-adaptation algorithm is demonstrated in the 

description of the signal time delay test evaluation. 

While the presented solution can be applied to different passive bridge-sensor implementations and 

does not depend on a target application, we illustrate the advantage of the proposed approach on a case 

study of a blood-pressure monitor as a typical medical application. Test results were collected during 

clinical evaluation, which proved the commercial system based on presented concepts met the 

requirements of IEC-60601-1-2:34 {ed. 2.0} and base of the usability’s requirements of the  

IEC 60601-1-6_2010 ed.3 and IEC 62366_2007 ed.1. The clinical trial was conducted under identifier 

NCT01373996. 

2. Bridge-Sensor Connections 

Bridge resistors are primarily sensitive to the primary measured parameter (e.g., the pressure). The 

output signal, however, is also influenced by other parameters (e.g., the temperature), generating an 

error in the differential output voltage, which can be minimized by a compensation circuit or an 

algorithm. There are different implementations of bridge sensors. Amplifiers or even a complete 

microcontroller with temperature compensation and calibration can be integrated within a sensor. In 
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this paper we focus on a Wheatstone-bridge configuration, which is common in many sensors 

operating on a resistance-change principle. They are (but not limited to) the following: piezoresistive 

pressure sensors, strain-gauge sensors, temperature bridge sensors, and many more. 

A conventional bridge sensor is connected to the monitoring or measuring equipment with a 

minimum of a four-lead cable, as shown in Figure 1. The cables that are placed between the sensor and 

the process-automation equipment are sometimes difficult to install. Another limitation is the case 

when one process requires more than one measuring channel per sensing parameter. Such a case would 

require connecting one sensor to two instruments, which is not feasible with passive bridge sensors. 

The supply lines are either in short circuit, or the sensor bridge is not supplied by the correct 

instrument, which results in an incorrect readout. The above problems can be solved by replacing the 

cable with a wireless communication, as described in the following sections. 

Figure 1. Passive sensor bridge connected to the process equipment. 

 

In most cases the equipment is a part of an existing infrastructure that is already installed, or there is 

a need to upgrade the system with some standard, additional instrumentation. Both cases have one 

common feature: the only accessible points are the external connections of the bridge sensors and the 

measurement instruments. Usually, there is no possibility to adapt the internal structure of the 

instruments to directly implement the use of any kind of wireless technology. The proposed wireless 

resistive-bridge sensor interface is suitable for a cable replacement in the existing systems and requires 

no modification of the measurement infrastructure. 

3. Wireless Cable-Replacement Interface for Bridge Sensors 

The wireless resistive-bridge sensor interface integrated in an industrial or medical sensor system 

consists of transmitter and receiver units connected with a secure RF link within the unlicensed 

Industrial, Scientific and Medical (ISM) frequency band at 2.4 GHz (Figure 2). 

A bridge-sensor element has a low differential voltage output. One typical example is a ceramic 

pressure sensor [14]. Its sensitivity is in the range of mV/V at a full-scale input (ratio 1:1,000) [15,16]. 

Such low-level voltages introduce two issues that are specific to a wireless system.  

First, at the transmitter side, the mV range from the sensor bridge is too low for the Analog-to-Digital 

Converter (ADC), which requires higher input-voltage levels, which means an amplifier with a gain 

GIA needs to be placed at the ADC converter input. The digital output stream from the transmitter is 

thus proportional to the amplified voltage, not to the mV output from the sensor bridge. In the 
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subsequent discussion, however, let us denote the ratio between the transmitter output and the 

low-level sensor signal as the transmitter gain GTX. 

Figure 2. Wireless resistive-bridge sensor interface-block diagram. 

 

The second issue is related to the receiver side. The Digital-to-Analog Converter (DAC) has an 

output voltage range from −VREF to +VREF. The reference voltage VREF has its lower limit, usually in 

the 1 V range. The received digital stream is fed to the DAC in the receiver unit. The transmitter ADC 

and the receiver DAC have the same resolution and operating range. Their digital ports are linked via 

the wireless interface. Ideally, the DAC will generate an output voltage, which is equal to the ADC 

input voltage (with equal reference voltages). To reconstruct the low voltage level at the receiver 

output, which is equal to the sensor-bridge output voltage, the receiver must have an attenuation that is 

reciprocal to the transmitter gain. If the receiver gain is represented by GRX, then the following 

condition must be met: GTX = (GRX)
−1

. 

As shown in Figure 2, the wireless interface requires an additional signal-acquisition module with a 

sensor-bridge supply, two RF link modules and a signal-reconstruction module. The excitation voltage 

for the resistive sensor bridge is supplied by the transmitter unit. The sensor differential output  

voltage is amplified by an instrumentation amplifier (GIA), digitized by an ADC and processed by a 

microcontroller (C). The wireless link is based on a standard wireless technology (Bluetooth,  

IEEE 802.15.4) with standard or proprietary protocols. The processed readouts are transmitted to the 

receiver side, which is connected to the measuring instruments or process automation equipment. The 

receiver RF link passes the received readouts to the microcontroller. The receiver unit mimics the 

sensor bridge with a multiplying DAC. The output voltage from the multiplying DAC is proportional 

to the digital word multiplied by the reference voltage. It operates in all four quadrants with negative 

or positive DC or AC reference voltages.  

The described wireless interface provides an efficient solution to the problems mentioned above. It 

does not require any modification within the internals of the process equipment. Furthermore, one 

sensor can be connected to several measurement channels because there is only one sensor excitation. 

The operation of the proposed wireless sensor interface is described in the following sections. 
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3.1. Transmitter Data Acquisition 

 

The transmitter side of the wireless interface is connected to the resistive sensor bridge. The 

interface also provides an excitation voltage for the pressure transducers (Figure 3). Let the  

sensor-transfer characteristics be represented by the transfer function f(p). The sensor bridge has a 

differential output voltage in the mV range, ratiometric to the supply voltage VCC (Equation (1)): 

1 1 ( )P BP BN CCV V V V f p    (1)  

The output voltage VOUT from the instrumentation amplifier is the sum of the amplified differential 

input voltage VP, multiplied by the instrumentation amplifier gain GIA, and the offset voltage VOFS:  

OUT IA P OFSV G V V   (2)  

The instrumentation amplifier gain GIA is determined and fixed by the resistor RG. The offset 

voltage is proportional to the supply voltage and defined by the resistor divider ROFS1 and ROFS2  

(Figure 3). 

2
1

1 2

OFS
OFS CC

OFS OFS

R
V V

R R



 (3)  

 

Figure 3. Analog input stage at the transmitter side. 

 

 

The amplifier output voltage is connected to the ADC. The reference voltage VREF is derived from 

the supply voltage by the resistor divider ROFS1 and ROFS2 and is equal to the offset voltage VOFS:  

2

1 2
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REF OFS CC

OFS OFS

R
V V V

R R
 


 (4)  

The 16-bit digital output value from the ADC is proportional to the ratio of the ADC input voltage 

and the reference voltage (Figure 4): 
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Replacing VINADC = VOUT we obtain:  

16
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(6)  

where: 

2

1 2

OFS

OFS OFS

R

R R
 


 (7)  

Equation (6) has no reference voltage, which means the ADC reference voltage could be an 

arbitrary value as long as it is within the ADC specification required by the ADC. This is true only 

when the sensor-bridge excitation and the ADC reference voltage are proportional or equal (Equation (4)). 

Finally, the digital readouts NADC are buffered and transmitted via a wireless link (Figure 4). 

Figure 4. Analog-to-digital converter connection. 

 

3.2. Receiver Data Reconstruction 

Digital readouts are transmitted to the receiver. The raw digital data NDAC feeds the digital-to-analog 

converter with the same sampling rate as the ADC converter in the transmitter. The applied external 

reference input voltage Vref determines the full-scale output voltage of the DAC converter: 

2

DAC
DAC REFM

N
V V  (8)  

1

(1 ) 2
REF CC CC

R
V V V

R R 
 

 
 (9)  

where 2
M

 refers to the DAC resolution. The reference voltage is set to one half of the bridge supply 

voltage (VCC/2). The DAC output is connected to a fully differential amplifier. It has a differential 

input and a differential output (Figure 5). 

The differential output voltage is generated by the differential driver with a rail-to-rail output. Its 

internal common-mode feedback architecture allows its output common-mode voltage to be controlled 

by the voltage applied to VM. To implement the fully differential configuration the feedback resistors 

and attenuator resistors must match perfectly. One option is to select the resistors and sort them into 

several bins, which creates many problems when it comes to mass production. Another option is to use 
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high-precision resistors, which raises the cost of the implementation. An optimal trade-off between the 

costs, the mass-production requirements and the performance could be implemented with a thick-film 

hybrid-circuit technology providing the ultimate match of the feedback network consisting of four 

resistors that determine the amplifier’s closed-loop gain. The amplifier’s differential output voltage 

(Figure 5) is defined as: 

ODIF OP ONV V V   (10)  

Figure 5. Output stage of the sensor signal reconstruction unit: the main component is the 

fully differential amplifier. 

 

The common-mode output voltage is the average of the two voltages and is defined as: 

2

OP ON
OCM

V V
V


  (11)  

The voltage gain of the single-ended-to-differential output topology can be derived from the signal 

definitions shown in Figure 3. The setting VOFS2 = 0 can be written as:  

DAC AP AP ON

G F

V V V V

R R

 
 , G

AN AP OP

F G

R
V V V

R R

 
   

 

 (12)  

Solving the above Equation (10) gives the gain relationship for VODIF / VDAC: 

F
OP ON ODIF DAC

G

R
V V V V

R

 
    

 
 (13)  

An inverting configuration with the same gain magnitude can be implemented by simply applying 

the input signal to VOFS2 and setting VDAC = 0. For a balanced differential input, the gain from 

VDAC − VOFS2 to VODIF is also equal to RF/RG. 

The advantages of the proposed topology can be summarised as follows:  

- there is no need for accurate (and costly) voltage references in the transmitter or receiver, 

- an additional receiver or transmitter calibration is not needed with a mindful circuit design,  

- the signal reconstruction operates equally as a Wheatstone bridge in all four quadrants. 
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A disadvantage of the presented solution is that it requires a highly matched resistor network. There 

are other types of amplifiers, which can be deployed in this circuit and are commonly used. One is 

differential amplifier implemented with singe operational amplifier. True instrumentation amplifiers 

with three or two operational amplifiers may be implemented. They all amplify differential signals 

with good rejection of common mode input voltages. The latter two are popular for discrete 

implementation having lower requirements on resistors. Since our amplifier circuit is implemented in a 

thick film hybrid circuit technology, the resistor matching is not an issue, because they are all precisely 

laser trimmed. 

3.3. Data Reduction 

The performance of a battery-operated wireless device depends on the energy efficiency. One of the 

main consumers of the energy in the battery is the RF link. The transmitter’s power efficiency could be 

maximised by minimizing the RF link’s active time. The active time starts with the transition from a 

low power state to the active state. This period is followed by a data-transmission interval. Finally, the 

RF link needs some time to switch from the active mode back to the sleep mode. The transition 

intervals are significantly shorter than the active transmission. The main focus in minimizing the RF 

link’s power consumption should be during the active period. The easiest way to reduce the power 

consumption of the RF transmitter is to reduce the bandwidth of the RF link by sending less data 

without losing performance.  

During the system design, it is necessary to define the required system resolution δX and the 

operating range (xMAX−xMIN). Both parameters define the minimum number of bits required to store any 

value within the operating range:  

2log MAX MIN
S

X

x x
M




  (14)  

where MS is the smallest number of bits.  

Another possible solution to reduce the amount of data being transmitted is data compression. 

However, the lossless compression of a continuous data stream is a challenging task for a resource-limited 

embedded microcontroller. The compression method should conform to the restrictions imposed on the 

processing power and the memory resources. The best method to reduce data rate is to use a custom 

data format with a resolution equal to MS. The data reduction is then implemented as simple  

bit-manipulation, where all the processing remains within the microcontroller register file. In our 

implementation we used half-precision 16-bit floating-point numbers using 1 sign bit, a 5-bit excess-15 

exponent and 10 mantissa bits, in accordance with IEEE Std 754-2008 [17]. 

3.4. Data Integrity 

Replacing a cable with a wireless interface presents new challenges for the field of data integrity. It 

is not uncommon to be faced with issues relating to the integrity of readouts transmitted via a wireless 

interface. This wireless interface is usually small in size and has limited computing capabilities. With 

some safety-critical applications, like healthcare, data integrity ranks high in the core requirements. 

Wrong decisions caused by invalid data may harm someone’s health or even result in the death of a 
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patient. One such example is wireless blood-pressure monitoring. When used, e.g., in a critical-care 

unit, many decisions are based on instruments’ readouts. If the blood pressure displayed by the 

patient’s monitor is wrong, the patient could receive the wrong treatment, resulting in a critical state. In 

such cases, it is better not to transfer any data at all than present data that might be invalid. With this in 

mind, three levels of error detection were implemented: sequence-number checking, control-byte error 

checking and the checksum calculation. The whole data frame structure is shown in Figure 6.  

At the upper level, a sequential freshness security service is employed. Sequential freshness 

maintains an ordered sequence of received frames. When a frame is received, the freshness value is 

compared with the last known freshness value. If the freshness value is newer than the last known 

value, the check has passed, and the freshness value is updated to the new value. If the freshness value 

is not newer than the last known freshness value, the check has failed. This service provides evidence 

that the received data are newer than the last data received by that device. 

The frame control byte (FCB) represents the essential part of an application frame. The bit pattern 

within the FCB defines the type of payload or serves as a special command, like data-acknowledge, 

data-acquisition start and stop, etc. The FCB is divided in two 4-bit symbols. The FCB error detection 

is provided with 4-bit to 8-bit coding. There are only 16 valid byte codes for each 4 bit half of the 

FCB. Each symbol is coded with an 8-bit code. Finally, the check sum calculation is operated over the 

complete frame and added at the end of the frame. Each data frame has control structures with a data 

payload (Figure 6). Some special frames such as reception acknowledge or command strobes have no 

data payload. 

Figure 6. Data-integrity protection envelope. 

 

4. System Evaluation 

4.1. Implemented Prototypes 

The wireless-sensor interface shown in Figure 2 was implemented with two different wireless 

technologies. The first set was implemented on IEEE 802.15.4 transceivers based on the CC2400 from 

TI/Chipcon (Figure 7(a)). The second pair was implemented with standard Bluetooth WT12 modules 

from Bluegiga (Figure 7(b)). 

The main reason for the implementation with two different wireless technologies was their 

evaluation for industrial and medical applications. They are both some of the most commonly used in a 

variety of applications. IEEE 802.15.4 is preferred in industrial applications, like ZigBee and similar 

protocols. Medical applications are more Bluetooth oriented.  
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Figure 7. (a) Transmitter and receiver prototype implemented with CC2400 and  

(b) Transmitter and three receivers implemented with WT12 Bluetooth module. 

 

(a) 

 

(b) 

The following table presents the main characteristics of the two wireless technologies that are 

relevant for the selection of a target application. The data gathered in Table 1 could be used as a 

guideline when selecting the optimum wireless technology. The final decision, however, also depends 

on other factors, like availability, legal and safety compliance with medical or industrial applications, etc. 

Table 1. Evaluation of the appropriateness of the wireless technologies for various applications. 

Feature CC2400 
a
 WT12 

b
 Units 

Data rate  250 723 kbps 

Rx power consumption 165  231 mW 

Tx power consumption 148.5  231 mW 

CE, FCC qualified Yes Yes  

Indoor/Urban Range 30 10  m 

Outdoor RF line-of-sight Range 100 (X) m 
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Table 1. Cont. 

Notes: a: Source: Ti CC2400 documentation and measurements on evaluation modules; b: Source: Bluegiga 

WT12 documentation; X: Information not given by datasheet or user’s manual. 

 

4.2. Evaluation Procedure  

 

In order to evaluate the performance of the developed wireless interface for replacing cables in 

bridge-sensor applications, a dedicated data-acquisition system was constructed. The clinical 

evaluation system (Figure 8) schematic is shown in Figure 9. The pressure was generated using a 

programmable pressure source for laboratory testing, while real live signals from different patients 

were taken during clinical trial. The calibrated pressure sensor S was used for the reference electrical 

signal. The output voltage from sensor S was connected to the transmitter unit and served as a 

reference signal pT. The same signal was directly connected to the data-acquisition system. The 

transmitter output signal was wirelessly transmitted to several receiver units simultaneously. All the 

receiver signals pR1, pR2 pRN were measured with dedicated channels in the DAQ. 

The purpose of the study was to determine whether the wireless transmission of pressure signals 

from the sensor to the data-acquisition system is feasible, safe and as accurate as a conventional cable 

connection. The analysis was made by comparing pressure-signal pairs pT and pRi (i = 1,…,N). Each 

signal was sampled and stored in files over a long period of time. The sampling frequency was twice 

the sampling frequency of the wireless interface, which resulted in huge data files. The gathered data 

was, therefore, analyzed offline. 

  

Feature CC2400 
a WT12 

b Units 

Supported Network Topologies Point-to-point,  

Point-to-multipoint,  

Peer-to-peer & Mesh 

Point-to-point,  

Point-to-multipoint 

 

Self-routing option Yes (X)  

Self-healing network Yes (X)  

Fault-tolerant mesh network Yes (X)  

Supply voltage 3.3 3.3 V 

UART interface No Yes  

SPI interface Yes No   

Encryption 128  128  bit 

RSSI indication Yes Yes  

Time to connect <0.05 >5 s  

Form factor 24 × 27 × 2.3 26 × 14 × 2.3 mm 

Integrated antenna Y Y  

External antenna Y N  

Price per 1k units 10.89  >20.00  € 

Coexistence with other  

wireless technologies 

Limited Possible  



Sensors 2012, 12 10025 

 

 

Figure 8. (a) Clinical evaluation setup under laboratory conditions and (b) during clinical 

trial in the hospital intensive care unit. 

  

(a) (b) 

Figure 9. Evaluation data-acquisition system. 

 

As shown in Figure 10, the signal pR is delayed after the signal pT. The wireless-data connection is 

not ideal; it exhibits some error in the time and the amplitude. In addition, the delay time and the 

amplitude error between the signals may change over time [18]. The main reason for the time-delay 

variability is the difference in the internal clocks between the transmitter and the receiver unit 

(Figure 10). The amplitude error is caused by component tolerances in the transmitter acquisition and 

receiver reconstruction circuits. 

Figure 10. Signals captured at the lower level of the experiment. 
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4.3. Testing Method 

The wireless interface was measured with the DAQ system over a one-day period. As mentioned 

above, the measurement resulted in an enormous amount of data that was stored in huge files. It was 

not possible to perform the evaluation on a sample-by-sample basis [19]. To handle such long data 

records, it is necessary to split the long data record into segments of a manageable size. In order to 

evaluate the quality of the wireless data transmission a dedicated, multiple-step data-extraction and 

evaluation algorithm was developed. The principle of the algorithm is sketched in Figure 11.  

Figure 11. Data-extraction and evaluation algorithm. 

 

4.4. Data-Extraction and Evaluation Algorithm 

The acquired test-results file contains two sets of data: pT from the transmitter side and pR from the 

receiver side. Both signals were sampled simultaneously, although they are not correctly aligned due to 

the delay induced by the wireless system. The first step in the algorithm is the extraction of segments 

that are suitable for analysis. The segment size was determined in a preliminary analysis that 

considered two criteria. The first one was the trade-off between the number of segments and the 

computational speed: shorter segments require a shorter processing time. On the other hand, this would 

result in a larger number of segments, which is more difficult to handle. The second criterion was 

related to the duration time of the segmented data. The programmable pressure source generated a 

periodic signal. To keep the analysis consistent at least two input signal periods should be present in a 

single segment. Consequently, one whole period of the transmitter periodic signal pT lies between the 

segment array indexes a and a + N, as shown in Figure 11.  

The corresponding samples appear in the receiver signal pR between indices b and b + N as an 

approximate and a delayed approximate of the signal pT. In order to calculate the difference between 

the two signals, they must be aligned in time. This is done by shifting the output signal back until the 

shapes fit. In order to determine the actual error induced by the wireless system, the two signals must 
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be perfectly aligned. The index b, which represents the start of the transmitted signal within the 

received array, is not known. The difference between the indices a and b (see Figure 11) characterizes 

the time delay and is determined by calculating the cross-correlation between the two signals.  

Let the extracted segments of the signals pT and pR be represented by the arrays: 

   1, ,...,T Ta Ta Ta Np i p p p   (15)  

and: 

   1, ,...,R Rb Rb Rb Np j p p p   (16)  

where a is the starting index and N is the segment length limiting the transmitter-segment boundaries. 

The corresponding segment in the receiver signal is denoted by the index b and the equal length N 

(see Figure 11).  

The array segment within the receiver signal array is shifted back in time:  

   R Rp j p j k    (17)  

where the array shift is denoted by the lag difference k. The maximum k is related to the buffering 

mechanism of the wireless system and is proportional to the buffer width. The signal delay is 

determined by calculating the normalized cross-correlation between the segments pT and p’R at all the 

expected values of k. The normalized cross-correlation between the two arrays is defined as: 

T Rp p    (18)  

The delay k = b − a is defined as the lag for which the normalized cross-correlation has the largest 

absolute value ρMAX. At this point, the two signals closely resemble each other. In reality, the wireless 

system adds some errors in amplitude. Some variation in the time delays of the individual segments is 

also apparent due to the dynamic clock handling of the internal buffering mechanism. The resulting 

small amplitude errors and time-delay deviations, however, provide sufficient correlation between the 

pair of the delayed signal, as shown in Figure 12.  

Figure 12. Cross-correlation between input signal and shifted output signal. 
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The last step, shown in Figure 11, is the evaluation. The result of the evaluation process is a single 

value, calculated from the aligned signal segments for each evaluated parameter (i.e., amplitude  

error, time delay).  

The first evaluation stems from the mean difference between the signals. The difference array δ[i] is 

calculated by subtracting the corresponding elements from the aligned signal arrays:  

   1 1, ,...,Rc Ta Rc Ta Rd Rbi p p p p p p       (19)  

The new array [i] is the source for the first evaluator  . It is calculated as an average value of the 

array δ[i]: 

 
1 b

j a

j
b a

 




  (20)  

The signal difference evinces a systematic amplitude error. Its value represents the actual quality of 

the wireless transmission system. This should be kept within acceptable limits, defined by the required 

system accuracy.  

The second evaluator is the time delay. The difference between the indices a and b is transformed 

into time. The time between two samples within the signal array is defined by the sampling frequency 

fS. The time delay D between the signals of the observed segments is calculated by: 

S

b a
D

f


  (21)  

 

Acceptance Criteria for the System Evaluation 

 

The system requirements were based on the general requirements commonly seen in industrial 

applications. The overall accuracy of the wireless system was set to 1% full scale. In our case, the 

system operated at a full scale of ±400 kPa. Accordingly, the evaluator  should remain within  

±4 kPa. In order to detect any possible anomalies a verification run of 24 hours was planned.  

As regards the time delay between the signals, the requirement was to keep it below 1 s. In addition, 

the time delay should not change rapidly to avoid signal distortion. A separate mechanism for 

detection of the rapid time-delay changes is not required since the deviation would result in a 

significant output-signal distortion. This would consequently scale the evaluator  above an 

acceptable level. Therefore, only a time delay was observed during the 24 hour test. Both acceptance 

criteria are shown in Table 2. 

 

Table 2. Wireless-system requirements. 

Evaluator Min Typ Max units 

Amplitude error ( ) －4 0 4 kPa 

Time delay (D) 0  1 s 
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4.5. Test Results 

4.5.1. Signal Time Delay 

Three sensor pairs were used during the testing, marked as sensor pairs #1, #2 and #3. The first 

tested parameter was the signal time delay. One transmitter was connected to three receivers at the 

same time and the delay between the signals was measured.  

Figure 13. Time-delay evaluator D between pT and pR for 24-hour pressure measurements. 
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Signal delay for sensor pair #2
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Signal delay for sensor pair #3
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4.5.2. Signal Time-Delay Variation 

The internal algorithms within the communication stack compensate the time deviations between 

the transmitter and each of the three receivers. The transmitter/receiver pair operates at slightly 

different frequencies. When sampling is not exactly synchronized, one of the devices will face buffer 

over- or under-flow, either in acquisition or reconstruction. To overcome this problem, a dynamic 

time-adaptation algorithm was implemented. Since there is only one transmitter in the system, its 

internal clock served as the reference to all the connected receivers. Each receiver has its own buffer 
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under- and over-flow detection algorithm. When one of the receivers runs slower than the transmitter, 

its reconstruction buffer gets overflowed by the samples received from the transmitter. To detect the 

buffer overflow, the available buffer space is evaluated. When the available buffer space is lower than 

a predefined level, the receiver’s internal reconstruction clock is accelerated until sufficient buffer 

space is available. A similar situation occurs when the receiver runs faster than the transmitter. Over 

some time, the receiver’s reconstruction buffer will underflow (i.e., the transmitter will not provide 

enough readouts for the reconstruction). When such a situation is detected, the receiver’s internal 

reconstruction clock is adjusted to run slower than the transmitter until the buffer recovers. 

A saw-tooth shape of the time delay (Figure 13) occurs as a result of the time-deviation 

compensation. Notice that the measured time delay is well within the required range given in Table 2. 

4.5.3. System Accuracy 

The average signal difference between the signals pT and pR (expression 20) was measured next. 

The results for the three sensor pairs are shown in Figure 14. The reference pressure was a periodic 

signal within the system’s operating range. The experiment with the three receivers connected to one 

transmitter was running for 24 hours. Data was recorded during that time with a sampling frequency  

of 250 Hz. The analysis was carried out off-line. As shown in Figure 14, the requirement for the error 

band to be within ±4 kPa, which is ±1% of full scale, was met. The achieved statistics indicates a  

good system performance, even between ±1 kPa. Some sparse outliers have no impact on the target 

system application. 

Figure 14. Results for evaluator (n) for 24-hour pressure measurements. 
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5. Conclusions 

The main idea of this work was to investigate the possibility of implementing a wireless 

replacement for a sensor-bridge cable. We were able to prove the concept of an inverted topology. All 

the test results were obtained directly from theoretical calculations, without any additional calibration. 

The overall performance was within the requirements, despite a small systematic error, which was 

about a decade lower than the required tolerances. The concept was tested with the same results, using 

several receiver/transmitter pairs. This confirmed the idea of the inverted topology and validated it  

for mass production. The presented solution is currently integrated within a series production for a 

medical application. 

Beyond the raw sensor-signal manipulation over the wireless link, we implemented additional 

mechanisms for sensor data integrity, compression and time synchronization. The data integrity 

mechanism keeps the transferred data valid, authentic and consistent with the process measurement. It 

was validated during testing. Any failure to bring consistent data via a wireless link would result in a 

measurable error, because the measurement system compared the received signals to the reference 

signals at the transmitter input. There was no error detected during 24 hours of operation, which 

sustained data integrity at a high level.  

The data compression was based on a number-precision reduction. The internal data processing was 

standard double-precision floating point, while the wirelessly transmitted readouts were reduced in 

precision to maintain the required resolution. The advantage was a compressed data flow via a wireless 

link. It was tested with three simultaneous connections from a single transmitter to three receivers 

without any data loss.  

The tolerances in the frequency of the time bases for the transmitter and the receiver resulted in 

asynchronous handling of the data buffers. To override any troubles with the buffer over- or under-run, 

we implemented a synchronization algorithm for the compensation in the time-base frequencies. The 

shape of the time-delay diagram follows exactly the activity of the time-synchronization algorithm. 

The implemented regulation model was linear. Some future investigation will be required to investigate 

the possibilities for implementing higher-order PID regulation or some fuzzy-logic algorithms, which 

could result in a smaller time-delay deviation.  

The wireless technology employed was Bluetooth, which is not optimum for an agile communication 

administration. New and emerging wireless technologies [20,21] may provide more nimble solutions, 

bringing shorter delay times and lower power consumption, which will be the focus of our future work.  
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