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Abstract: Navigation technology is one of the most important challenges in the 
applications of autonomous underwater vehicles (AUVs) which navigate in the complex 
undersea environment. The ability of localizing a robot and accurately mapping its 
surroundings simultaneously, namely the simultaneous localization and mapping (SLAM) 
problem, is a key prerequisite of truly autonomous robots. In this paper, a modified-FastSLAM 
algorithm is proposed and used in the navigation for our C-Ranger research platform, an 
open-frame AUV. A mechanical scanning imaging sonar is chosen as the active sensor for 
the AUV. The modified-FastSLAM implements the update relying on the on-board sensors 
of C-Ranger. On the other hand, the algorithm employs the data association which combines 
the single particle maximum likelihood method with modified negative evidence method, 
and uses the rank-based resampling to overcome the particle depletion problem. In order  
to verify the feasibility of the proposed methods, both simulation experiments and sea  
trials for C-Ranger are conducted. The experimental results show the modified-FastSLAM 
employed for the navigation of the C-Ranger AUV is much more effective and accurate 
compared with the traditional methods.  
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1. Introduction  

An AUV is an untethered underwater robot which can navigate itself in the complex undersea 
environment. They are widely applied in military missions, resource exploration and oceanographic 
surveys. Generally, a mobile robot estimates its own position and posture by testing the internal state 
or perceiving the external environment, and adjusts its position and realizes accurate positioning under 
the guidance of a prior map, but in unknown complicated underwater environments, the prior map is 
not always available, then the AUV can only perceive the environment through on-board sensors such 
as cameras and sonar, obtain the useful information to construct the environmental map and estimate 
the vehicle location [1,2]. The ability of simultaneously localizing a robot and mapping its 
surroundings accurately is a key prerequisite of truly autonomous navigation [3]. The SLAM algorithm 
was proposed by Smith, Self and Cheeseman [4]. It can be described as that a mobile robot is placed in 
an unknown environment and the robot incrementally builds a consistent map of this environment 
while simultaneously determining its location within this map [1]. In the past two decades, the SLAM 
problem has received significant attention, and currently there are several popular SLAM algorithms 
such as the extended Kalman filter (EKF), the sparse extended information filter (SEIF) and the  
Rao-Blackwellized particle filter (RBPF), etc.  

Smith et al. [5] proposed an EKF-SLAM method based on the extended Kalman filter, which is 
simple and easy to operate and widely applied in engineering. Currently, it has become a relatively 
mature SLAM algorithm. The EKF-SLAM can be described as a posterior probability distribution 
parameterized by a state vector and covariance matrix. The algorithm mainly consists of two steps: 
prediction and update, which can be summarized as an iterative estimate and calibration process [6]. 
However, the EKF-SLAM suffers from two major problems: its computational complexity and data 
association. The covariance matrix in the EKF-SLAM contains the covariance between the robot and 
environment features [7], which need to be updated after each estimation and correction. As a result,  
it achieves O(n2) (the number of environmental features) computational complexity. To deal with the 
limitation, people divide the world into a handful of sub-maps; each contains l features [8–12]. Thus, 
computational complexity can be reduced to O(l2), but the trade-off is sacrificing the convergence speed.  

Thrun et al. [13,14] proposed a SEIF method based on the inverse of the covariance matrix. This 
algorithm uses the information filter instead of the extended Kalman filter and at the same time  
adopts the extended Kalman filter to linearize the nonlinear motion and observation model [15]. The 
advantage of the SEIF algorithm lies in the small computational burden, which only takes up o(kn) 
storage space and of which the computational complexity in the process of global update is o(k2). 
Measurement and movement can be realized in a constant time. The weakness of the algorithm lies in 
the difficult data association, bad consistency and impracticable covariance [16]. 

Arulampalam et al. [17] proposed the particle filter (PF) algorithm. The particle filter is a kind of 
Monte Carlo method applying samples to present the probability density distribution, which can be 
employed to any state model, and when sample size tends to infinity, it can approximate any form of 
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probability density distribution. Murphy et al. [18,19] introduced the Rao-Blackwellized particle filter 
as an effective means to solve the SLAM problem, which provides theoretical basis for the SLAM 
research using the particle filters more efficiently. Montemerlo et al. [20,21] put forward the FastSLAM 
based on particle filter algorithm, which was actually an improved instance of Rao-Blackwellized 
particle filter, and presented the nonlinear and non-Gaussian state distribution using particles for the 
first time. Compared with the EKF-SLAM, FastSLAM adopts each particle to represent a potential 
trajectory of the robot and a map of the environment, which partitions the SLAM posterior into a 
localization problem and an independent landmark position estimation problem. FastSLAM has some 
advantages, especially in data association. It can deal with multi-hypothesis association problems 
because of the independence of the particles. According to the work by Bailey et al. [22], the FastSLAM 
algorithm cannot guarantee the consistency of robot pose estimation. Increasing the number of particles 
can improve the consistency to a certain extent, but simultaneously it will increase the computational 
cost. Because the robot pose estimation relies on a particle filter, a significant aspect of the FastSLAM 
algorithm research is the selection of the particle sampling function and the preservation of  
particle diversity.  

Currently, a lot of research groups have their own AUVs for studying SLAM algorithms. In the 
ACFR of University of Sydney, the Oberon AUV extracted the point features from the sonar image to 
construct the environmental map while it estimates the robot position using EKF-SLAM [23]. MIT 
also carried out SLAM tests utilizing sonar data [24]. They used the data obtained from the high 
resolution array (HRA) forward looking imaging sonar in the Naragansett Bay to extract the point 
features aiming at detecting the objects and its position on the seabed and locating the robot at the 
same time. Heriott Watt University developed a system composed of a Doppler log, three axis 
compass and side scan sonar to perceive the environment and implement the EKFSLAM algorithm 
when executing submarine exploration tasks [25]. Many works prove that SLAM algorithms can be 
employed as a substitute for absolute orientation means such as GPS or acoustic baseline system and 
can also cooperate with them to assist localization. In addition, most research so far has applied the 
EKF-SLAM algorithm. 

Taking the advantages of the FastSLAM algorithm, a modified algorithm based on the improved 
particle filter (PF) is presented in this paper, which employed the data association method by 
combining the single particle maximum likelihood method with a modified negative evidence method, 
and rank-based resampling was also adopted to overcome the particle depletion problem. In addition, 
the velocity and heading angle were taken not only as the state variables, but also as the observation 
variables. The sea trial experiments are also carried out in Tuan Dao Bay (Qingdao, China) on our 
AUV platform, the C-Ranger. The AUV position was predicted through the information such as speed, 
heading angle that was collected by the on-board sensors, at the same time, the environment was 
perceived via the forward-looking sonar, and the appropriate environment features are extracted and 
used for the construction of an environmental global map. In particular, the main contribution of this 
paper lies in the development of a modified-FastSLAM algorithm, which can be used effectively  
to construct a point-feature map of the undersea environment and localize the AUV position 
simultaneously. This paper is organized as follows: Section 2 presents the framework of the C-Ranger 
AUV platform developed in our own laboratory as well as the on-board sensors carried by the vehicle. 
In Section 3 we present the modified-FastSLAM algorithm used in our AUV and simulation 
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experiments. The sea trial results are given in Section 4 to verify the effectiveness of the algorithm. 
Finally in Section 5 and 6, discussion and conclusions of the proposed technique will be presented. 

2. The C-Ranger AUV and On-Board Sensors 

2.1. C-Ranger AUV 

The C-Ranger is an open-frame AUV with dimensions of 1.6 m × 1.3 m × 1.1 m (length, width and 
height), as shown in Figure 1. The control architecture of C-Ranger is illustrated in Figure 2.  

Figure 1. (a) C-Ranger in deployment; (b) The coordinate system of the C-Ranger platform. 

(a) (b) 

Figure 2. Control architecture of the C-Ranger. 

     

 

The AUV has good maneuverability due to five DOFs, including surge, heave, roll, pitch, and yaw. 
The thrust system of this platform consists of five propeller thrusters, where two thrusters paralleling 
to the bow direction are installed in the abdomen to provide horizontal thrust, mainly for controlling 
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the surge and yaw, while the other three thrusters, two of which are installed on both sides of the bow, 
and the remaining one is installed on the rear of the vehicle, are employed to provide vertical thrust to 
control the heave, roll, and pitch. The upper hull of C-Ranger is the instrument compartment, housing 
sensors, two industrial computers, communication module, internal monitoring module and other 
equipment, while the lower hull is the power and thrust system composed of lithium-ion batteries, 
power management module, motor-driver module, etc. The maximum speed of C-Ranger is 3 knots, 
and it can operate for up to 8 hours when fully charged (tested at a speed of 1 knot). 

2.2. On-Board Sensors 

A number of sensors are installed on the C-Ranger, and some of them are explicitly related to 
SLAM. These sensors are basically divided into two groups: the internal and the external. Internal 
sensors include digital compass, gyro, Attitude and Heading Reference System (AHRS) and pressure 
sensor. External sensors include mechanical scanning sonar, Doppler Velocity Log (DVL), altimeter, 
CCD camera and GPS. 

(A) Mapping-Related Sensor: Active Imaging Sensor 

A mechanically scanning forward-looking sonar (Super Seaking DST, Tritech) used for active 
sensing of environment features is installed at the front top of C-Ranger. It is the principal sensor of 
C-Ranger AUV. The operating frequency of the sonar is 675 kHz, and its working range is up to 
300 meters. 

The transducer head of this kind of sonar usually needs a considerable period of time to perform a 
360° rotation. This is an important issue that has to be taken into account when operating with such 
sonar mounted on an AUV, since the resulting acoustic images can get distorted as a consequence of 
the vehicle’s motion. Generally, this effect can be ignored for low velocities but for higher velocities 
it has to be dealt with. Feature extraction is an important process, e.g., Forouher et al. [35] presented 
an interesting method to extract wall features for arbitrary shapes, which is different from that using 
position feedback to un-distort the data in our previous work [26]. The data in the 49th circle of the 
Abandoned Marina Dataset [27] is used to verify the effect of this correction method. Figure 3(a) 
shows the acoustic image built from the raw sonar data. Since the vehicle’s motion has been ignored 
during the generation of the image, obvious distortion of the observed features appears when 
comparing it with the aerial image of the test scenario in Figure 3(c). The corrected image using the 
correction method is shown in Figure 3(b). Obviously the distortion of the image is almost canceled 
and a more accurate image is represented. The result demonstrates that the correction approach  
is effectual. 

(B) Velocity Sensor: DVL 

The DVL (NavQuest600, LinkQuest) is used to provide the velocities of the vehicle relative to 
the seabed. In addition, the NavQuest600 can provide other information: pitch angle, roll angle, 
heading, altitude, depth, temperature and velocities relative to the ocean currents.  
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(C) Angular Sensors: AHRS and Gyro 

The AHRS (M2, Innalabs) is used to produce attitude information, and a gyro (VG951D) is  
used to measure angular velocity in the AUV navigation process. AHRS M2 is a low-cost  
high-performance inertial navigation system, and magnetic interference will not affect the accuracy 
of headings over short times. 

(D) Positioning Sensor: GPS 

To evaluate the navigation performance of the C-Ranger, a high-precision and high-dynamic 
GPS receiver is employed. In the absence of SA, the positioning accuracy is up to 1.1 m (CEP), 
and the data update rate is up to 20 Hz. The GPS sensor can offer a benchmark to evaluate the 
estimation of robot trajectory.  

Figure 3. Effect of the vehicle motion on acoustic images. (a) Raw sonar image;  
(b) Corrected sonar image; (c) Zenithal view of the Abandoned Marina. 

(a) 
 

(b) 
 

(c) 
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3. The Modified-FastSLAM Algorithm  

The goal of SLAM is to simultaneously localize a robot and determine an accurate map of the 
environment, that is, to determine the posterior p(st,Θ | zt, ut, nt), where st = {s1,…,st} is the path of the 
mobile robot and Θ = {θ1,…,θm} is the map which contains m landmarks. The posterior is conditioned 
on all observations zt = {z1,…,zt}, the sequence of control inputs ut = {u1,…,ut} and data associations 
nt = {n1,…,nt}. The data associations describe the mapping of observations to the landmarks in  
the map. 

FastSLAM is an efficient algorithm for the SLAM problem which partitions the SLAM posterior 
into a localization problem and m independent landmarks estimation problems relying on the conditional 
independence. The posterior is given by the following factored format: 

)n,u,z,s|()n,u,z|s()n,u,z|Θ,s( tttttttttttt ∏
=
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In FastSLAM, a particle filter is used to approximate an ideal recursive Bayesian filter for the 
mobile vehicle’s pose estimation )n,u,z|s( ttttp . The landmark locations posterior )n,u,z,s|Θ( ttttp  
are analytically calculated by EKF filters. Each particle in FastSLAM can be expressed as follows: 
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In Equation (2), n indicates the index of the particle, st,n is the n-th particle's path estimate at time t, 
and µn 

t,i and ∑n 
t,i are the mean and covariance respectively of the Gaussian distribution representing the  

i-th landmark θi, attached to the n-th particle. The FastSLAM algorithm has four basic steps that can be 
described as: 

(1) Sample a new pose for each particle. 
(2) Update the landmark observed with EKF in each particle. 
(3) Calculate an importance weight. 
(4) Importance resampling.  

Our algorithm has made improvements to the FastSLAM2.0 and we call it modified-FastSLAM. 
This modified algorithm takes advantage of the FastSLAM 2.0 algorithm, which employs a data 
association method combining the single particle maximum likelihood method with a modified 
negative evidence method, and uses the rank-based resampling to overcome the particle depletion 
problem, besides taking the velocity and heading not only as the state variables, but also the 
observation variable. 

3.1. Modified-FastSLAM Algorithm 

(A) Sampling A New Pose for Each Particle 

The vehicle pose are sampled conditioned the motion model incorporating the most recent 
measurement data zt and control input ut, which can be denoted as: 

)n,z,u,s|(~ tttn1,t−
t

n
t sps  (3) 

The new particles are distributed according to: 
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)n,z,u,s|()z,n,u|s( ttt1t1t1t1t1t −−−−−
tspp  (4) 

The distribution is referred to as the proposal distribution of particle filtering. 

(B) Updating the Estimation of observed Landmark  

The FastSLAM represents the landmark estimates )n,u,z,s|( tttt
ip θ in Equation (1) using 

EKFs. The posterior over the i-th landmark pose θi can be acquired easily. Its computation depends on 
whether landmark θi was observed at time t, that is, whether i = nt. The two kinds of circumstances 
are as follows. If the landmark is observed: 

)n,u,z,s|(),,|()n,u,z,s|( 1t1t1t1ttttt −−−−
= ∝

ttt nttntni pnszpp θθθ  (5) 

The algorithm achieves the update Equation (5) using EKF.  
For i ≠ nt,the landmark posterior is unchanged: 
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The classical solution to the data association problem is to choose nt such as it maximizes the 
likelihood of the measurement zt given all the data [21]. This procedure can be written as: 

)ˆ,,,,|(maxargˆ 1−−= t
tt

n
t nnzpn

t

t1tt uzs
 

(7) 

Data association can be made on a per-particle basis because each particle represents a different 
predicted path. Montemerlo had put forward a per-particle ML (maximum likelihood) [28] data 
association method and adopted the “negative evidence” to remove spurious landmarks from the 
map. Each time a constant value is added to the log odds ratio if the landmark is observed and a 
constant value is subtracted from the log odds ratio if the landmark is not observed while it should 
have been. Once the ratio falls below a threshold, the landmark will be discarded. However, the 
accumulation of log odds ratio can't intuitively describe whether a landmark exists in the map or 
not. The setting of the threshold does not have a reliable standard, in addition, the algorithm does 
not set an acceptance gate for the new observations, which causes all new observed landmarks to 
join the map, and some false landmarks will influence the accuracy of localization and the map 
estimate [29].  

In order to correctly identify the false landmarks, and ensure accurate data association, this 
paper sets information variables to track observed landmarks and judges the authenticity of 
landmarks in the map in accordance with an acceptance gate and discard gate.  

All the observed landmarks are added into a preprocessing landmark set and we use variable Im 
to track the m-th observed feature. Im is the cumulation of rm 

t  and changes over time. When the 
observed landmark of the preprocessing set is outside the detection range of the sensor, rm 

t  is set to 
−1; When the observed landmark is in the detection range of the sensor and the landmark is  
re-observed, rm 

t  is set to 1; When the observed landmark is in the detection range of the sensor but 
the landmark is not re-observed rm 

t  is set to 0: 
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If Im ≥ 2, the landmark will be added to the map and if Im ≤ 0, the landmark will be discarded. 
That is, acceptance gate is 2 and discard gate is 0. That is to say, if the landmark is detected twice, 
it is considered to exist in the map; but if the times it is correctly detected are less than the times it 
is wrongly detected, the landmark is considered to be fake and should be removed from the map.  

Each time only landmarks in the local area around the robot can be re-observed and thus we 
only need to make the observations associated with the landmarks in the local map. The local map 
can be determined according to the detection range of the sensor and the robot pose using  
Equation (9) where (mx,my) are the coordinates of a landmark and (x,y,φ) is the robot pose, R is the 
used detection range of the sensor, υ and Δ  are the range and heading angle compensation values, 
respectively. Equation (9) ensures that the landmark is in the scanning radius and sector of the 
sonar. For example, the scanning distance of the sonar can be set as 100 m (the maximum range of 
the Tritech sonar is 300 m), and the scanning sector is 180°, then R = 100 and (mx − x) cosφ + (my − y) 
sinφ > −R. The sonar sensor has a systematic deviation, so we expand the local map by a 
compensation value to prevent omitting landmarks: 

Rymxm
Rymxm

yx

yx

⋅Δ−>−+−
+<−+−

ϕϕ
υ

sin)(cos)(
)()( 22

 
(9) 

(C) Calculating Importance Weights of Each Particle 

Before importance resampling, the importance weights must be calculated. The proposal 
distribution p(st−1|ut−1,nt−1,zt−1)p(st|st−1,ut,zt,nt) do not match the desired posterior p(st|ut,zt,nt). The 
importance weight of each particle is calculated as follows: 
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(D) Rank-Based Resampling  

Resampling, which tends to eliminate particles with low weights, plays an important role but 
causes the particle depletion problem in FastSLAM. The literature [30,31] has proposed the RBR 
algorithm which is a resampling algorithm from the rank-based selection in genetic algorithms 
(GA). This algorithm is proposed to maintain particle diversity as long as possible. It determines 
the rank of each particle in accordance with its weight and then assigns it a selection probability. It 
gives the maximal selection probability to the particle with highest weight due to its first rank, and 
the minimal selection probability to the one with lowest weight due to its last rank. When the 
number of particles is fixed, the minimal selection probability and the maximal should satisfy the 
condition that their sum is less than 2, and the selection probability usually has a value ranging 
between 1 and 2. With the selection probabilities, the RBR performs one of the stratified 
resampling algorithms. The RBR neglects the relative information among the weights and assigns 
selection probabilities on the base of their ranks.  

In our algorithm, a rank-based resampling algorithm is adopted from the rank-based selection in 
GA to resolve the particle depletion problem. Differing from RBR algorithm, our algorithm generates 
new particles with two selected particles, rather than simply by replacement using a selected particle, 
and that way will ensure better particle diversity. The pseudo code of our resampling algorithm is shown 
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in Table 1. The FastSLAM algorithm considers the “effective sample size” to decide whether to do 
resampling, this will result in the fact that FastSLAM executes resampling too many times so that the 
diversity of the particle distribution is reduced and the consistency gets worse [22]. Modified-
FastSLAM considers the number of effective particles, the particle weights’ covariance, and every 
particle’s residual consistency [32] to check whether it is the right time to do resampling. All the 
algorithms are executed on the Matlab R2009a platform. 

Table 1. Resampling algorithm.  
If  Neff<Nparticles*0.75&&Weight_covariance>Mean_weight && residual_inconsistency 
    newparticles=resampling(Particles,weight,Nparticles,Nnew_particles); 
end 
Function newparticles=resampling(Particles,weight,Nparticles,Nnew_particles) 
Nr=zeros(1,Nparticles); 
U=rand()/Nparticles; 
Cmax=1+rand(); 
Cmin=2-Cmax; 
Ws,rank=sort(w,'descend'); 
for i=1 to Nparticles 
    K=rank(i); 
    ps(k)=(Cmax-(Cmax-Cmin)*(i-1)/(Nparticles-1))/Nparticles; 
    Nreplace(i)=fix((ps(i)-U)*N)+1; 
    U=U+Nreplace(i)/N-ps(i); 
end 
index=find(Nr>0); 
Len=length(jj); 
for i=1:Nnew_particles 
    index1=index(round(rand()*Len)); 
    index2=index(round(rand()*Len))； 
    Rand_value=rand(); 
    New_particles(i)=Rand_value*particles(index1)+(1-  Rand_value)*(particles(index2); 
end 

3.2. Simulation Experiments 

In this section, simulation experiments are carried out to evaluate the performance of the  
modified-FastSLAM algorithm in comparison with the original method. The FastSLAM2.0 simulator 
obtained from [36] is utilized in this section, and it is taken as original FastSLAM or benchmark 
algorithm. The state of the robot can be modeled as (x,y,φ) where (x,y) are the Cartesian coordinates 
and φ is the orientation to the global environment, respectively. The kinematics equations for the 
mobile robot are in the following form: 

1 1

1 1
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 (11) 

where u = [v G] is the control input consist of a velocity input and a steer input and B is the  
wheel-base of the vehicle. Wt is the process noise and assumed to be Gaussian. The observation sensor 
can provide a measurement of rang r and bearing Ψ to the observed feature. The observation model is: 



Sensors 2012, 12 9396 
 

2 2

t1

( ) ( )

tan ( )

x t y t

y t
t

x t

m x m y
r

Nm yψ
m x

ϕ−

⎡ ⎤− + −
⎢ ⎥⎡ ⎤

= +⎢ ⎥−⎢ ⎥
⎣ ⎦ −⎢ ⎥

−⎣ ⎦

 (12) 

where (mx,my) are the landmark coordinates and Nt
 
is the observation noise. The environment explored 

by the robot is a region of 200 m × 200 m size, and the robot initially begins at point (0,0). The 
relevant parameters in the simulation are listed at Table 2. 

Table 2. Parameter settings used in the simulation. 

wheelbase of robot 4 m observation noise (0.1 m/s, 0.1 deg) 
speed of robot 3 m/s control frequency 40 HZ 
maximum steering angle 30 deg observation frequency 5 HZ 
control noise (0.3 m/s, 3 deg) maximum of range-bearing sensor 30 m 

The algorithms are run with 50 particles while the number of effective particles is three-quarters of 
the total number of particles. Results in the following are obtained by averaging over 50 Monte-Carlo 
trials. Pose errors, RMS, NEES, will be produced to evaluate the estimation performance in the next 
section. Figure 4 presents the simulation results of the original FastSLAM and the modified-FastSLAM. 
The modified-FastSLAM can maintain a better estimation of path and landmarks.  

Figure 4. Results of FastSLAM and modified-FastSLAM obtained by averaging over  
50 Monte-Carlo trials. 

(a) (b) 

The data association performances of the two algorithms are shown in Figure 5. It can be seen that 
the modified algorithm incorporating negative information into FastSLAM results in a measurable 
increase in the accuracy of the resulting map. 

Comparison of the loss of particle diversity between original FastSLAM and modified FastSLAM 
is shown in Figure 6. The number of distinct particles is counted after every resampling process. As 
the figure shows, the original version shows faster convergence, but for the modified one using our 
new resampling algorithm the number of distinct particles is quite steady. With the large variance of 
particles’ weights, the rank-based resampling re-assigns the selection probability based on the rank of 
each particle, and consequently attains better particle diversity and resolves the particle depletion problem. 
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Figure 5. Data association results.  

(a) (b) 

Figure 6. Number of distinct particles over time. The particle number used is 50. 

 

The robot pose errors are shown in Figure 7, where the solid lines denote errors between the 
estimation results and the ground truth, and the dotted lines stand for the 2-σ uncertainty bounds. 
Compared with the 2-σ bounds, the estimation error of the modified algorithms is always within the  
2-σ bounds, while the original algorithm will diverge beyond the uncertainty range. The results show 
that the modified algorithm can improve the estimation accuracy and outperforms the original 
FastSLAM algorithm. 

In order to evaluate the consistency of the two algorithms, we adopt the root mean square (RMS) 
and the normalized estimation error squared (NEES) to test whether the modified-FastSLAM is 
consistent or not over the long term and compare its results with those of the original one. The 
comparison results are shown in Figures 8 and 9. 
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Figure 7. Estimation pose error with 2-σ uncertainty bound of the original FastSLAM and 
the modified FastSLAM algorithm.  
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Figure 8. RMS error of the two algorithms.  

 
(a) 

 
(b) 

RMS errors of robot position and heading are shown in Figure 8. As the figure shows, the RMS 
errors of the original version and the modified one are in the interval (0, 4) and (0, 1.6), respectively. 
Obviously, the RMS error of the modified-FastSLAM is more satisfactory than the original one. 

We use the average NEES to characterize the filter performance. NEES at time t is obtained as:  
1ˆ ˆ( ) ( )T

t t t t ttx x P x xξ −= − −  (13) 

where  and Pt are the estimated mean and covariance of particles at time t. A measure of filter 
consistency is analyzed by examination of the average NEES over N Monte Carlo trials of the filter. 
Under the assumptions that the filter is consistent and approximately linear-Gaussian, ξt is χ2(chi-square) 
distributed with the dim (xt) degrees of freedom. Given N Monte-Carlo trials, the average NEES is: 
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The dimension of the robot pose is 3, with N = 50, the 95% probability concentration region for tξ  
is bounded by the interval [2.36, 3.72]. The average NEES of the two FastSLAM algorithms is shown 
in Figure 9, where the blue line depicts the NEES value at each time, and the two horizontal red lines 
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represent the low and high bounds for the average Chi-Square distribution. Obviously, the original 
FastSLAM is not consistent as is shown in Figure 9(a). To be more precise, after about 3000 time steps, 
the filter becomes optimistic. While the consistency of the estimated vehicle pose keep much better in 
the modified FastSLAM algorithm as Figure 9(b) shows. Consequently, the modified algorithm can 
remarkably improve the consistency and has a good robustness. 

Figure 9. Average NEES of the two algorithms. 

 
(a) 

 
(b) 

All of the experimental results confirm the effectiveness of the modified algorithm. Its main 
advantage is that the proposed method is more consistent than the original FastSLAM. Also, the 
deviation of the modified FastSLAM algorithm is far less than that of the original method. In addition, 
the modified-FastSLAM has good robustness. On the whole, the modified-FastSLAM outperforms the 
original one.  
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4. Sea Trial 

4.1. SLAM for C-Ranger  

In the C-Ranger AUV system, the posterior can be described as:  

)( tttt n,uzs ,|,,, Θyx ,vvp  (15) 

where u = [w,ax,ay]T is the C-Ranger’s control input which contains the accelerations ax and ay 
respectively, and the angular velocity of the vehicle w. 

State vector X = [s vx vy]T consists of vehicle pose s = [x,y,φ]T and velocities of the vehicle vx, vy. In 
order to obtain better estimates and reduce the computational cost, the state equation can be divided 
into the nonlinear portion Xn = [x y]T + Wn, and the nonlinear portion X1 = [φ vx vy]T + W1, where  
Wn = [Nx,Ny]T is the additive zero mean uncorrelated Gaussian motion disturbances with covariance Qn, 
and Wl ＝ [Nφ,Nx,Ny]T is the additive zero mean uncorrelated Gaussian motion disturbances with 
covariance Ql. The superscripts l and n stand for “linear” and “nonlinear”, respectively. The AUV’s 
motion model is shown as follows: 
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(16) 

Like the state vector, the observation vector also is divided into two parts Z = [Zn Z1]T. Zn is from 
sonar and Z1 is from compass and DVL. To map its environment, the AUV senses landmarks by 
imaging sonar. It is able to measure range and bearing to landmarks denoted as Zn = [r,φ]T. The 
observed landmark position in the global coordinate frame is denoted as [mx,my]T, and the observation 
model of the sonar part is:  
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where Nn 
t  is additive zero mean uncorrelated observation errors vector with covariance Rn. 

The compass and DVL measurements Z1 
t  are: 
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where φ is the angle from the digital compass, vx, vy are the velocities of the vehicle provide by DVL, 
and Nl 

t  is the measurement noise with zero mean Gaussian distributed noise vector with covariance Rl. 
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Zn is independent of X1, and Z1 is independent of Xn, using Bayes’ theorem the posterior can be 
factored into Equation (19) shown as follows:  

1
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p p p θ
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∏l n , t l , t t t n , t n , t t t n , t n , t t t
tX | X , Z , u , n X | Z u , n X , Z u , n

 
(19) 

For the whole system, the first term in Equation (19) is linear-Gaussian [33], so optimal results can 
be obtained using Kalman filter, and the last two terms will be handled using a particle filter. The 
whole algorithm can be summarized as is Table 3.  

Table 3. The SLAM algorithm in the C-Ranger AUV.  
Function FastSLAM_SIM() 
for i=1:num_of_particles 
    Initialization particles 
end for 
while sensors data are ready do 
    for t=1 to num_of_particles 
        Predict the state X 
        Compute the weight of each particle and normalize 
        Update Xl using Xn 
    end for 
/*Extract point features from sonar data for mapping  and update the vehicle's  state.*/ 
    if sonar data are ready then 
        for i=1 to num_of_particles 
            Particles(i),n=data_association 
/*n is the data association results.*/ 
            for num =1:length(n) do 
                if n(num) is a new feature then 
                    Augment the map Θ 
                else 
                    Update Xn using particle filter 
                end if 
            end for 
            If Im<0 
                remove m-th spurious feature 
            end if 
            Update Xl using Xn 
        end for 
    end if 
    Employ Rank-based resampling to do resampling 
end while 

Firstly, initialize state vector. Employ AHRS and gyro data to predict the AUV’s next location. 
Then extract point features from sonar data to update or augment the map. After that, the robot pose 
will be updated and importance weight will be computed. Lastly do resampling. It is a recursive 
process. The linear state X1 is estimated using a standard Kalman filter. It is updated twice. First it is 
updated by using observation Z1, and then Xn is treated as an observation to update X1.  
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4.2. Sea Trial  

The experiment was performed at Tuandao Bay (Qingdao, China) and the sea trial dataset  
samples were obtained from the on-board sensors introduced in Section 2. A sonar operating with 180° 
scanning-sector and 100 m-range is used to sense the environment, and features in the environment are 
extracted and used to build the global map of the environment based on the algorithm proposed in  
this paper. 

In Figure 10, a starting point with direction is marked with a cyan arrow. There are some underwater 
drainage pipes at the location N1 and several little boats at place N2. From the Figure 10(a), it can be seen 
that the sonar image is well matched with the satellite image. But there are also some points in or 
nearby the trajectory, probably generated because of the beams reflected by the sonar head shell and 
some moving objects. The features are very dense, if they are used for data association, the efficiency 
will be very low. In order to improve the efficiency of SLAM, a process of sonar feature extraction and 
sparsification had been conducted [26]. The resulting figure is shown in Figure 10(b). From this figure, 
it can be noted that the number of features is reduced significantly, and there are few noise points in or 
near the trajectory. 

Figure 10. (a)The satellite image combined with the sonar image without sparsification (the 
pink points) and the GPS path (the red line); (b) The figure after sonar feature extraction 
and sparsification. 

(a) (b) 

The resulting map of the sea trials combined with the environmental map is shown in Figure 11, 
where the magenta points indicate the point features, the red line represents the GPS trajectory which 
acts as the ground truth to compare the effectiveness of algorithms, and the blue solid line represents 
the path from the modified FastSLAM. It can be noted that the number of point features decreased 
because of data association, and the point features match well with the landmarks in the real 
environment. In addition, since any features would be deleted if observed only once in the data 
association process, most of noise points in or near-by the GPS trajectory are removed.  
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Figure 11. The modified FastSLAM resulting map combined with the environmental map. 

 

Figure 12 is a comparison of the trajectories for GPS, dead-reckoning, FastSLAM and the 
modified-FastSLAM algorithms obtained by averaging over 50 independent runs. Obviously, the 
deviation of original FastSLAM (the green line) relative to GPS is smaller than that of dead-reckoning 
(the black line) and greater than that of modified one (the blue line).  

Figure 12. Comparison of the trajectories for GPS, Dead-Reckoning, Original FastSLAM 
and Modified-SLAM by averaging over 50 independent runs. 

 

In order to get a clear demonstration of the presented algorithm, the position RMS errors by the 
dead-reckoning, the original FastSLAM (the red line) and the modified-FastSLAM (the blue line) are 
compared in Figure 13. It can be noted clearly that the overall trend of the error by dead-reckoning is 
divergent. The curves of the original FastSLAM and modified-FastSLAM have similar trends, and 
they both increase in the beginning phase due to the cumulative errors, and then they will decrease 
because landmarks are repeatedly observed so that the trajectory and the map are updated. It is obvious 
that the position error of the Modified-FastSLAM is less than that of the original FastSLAM,  
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the maximum error of the original FastSLAM trajectory is up to about 16 m, while the  
Modified-FastSLAM is only about 10 m.  

Figure 13. The position RMSE of Dead-Reckoning, original FastSLAM and  
modified-FastSLAM by averaging over 50 independent runs. 

 

To further evaluate the performance of the Modified-FastSLAM, the RMS errors of AUV positions 
over the results of 50 runs are presented in Figure 14.  

Figure 14. RMSE summarization of Dead-Reckoning, original FastSLAM and  
modified-FastSLAM over 50 runs. 

 

The maximum errors, the minimum errors and the averaged RMSE of the algorithms are compared 
in this figure. It can be seen clearly that the errors of modified-FastSLAM are much smaller than those 
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Table 4. Standard Deviation of Estimation Errors. 

Type Std. Deviation (m) 
Deadreckoning 0.1979 

Original FastSLAM 0.0846 
Modified FastSLAM 0.0595 

The Modified-FastSLAM also shows the best performance compared with the other two algorithms. 
Furthermore, the comparison of pose errors on x-axis, y-axis and heading angle are shown in Figure 15. 
The above results can basically validate that the better performance of the modified-FastSLAM algorithm. 

Figure 15. Pose errors between estimated pose and GPS ground truth. (a) Easting (x-axis) 
error; (b) Northing (Y-axis) error; (c) Heading-angle error. 
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Figure 15. Cont. 

 
(c) 

5. Discussion 

Although the Modified-FastSLAM algorithm is better than the original FastSLAM algorithm 
according to simulations and field experiments, there are still some problems. Compressing point 
features in the feature extraction process is time-consuming as a result of the large number of point 
features. It is also a time-consuming process to determine resampling when compared with standard 
FastSLAM. However, information compression of point features can reduce the time-cost of data 
association eventually; especially the employed resampling condition can limit the frequency of 
resampling, so the total computational cost of the algorithm does not increase. 

The proposed algorithm does not fundamentally solve the consistency problem though it is more 
consistent than the original one, so it might face the problem in applications involving large scale 
environments. Some algorithms have been proposed to deal with this problem. Among them, the 
submap-based SLAM is a more effective one. In future works we will try to apply the modified-FastSLAM 
to combine with EIFSLAM. The modified-FastSLAM can be used to produce local maps, which are 
periodically fused into an EIFSLAM algorithm. Modified-FastSLAM may avoid linearization of the 
robot model during operation and provide a robust data association, while EIFSLAM would improve 
the overall computational speed.  

The mechanical-scanning sonar used on the C-Ranger is two-dimensional type. It can only 
determine the location of the targets in the two-dimensional plane, but can not determine the height of 
the target. The targets in the acoustic image can not be clearly identified what they are, and that is not 
helpful for the vehicle to avoid obstacles, so a 3D sonar will be installed on the AUV platform in 
future for a better description of the undersea environment. 

6. Conclusion 

This paper describes the C-Ranger experimental platform and introduces the implementation of 
modified-FastSLAM navigation. The modified-FastSLAM brings together the advantages of different 
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methods that have been proposed to optimize the standard FastSLAM. It employs the data association 
method which combines the single particle maximum likelihood method with the modified negative 
evidence method, uses the rank-based resampling to overcome the particle depletion problem. The 
experimental results performed in the simulation demonstrate the robustness and the accuracy of the 
proposed algorithm, and the sea trial results show the modified-FastSLAM employed for the navigation 
of C-Ranger AUV is actually more effective and accurate compared with the traditional methods.  
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