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Abstract: In this work we present a detection system, based on a CdTe detector and an 
innovative digital pulse processing (DPP) system, for high-rate X-ray spectroscopy in 
mammography (1–30 keV). The DPP system performs a height and shape analysis of the 
detector pulses, sampled and digitized by a 14-bit, 100 MHz ADC. We show the results of 
the characterization of the detection system both at low and high photon counting rates by 
using monoenergetic X-ray sources and a nonclinical X-ray tube. The detection system 
exhibits excellent performance up to 830 kcps with an energy resolution of 4.5% FWHM at 
22.1 keV. Direct measurements of clinical molybdenum X-ray spectra were carried out  
by using a pinhole collimator and a custom alignment device. A comparison with the 
attenuation curves and the half value layer values, obtained from the measured and 
simulated spectra, from an ionization chamber and from a solid state dosimeter, also shows 
the accuracy of the measurements. These results make the proposed detection system a 
very attractive tool for both laboratory research, calibration of dosimeters and advanced 
quality controls in mammography. 

Keywords: X-ray spectroscopy; high photon counting rate; CdTe detectors; digital pulse 
processing; mammography 
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1. Introduction 

The spectral distribution of X-ray beams from X-ray tubes is essential for quality control (QC) in 
mammography, in terms of image quality and patient dose [1–3]. X-ray spectra can be used for 
accurate estimations of the peak voltage (KVp) of the tubes [4], the energy fluence rate [5], the 
inherent filtration [6], the beam-hardening artifacts [3] and for the correct implementation of the new 
dual-energy techniques [7]. By way of example, the peak voltage of a diagnostic X-ray tube should be 
routinely monitored, since small KVp changes can modify both absorbed dose and image contrast in 
mammography [4]. With regard to dosimetric investigations, X-ray spectra can be also used to 
estimate the exposure, the air kerma and the absorbed energy distribution inside a breast tissue or a test 
phantom [8], overcoming the well known problem of the energy dependence of the response of the 
dosimeters (solid state detectors and ionization chambers) which are commonly used for the 
measurements of the absorbed energy distribution. Dosimeter calibrations, which usually involve 
complicated and time-consuming procedures, are a critical issue for routine investigations.  

The spectrum emitted by a mammographic X-ray tube is, typically, obtained by analytical 
procedures based on semi-empirical models [2,9,10] and Monte Carlo methods [11–13]. In routine 
quality controls, insufficient information about some characteristic parameters of the X-ray tubes, such 
as the anode angle, the filters and the exact value of the applied tube voltage, could compromise  
the precision and the accuracy of the spectra. Of course, measurement of X-ray spectra is the  
best procedure for accurate quality controls in mammography. Currently, routine measurement of 
mammographic X-ray spectra is quite uncommon due to the complexity of the measurement 
procedure. The measurement of mammographic X-ray spectra is a difficult task because of limitations 
on measurement with high energy resolution at high photon counting rates as well as geometrical 
restrictions, especially in a hospital environment. 

Due to the high photon fluence rate of the beams produced by a standard mammographic X-ray tube 
(106–107 photons/mm2 s at 65 cm from the focal spot), pulse pileup is the major drawback for a detection 
system (detector and readout electronics). As well known, the main effects of pile-up phenomena on  
X-ray spectrum measurement are the worsening of the energy resolution (tail pile-up [14]) and the 
distortion of the photon energy distribution (peak pile-up [14]). The optimum detector for 
mammographic X-ray spectroscopy should have good energy resolution (<5% FWHM at 22.1 keV), 
good detection efficiency (>90% up to 40 keV) and a fast readout electronics in order to minimize 
pile-up distortions without compromise the energy resolution.  

With regard to the detectors, the potential benefits of using CdTe and CdZnTe detectors for X-ray 
spectroscopy are already well known [15–23]. As pointed out in several works [24–30], thin 
CdTe/CdZnTe detectors (1–2 mm thick) are very appealing for the development of portable detection 
systems for mammographic X-ray spectroscopy (1–40 keV), ensuring high detection efficiency, good 
energy resolution, low tailing and no X-ray escape in the measured spectra. 

Beside the detector, the readout electronics also plays a key role in the development of a detection 
system. In a typical readout electronics setup, the detector signals (preamplifier output) are shaped and 
filtered by an analog shaping amplifier and finally processed by a multichannel analyzer (MCA) to 
generate the energy spectrum. For high-rate X-ray spectroscopy, the temporal width of the shaped pulses 
(adjusted by the shaping time constant of the amplifier) and the processing time of the MCA should be as 
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short as possible in order to minimize pile-up effects and counting losses. In the last decade, several  
groups [26–30] have proposed detection systems, based on CdTe and CdZnTe detectors, wherein the 
shaped pulses are sampled by a digitizer (with a sampling frequency of 20 MHz) minimizing the 
processing time of MCAs. The digitized shaped pulses are processed off-line for pulse height analysis 
and pile-up inspections. These systems show good spectroscopic performance up to a photon counting 
rate of 50 kcps, limit due to the width of the shaped pulses (660 ns FWHM). Recently, the dramatic 
performance improvement of the digitizers (with sampling frequencies >100 MHz and a bit number >12) 
has stimulated an intensive research and development on digital systems, based on digital pulse 
processing (DPP) techniques, able to directly sample the detector signals and to generate the energy 
spectra. The DPP techniques allow implementation of complex algorithms, that are not easily 
implementable through a traditional analog approach, ensuring higher throughput, adaptive processing, 
flexibility, stability and better pile-up corrections, especially in a high counting rate environment  
(>50 kcps). 

In this work we report on the performance of an X-ray detection system based on a CdTe detector 
coupled to an innovative digital pulse processing (DPP) system for high-rate X-ray spectroscopy in the 
mammographic energy range (1–30 keV). This work was carried out in the sequence of previously 
developed DPP systems [31–33] with the goal of developing a digital spectrometer based on DPP 
techniques and characterized by high performance both at low and high photon counting rate 
environments. We investigated on the response of the digital detection system both at low and at  
high photon counting rates (up to 830 kcps) by using monoenergetic X-ray sources, nonclinical X-ray  
tubes (Ag, Mo, W, anode materials) and a clinical Mo anode X-ray tube. As an application, precise 
estimations of the peak voltage of the X-ray tube were also performed. Attenuation curves and half 
value layer (HVL) values, obtained from the measured and simulated spectra, from an ionization 
chamber and from a solid state dosimeter, were also compared. In particular, the comparison with the 
attenuation curve, measured by using the solid state dosimeter, highlighted, first, the energy 
dependence of the dosimeter response and, second, the importance to measure the energy spectra to 
avoid the needed calibrations of dosimeters.  

2. Materials and Methods  

2.1. Detector  

The detector is based on a thin CdTe crystal (2 × 2 × 1 mm3), wherein both the anode (indium) and 
the cathode (platinum) are planar electrodes covering the entire detector surface. The Schottky barrier 
at the In/CdTe interface ensures low leakage current even at high bias voltage operation (400 V), thus 
improving the charge collection efficiency. A Peltier cell cools both the CdTe crystal and the input 
FET of the charge sensitive preamplifier (A250, Amptek, Bedford, MA, USA) at a temperature of  
−20 °C. The detector cooling reduces the leakage current, allowing the application of higher bias 
voltages to the electrodes; moreover, the FET cooling increases its transconductance and reduces the 
electronic noise. All measurements were performed at the temperature of −20 °C. The detector, the 
FET and the Peltier cooler are mounted in a hermetic package equipped with a light-vacuum tight 
beryllium window (a modified version of Amptek XR100T-CdTe, S/N 6012). To increase the 
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maximum counting rate of the preamplifier, a feedback resistor of 1 GΩ and a feedback capacitor of 
0.1 pF were used.  

2.2. Digital System 

The DPP system consists of a digitizer and a PC wherein the digital analysis of the detector pulses 
was implemented. The detector signals (preamplifier output signals) were directly digitized by using a 
14-bit, 100 MHz digitizer (NI5122, National Instruments, Austin, TX, USA). The digital data were 
acquired and recorded by a Labview program on the PC platform and then processed off-line by a 
custom digital pulse processing method (C++ coded software) developed by our group. The analysis 
time is very short, about 3 times the acquisition time. The digital method, combining fast and slow 
shaping, automatic pole-zero cancellation, baseline restoration, pile-up rejection and pulse shape 
discrimination, allows precise pulse height measurements even at high counting rates. The digitized 
pulses were shaped by using the classical single delay line (SDL) shaping technique. Each shaped 
pulse is achieved by subtracting from the original pulse its delayed and attenuated fraction. This 
attenuation acts as pole-zero cancellation. The width of each shaped pulse is equal to Td + Tp, wherein 
Td is the delay time and Tp is the peaking time of the related preamplifier output pulse. Our DPP 
method is characterized by two shaping modes: a “fast” SDL shaping mode and a “slow” SDL shaping 
mode. The “fast” shaping operation, characterized by a short delay time Td,fast, is optimized to detect 
the pulses and to provide a pile-up inspection. If the width of the shaped pulses exceeds a maximum 
width threshold then the pulse is classified as representative of pile-up events; whenever it is possible, 
each overlapped event is recognized through a peak detection analysis. Obviously, these events are not 
analyzed by the “slow” shaping procedure. The delay time of the “fast” shaping operation is a dead 
time for the DPP system (paralyzable dead time) and it must be as small as possible, depending of 
detector and ADC characteristics. In this work we used Td,fast = 60 ns. The “slow” shaping operation, 
which has a long delay time Td,slow, is optimized to shorten the pulse width and minimize the ballistic 
deficit. To obtain a precise pulse height measurement, a convolution of the shaped pulses with a 
Gaussian function was performed. The slow delay time Td,slow acts as the shaping time constant of an 
analog shaping amplifier: the proper choice depends on the peaking time of the preamplifier pulses, the 
noise and the incoming photon counting rate.  

To ensure good energy resolution also at high photon counting rates, a standard detection system is 
typically equipped with a baseline restorer which minimize the fluctuations of the baseline. The digital 
method performs a baseline recovery by evaluating the mean value of the samples, within a time 
window equal to Td,slow/2, before and after each shaped pulse. This operation sets a minimum time 
spacing between the pulses equal to Ta = 2⋅Td,slow + Tp for which no mutual interference must exist in 
the baseline measurement. The minimum time spacing Ta is used to decide whether the events must be 
discarded, in particular if the time spacing does not exceed Ta the two events are rejected. This 
operation acts as a pile-up rejector (PUR). It is clear that a Td,slow value too long reduces the number of 
the counts in the measured spectrum and its optimum value is the best compromise between the 
required energy resolution and throughput (i.e., the output photon counting rate). The time Ta is 
paralyzable dead time for the slow shaping operation. In this work we used a Td,slow = 3 μs.  
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As shown in our previous works [32,33], we also implemented a pulse shape discrimination (PSD) 
technique to minimize peak pile-up events, i.e., overlapped preamplified pulses within the peaking 
time that are not detectable through the “fast” shaping operation. This technique is based on the 
selection of a range of peaking time values of the pulses that are not piled-up. 

To perform pulse shape discrimination, we carried out the measurement of the peaking time of the 
analyzed pulses (after SDL shaping). We first evaluate the rise time of the pulses, i.e., the interval 
between the times at which the shaped pulse reaches 10% and 90% of its height (after baseline 
restoration). The times, corresponding to the exact fractions (10% and 90%) of the pulse height, are 
obtained through a linear interpolation. We estimate the peaking time equal to 2.27 times the rise time 
(i.e., about five times the time constant). Due to the precise measurement of the pulse height-baseline 
and interpolation, the method allows fine peaking time estimations (with a precision of 2 ns) both at 
low and high photon counting rates. 

2.3. Characterization of the System 

To characterize the spectroscopic performance of the system in the mammographic energy range, 
we measured the response of the system to a 109Cd source (22.1 keV, 24.9 keV and 88.1 keV) at low 
(200 cps) and high (830 kcps) photon counting rates. The energy calibration of the detection system 
was obtained by using further calibration sources (241Am: 59.5 keV; 57Co: 122.1, 136.5 keV) and the 
linearity of the digital system was also verified. The measured spectra were analyzed by using a 
custom function model, which takes into account both the symmetric and the asymmetric peak 
distortion effects [17]. Statistical errors on the spectroscopic parameters with a confidence level of 
68% were associated. We also performed measurements of non clinical X-ray spectra at the “Livio 
Scarsi” Laboratory (LAX) [34], located at DIFI (Palermo, Italy). The facility is able to produce X-ray 
beams with an operational energy range of 0.1–60 keV (tube anodes: Ag, Co, Cr, Cu, Fe, Mo, W), 
collimated on a length of 10.5 m with a diameter at full aperture of 200 mm. In this work, we used W 
and Ag targets. 

2.4. Peak Voltage Measurements 

Precision and accuracy in the estimation of the peak voltage of X-ray tubes are crucial in 
mammography. Small changes in peak voltages can produce significant modifications of the absorbed 
dose and image contrast. As proposed in several works [4,35,36], it is possible to perform precise 
estimations of peak voltage through the end point energy of the measured spectra (non-invasive 
measurements). The tube voltage is obtained through the intersection point (in keV) of two straight 
lines, one for the background beyond the end point energy and the other for the final region of the 
spectrum. The two lines were evaluated by a linear best fit procedure of the experimental points. 
Uncertainties evaluated for the voltage values are less than 0.22% (confidence level of 68%) for 
voltages in the range 28–32 kV. 
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2.5. Clinical Measurements 

Mo-target X-ray spectrum measurements were performed under clinical conditions (Istituto di 
Radiologia, Policlinico, Palermo). We used a Sylvia mammographic unit (Gilardoni, Mandello del 
Lario, Italy) with a Mo anode tube (MCS, 50MOH), characterized by an additional filtration of  
0.03 mm Mo and a 10° anode angle. The compression paddle was removed during the measurements. 
The detector was placed on the cassette holder with a 59.5 cm focal spot-detector distance (Figure 1). 

Figure 1. Experimental set-up of clinical measurements of mammographic X-ray spectra 
with the digital system.  

 

To reduce the photon counting rate on the detection system to an acceptable level, we used a 
pinhole collimator: a tungsten collimator disk, 1 mm thick with a 100 μm diameter circular hole, 
placed in front of the detector (over the beryllium window). Using this collimator setup, we measured 
X-ray spectra with a photon counting rate up to 450 kcps. It is well known that the choice of the proper 
collimation system is a critical issue for accurate measurements of X-ray spectra. An excessive 
reduction of the aperture and the thickness of the collimator can produce several distortions in the 
measured spectra (peaks and continuum events). These distortions, as well described by several 
authors [37,38], are mainly due to: (i) the penetration of photons through the collimator material;  
(ii) scattered photons from the collimator edges; and (iii) characteristic X rays from the collimator 
material. The first effect can be reduced by choosing a proper collimator material and thickness. In the 
investigated energy range (1–30 keV), the penetration of photons through the 1 mm thick tungsten 
collimator is negligible, as demonstrated by the estimated values of the transmission equivalent 
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aperture (TEA, [38]). By using the tabulated tungsten mass attenuation coefficient values [39], we 
obtained a TEA equals to the collimator aperture area, showing that no photon penetration occurs. 

The other collimation distortions mainly depend on the alignment of the collimator with the X-ray 
beam and on the energy of the X-ray beam. Misalignment between the X-ray beam and the collimator 
can produce scattered photons and characteristic X rays from the collimator edge. Obviously, accurate 
alignment becomes more difficult as the thickness of the collimator increases and its aperture diameter 
decreases. The optimum collimator set-up should be a trade-off between the reduction of collimation 
distortions and the photon counting rate. To optimize the beam-detector alignment, the detector was 
mounted on an aluminum plate equipped with three micrometric screws. A preliminary focal  
spot-detector alignment was carried out with a laser pointer taking into account the reference marks 
positioned on both sides of the tube head, while a more accurate alignment was obtained by changing 
the plate orientation looking for the maximum photon counting rate and the absence of distortions in 
the measured spectra.  

We also performed the measurement of attenuation curves and the half value layer (HVL) 
estimation through the measured Mo spectra. The estimated HVL value (i.e., the thickness of some 
standard material required to reduce the exposure of a beam to half its original value), which is usually 
measured to characterize the spectral properties of the beams, was compared with that measured by 
using a standard mammographic ionization chamber (Magna 1cc together with Solidose 400, RTI 
Electronics, Mölndal, Sweden) and a solid state dosimeter (R100, RTI Electronics). Exposure values from 
spectral data were obtained through the estimation of the energy fluence and the air mass energy 
absorption coefficients, as described in our previous work [28]. To measure the attenuation curves and 
the HVL values, we used a standard aluminum filter set (type 1100, Al 99.0% purity, RTI electronics). 
To minimize the effects of scattered radiation, we performed the HVL measurements in a “good 
geometry” condition, as suggested by several authors [40–42]; in particular, the experimental set-up 
for HVL measurements was characterized by a filter-detector distance of 42 cm. The HVL values were 
obtained from the attenuation curves by interpolation of the two data points neighbouring the HVL 
thickness [43]. Errors with a confidence level of 68% were associated on the overall measured parameters. 

3. Results and Discussion  

3.1. Response of the System  

Figure 2 shows the performance of the detection system, irradiated with the 109Cd source, at 
different photon counting rates (up to 830 kcps). We reported the rate of the events analyzed by the 
“fast” and the “slow” pulse shaping channels versus the true input counting rate (Figure 1(a)). The true 
input counting rate was estimated from the fast channel rate by using the paralyzable dead time model 
(dead time of 60 ns) [14]. As shown in Figure 1(a), both the “fast” and the “slow” rates are in 
agreement with the paralyzable dead time model [14]. Therefore, despite an high throughput reduction, 
due to the PUR operation, it is always possible to estimate the true rate of the impinging photons 
through the “fast” channel. Figure 2(b) shows the 22.1 keV photopeak centroid and the energy 
resolution (FWHM) at 22.1 keV (percent deviation from the values at 200 cps), measured at different 
photon counting rates. The photopeak centroid shift was less than 1% and low energy resolution 
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worsening characterized the system. The system, through both “slow” and “fast” channels is able to 
determine the input count rate and the energy spectrum with high accuracy and precision even at high 
photon counting rates.  

Figure 2. (a) Throughput of the system: the measured photon counting rates from “fast” 
and “slow” channels (red and blue points, respectively) versus the true input counting rate. 
The red and blue lines are the paralyzable dead time model functions for the “fast” (dead 
time of 60 ns) and “slow” (dead time of 6.14 µs) channels, respectively; (b) The 22.1 keV 
photopeak centroid and energy resolution (FWHM) at 22.1 keV (percent deviation from 
the values at 200 cps).  

 

Figure 3. Measured 109Cd spectra at 200 cps with no correction, at 830 kcps with no 
correction and at 830 kcps after PSD. The counts were normalized to the total number of 
detected events. 
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Figure 3 shows the measured 109Cd spectra at 200 cps and 830 kcps. Low tailing characterizes the 
full-energy peaks of the spectra and no escape peaks are visible, confirming the appealing features of 
CdTe detectors in the mammographic energy range. Moreover, it is clearly visible the strong reduction 
(96%) of the number of peak pile-up events in the measured spectrum by using the pulse shape 
discrimination (PSD) technique (pulses with a peaking time more than 148 ns were discarded). Table 1 
summarizes the spectroscopic results (energy resolution and photon counting rate). 

Table 1. Spectroscopic results at 22.1 keV. 

 No correction PSD 
Energy resolution FWHM (%) 4.77 ± 0.04 4.52 ± 0.04 
True input rate (kcps)  830 830 
Measured output rate (kcps) 5.1 1.3 

We also measured X-ray spectra from a non clinical X-ray tube with different anode materials  
(Ag and W). In Figure 4(a) are shown the measured Ag-target X-ray spectra (32 kV) at 8.8 kcps with 
no correction, at 260 kcps with no correction and at 260 kcps after PSD. At high photon counting rate, 
the measured Ag spectrum, despite the good energy resolution of the peaks (22.1 and 24.9 keV),  
is characterized by a high background beyond the end point energy, due to the peak pile-up; while, 
after PSD, this background is quite similar to the spectrum at low photon counting rate.  

Figure 4. Measured Ag- and W-target X-ray spectra (32 kV) with no correction and after 
PSD. The counts were normalized to the total number of detected events. 
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These results open up the possibility of precise estimations of the end point energy, i.e., the peak 
voltage of a X-ray tube, even at high photon counting rates. Figure 4(b) also shows the measured  
W-target X-ray spectra. As an application, we measured the peak voltage of the X-ray tube, as 
described in section 2.4, at 32 kV and at different photon counting rates (up to 390 kcps, W anode). 
Figure 5 shows no significative variation of the calculated tube voltage values (relative errors less than 
0.22%, with confidence level of 68%) up to 390 kcps. This result points out the ability of the system to 
perform peak voltage measurements with high precision even at high rates, contrary to what happen 
using standard systems [36]. 

Figure 5. Calculated tube voltage values vs. photon counting rate (W anode). Relative 
errors less than 0.22%, with a confidence level of 68%. 

 

3.2. Clinical X-Ray Spectroscopy 

Figure 6 shows the measured Mo-target X-ray spectra under clinical conditions. The tube settings 
were: tube voltages of 28 and 30 kV and tube current-time product of 20 mAs. The photon counting 
rates are 360 kcps and 450 kcps at 28 kV and 30 kV, respectively. Figure 7 shows the attenuation 
curves (28 kV and 20 mAs) obtained from the spectra measured with the digital system, from 
simulated spectra (IPEM Report 78) and by using the exposure values directly measured with the 
ionization chamber (Magna 1cc together with Solidose 400, RTI Electronics) and with the solid state 
dosimeter (R100, RTI Electronics). It is well evident the good agreement among the curves and the 
HVL values (Table 2), obtained from the detector, the simulation and the ionization chamber. The 
HVL errors, with a confidence level of 68%, were calculated by using the method suggested by 
Wagner [43]. The agreement between the measured HVL values with the standard value (standard 
radiation qualities RQR-M 2 [42]) also points out the “good geometry” condition of the experimental 
set-up for HVL measurements. The disagreement with the attenuation curve and the HVL value  
(Table 2), obtained from the solid state dosimeter, points out the energy dependence of the dosimeter 
response. Since aluminum filters harden the X-ray beam and alter the energy spectrum, if dosimeter 
does not has a flat response for different spectra, the HVL measurement will be in error. The correction 
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of the energy dependence of the dosimeter response need accurate calibrations which involve 
complicated and time-consuming procedures, critical for routine investigations.  

Figure 6. The Mo-target X-ray spectra measured with the digital system under clinical 
conditions (28 kV and 30 kV, 20 mAs). The counts were normalized to the total number of 
detected events. 

 

Figure 7. Attenuation curves obtained from measured and simulated spectra and from 
direct exposure measurements (ionization chamber and solid state detector). The tube 
settings were: 28 kV and 20 mAs. 
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Table 2. HVL measurements. 

 HVL (mm Al) 
Measured with the CdTe detector 0.31 ± 0.01 

Measured with the ionization chamber 0.300 ± 0.009 
Measured with solid state dosimeter 0.380 ± 0.009 

Calculated from IPEM Report 78 0.311 
Radiation quality RQR-M 2 0.310 

These comparisons highlight two main aspects: (i) the ability of the digital system to perform 
accurate mammographic X-ray spectra without excessive time-consuming procedures; and (ii) the 
possible use of this system both as dosimeter and for calibrations of dosimeters.  

4. Conclusions 

The performance of a detection system for X-ray spectroscopy in the mammographic energy range 
(1–30 keV) was presented. The system, based on a CdTe detector and on an innovative digital pulse 
processing (DPP) system, shows excellent spectroscopic performance, even at high photon counting 
rates (energy resolution of 4.5% FWHM at 22.1 keV at 830 kcps). Beside the appealing characteristics 
of the CdTe detector (good energy resolution, high detection efficiency, response), these excellent 
results are mainly due to the high-rate capability of the DPP system. This system, developed by our 
group, performs the typical pulse processing techniques—filtering, pile-up inspection, baseline 
restoration, pulse height measurement and pulse shape discrimination—traditionally implemented 
through analog circuits. This new approach, through the direct sampling of the detector signals and a 
digital analysis, gives better results than the traditional analog systems. Measurements of clinical and 
non clinical X-ray spectra highlight the high potentialities of the detection system for X-ray 
spectroscopy in mammography. The high rate capability of the system allows to use larger collimators 
(100 μm diameter circular hole) than those typically used for mammographic X-ray spectroscopy  
(50 μm, 25 μm), minimizing the collimator distortions in the measured spectra (characteristic peaks 
and scattered events) and the beam/detector alignment time which is a critical issue for routine 
applications. Moreover, the possibility of using large collimators also minimizes any conicity (more 
critical for small collimators) allowing precise estimations of the photon fluence.  

The ability of the digital system to perform accurate X-ray spectrum measurements, even at high 
photon counting rates, is also helpful: (i) to perform precise estimations of the peak voltage of the  
X-ray tubes; and (ii) to overcome the energy dependence of the response of the dosimeters, wherein 
changes in the shape of the spectra can severely alter the estimation of the dose. 

The results open up the development of new detection systems for spectral X-ray imaging in 
mammography, based on CdTe/CdZnTe pixel detectors coupled with a DPP system. Recently, single 
photon counting detectors are very appealing for digital mammography allowing the implementation of 
dual-energy techniques and improvements on the quality of images [44]. In this contest, CdTe/CdZnTe 
pixel detectors [45–48] could to ensure better performance (energy resolution <5% at 30 keV) than the 
current prototypes based on silicon detectors (energy resolution of about 15% at 30 keV [44]). 

Further tests will concern the use of the DPP system, coupled to a CdTe/CdZnTe detector with 
higher detection efficiency, for X-ray spectrum measurements in computed tomography (20–140 keV). 
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Currently, we are involved in the development of a real time system, based on the digital method, by 
using a field programmable gate array (FPGA) technology. Both the acquisition (with no dead time) 
and the analysis have been successfully simulated. 
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