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Abstract: This review article discusses and documents the basic concepts and principles of 
nano/biosensors. More specifically, we comment on the use of Chemical Force Microscopy 
(CFM) to study various aspects of architectural and chemical design details of specific 
molecules and polymers and its influence on the control of chemical interactions between 
the Atomic Force Microscopy (AFM) tip and the sample. This technique is based on the 
fabrication of nanomechanical cantilever sensors (NCS) and microcantilever-based 
biosensors (MC-B), which can provide, depending on the application, rapid, sensitive, 
simple and low-cost in situ detection. Besides, it can provide high repeatability and 
reproducibility. Here, we review the applications of CFM through some application 
examples which should function as methodological questions to understand and transform 
this tool into a reliable source of data. This section is followed by a description of the 
theoretical principle and usage of the functionalized NCS and MC-B technique in several 
fields, such as agriculture, biotechnology and immunoassay. Finally, we hope this review 
will help the reader to appreciate how important the tools CFM, NCS and MC-B are for 
characterization and understanding of systems on the atomic scale. 

OPEN ACCESS



Sensors 2012, 12 8279 
 

 

Keywords: atomic force spectroscopy; atomic force microscopy; nanotechnology; 
nanoscience; nanosensors 

 

1. Introduction to Nanosensors 

In order to promote a stable adsorption of molecules on microcantilevers, the Chemical Force 
Microscopy (CFM) technique is used here. CFM helps the molecules to “fall into place” in a 
spontaneous association in such way that they form a structurally well-defined aggregate. Thus, the 
purpose of the use of CFM in the construction of nanosensors is to achieve the organization of the 
molecules, to promote an orientation of functional groups, to contribute to chemical and physical 
stability of adsorption molecules to turn the device reproducible and sensitive. 

Recent advances in the design and development of these sensors have led to simple 
microelectromechanical systems that can be manufactured easily, produced on a large scale and are 
capable of detecting very small mechanical deflections. The spring constant of a microcantilever 
ranges from 10−3 to 101 N/m, enabling it to detect very small forces (10−12 to 10−9 N) [1]. These 
systems allow a fast response, low cost and the construction of arrays of sensors of small dimensions, 
thus enabling the investigation of microenvironments [2]. Microcantilevers are usually prepared on 
silicon and/or silicon nitride or polymeric materials, with dimensions from 100 to 500 microns in 
length from 0.5 to 5 micrometers in thickness, in the shape of a “V” (triangular) or “T” (rectangular) 
with a needle mounted on the free end [3]. 

Micro Electro Mechanical Systems (MEMS) are micro-electronic systems that incorporate 
chemical, magnetic and radiant heat micromechanical sensors and actuators. The first developments in 
the area of MEMS were performed in the 60s, systems were being commercialized by the 90s [4]. 
MEMS represent a family of diverse designs, devices with simple cantilever configurations, as used in 
atomic force microscopy (AFM), that are considered especially attractive as chemical and biological 
sensors. The ability of microcantilevers, to change their vibrational frequency or suffer deflection upon 
adsorbing molecules on their surface makes them excellent probes that can act as chemical, physical or 
biological sensors on nanoscale. Changes in vibrational frequency of micromechanical devices can be 
used to measure viscosity, density and flow rates in various systems. Deflections of the cantilever are 
due to the stress of molecular adsorption, which can be upward or downward depending on the type of 
chemical bonding of the molecule. In these systems, the change in frequency of the microcantilever 
has been reported to be proportional to the magnitude of the adsorbed mass [5–8]. 

2. Chemical Force Microscopy (CFM) 

The chemical characterization of surfaces developed as an important technological tool allowing 
goods design and fabrication processes to fulfill high standards. This was achieved thanks to scientific 
advances in the atomic and molecular manipulation, the understanding of pathways for molecular 
binding but also to the conversion of such chemical information into reliable application methods.  

In this context, Atomic Force Microscopy (AFM) can provide sensitive resources to measure and to 
map the surface chemistry information and to quantify the adhesive or repulsive forces associated to 
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inorganic materials and biological samples, through the control of chemical interactions between the 
AFM tip and the sample [9–11]. Among AFM techniques, there is a very useful tool known as 
Chemical Force Microscopy (CFM), which is based on AFM tips chemically modified with specific 
exposed functional groups, carefully architected to carry out a specific function in a system [12–17]. 
Noy and coworkers have pioneered this technique, utilizing Lateral Force Microscopy (LFM) [18]. 
Applications to this tool include titration-AFM to obtain the apparent Pka value at the surface [10,15], 
determination of adhesive forces and energy on a surface, finding a specific substance by measuring 
single intermolecular forces (host-guest interaction in a complex environment), detection of chemical 
groups, determining surface heterogeneity, studying surface chemical reactions on the nanoscale and in 
real time [19]. All these applications found use in synthetic surface chemistry and in the creation of 
intelligent bioarrays, sensors, chips, and micro/nanofluidic devices.  

Nanosensors are called smart devices due to their recognition selectivity and sensitivity. These 
crucial features are also typical characteristics of Chemical Force Microscopy, precisely used to 
address stabilization to a specific surface, since nanomaterials tends to aggregate, react chemically, or 
decompose if not treated properly. Here, it is worth mentioning that this treatment provided by CFM is 
known in the literature under several names, such as chemical derivatization, functionalization or 
modification. There are many ways to chemically modify surfaces and these modification methods 
involve addition, subtraction, or exchange of chemical groups or even restructuration of a molecule. 
For instance, we can cite the biochemical modification with enzymes [20], heat treatments, polarity 
change with corona discharge, plasmas, UV and gamma-radiations electron or ion bombardment, 
ozone [20–23], silylation [24,25] and lamination [26]. In the following, we review important 
parameters related to the CFM applications and its implications in nanobiossensors and nanomechanical 
cantilever sensors. 

First of all, one of the major critical tasks in CFM is to deal with several parameters that can 
interfere in the measurements by causing noise in the signals collected and introducing artifacts into 
the results. Since CFM is based on an analytical probe consisting of a functionalized AFM tip, the 
quality of this probe is crucial. It has been observed that low quality tips can lead to artifacts in the 
images and consequently, to incorrect results [9]. It is also important to check the material the probe is 
made of, as well as if they have a suitable nominal tip radius, spring constant and resonant frequency 
that fits on our aim. More accurately the choice of the tip is made, more reliable and representative will 
be the results and, as consequence, they will be free of the inaccuracies that might be introduced by 
stiffness of the cantilever, the tip radius, shape, size and its dilation in AFM/CFM measurements. 

Commercial tips may come with impurities, such as dust, organic residues or other common 
substances. Unclean probes can lead to contamination of the material under investigation, and because 
of that, before an experimental part begins, a cleaning step should be carried out in a UV/ozone 
chamber, to remove organic contaminants. This process will help to avoid artifacts in the final images 
and results. As previously mentioned, the tip shape can also significantly influence the results. If the 
tip has many things in contact with it (owing to large probe tip radius), during the surface scan, a lot of 
information will be lost. This effect can be explained by the direct relation between the radius of 
curvature of the tip and the tip-sample contact area [16]. The sharper is the tip; the higher will be the 
resolution and the confidence in the results. Scanning Electron Microscope (SEM) images of the tip 
are suggested here to determine the tip shape. 
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After optimizing CFM parameters, the surface functionalization is required. Firstly it is important to 
identify each substance, molecule or reagent that could be involved in the functionalization; secondly, 
this information should allow potential reactions and binding and eventually the complete molecular 
architecture to functionalize the tip to be predicted. This is crucial when CFM is used to measure 
adhesion and force (the tip surface chemistry must be well defined). For a clear understanding, each 
molecule, substance or atom (depending on the system) should be thought of as a small brick that will 
be used to build a wall. Here, some questions arise, such as: Should we lay this brick vertically or 
horizontally? Or is it better to put it at a specific angle? Is angle related to a binding site (active site)? 
How do we bind one brick to another? Is it necessary to use “cement” with specific characteristics? 
Should we control the solution pH? It is not important how many bricks are set on the tip surface, but 
it is important to know how to put them together. Chemical functionalization is a prerequisite for the 
firm attachment of the “bricks” in order to withstand the lateral force exerted during the scan 
acquisition and force measurements [12]. On balance, the functionalization of the AFM tip must be 
designed to obtain stability, sensitivity, and selectivity during the scan, in order to reduce the 
probability of non-specific bonding and the possible agglomeration of substances on the tip. 

There are several ways to functionalize the AFM tip. Two of the commonest methods are known as 
mixing self-assembled monolayers (SAMs) and vacuum, thermal evaporation thermal vapor deposition 
and even, sputtering. The method of self-assembled monolayers (SAMs) is widely used to 
functionalize tips and surfaces. Terminal functional groups (-COOH, -CH3) are grafted onto alkane 
thiols that spontaneously form monolayers, under controlled conditions, on gold surfaces [9]. 
Organosiloxane monolayers (silanization) can also be formed on the tip [10]. The SAMs are usually 
applied by dropping reagents on the tip and then rinsing it after a specific time with another reagent (or 
ultra-pure water), or by the immersion of the tip into a specific solution (say in a beaker, like the 
Layer-by-Layer (LBL) process for thin films), followed again by washing. A typical result of SAM is 
depicted in Figure 1. Sometimes, the design of SAMs on a tip can follow the patterns of Nature;  
i.e., mimicry can be an excellent source of inspiration. Self-assembled monolayers offer new 
opportunities to increase the fundamental understanding of self-organization structure-property 
relationship, and interfacial phenomena [3]. SAMs can provide the needed design flexibility, as 
functionalized chains of polyethylene glycol (PEGs). 

Figure 1. CFM principle: chemical tip modification with SAMs (Reprinted with 
permission [27]). 
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In vacuum/thermal vapor deposition thermal evaporation should be handled with care in order to 
prevent the breaking of the tip. To use this procedure, the physical and chemical conditions must be 
chosen carefully, as surrounding humidity and temperature, environment medium of analysis (air, 
liquid or vacuum) and time of incubation of reagents. Generally, this process must be done in a 
chamber (with vacuum or not), which chamber must be cleaned with an inert gas before the beginning 
of the functionalization. It is important to highlight that after the functionalization process, the probes 
should be gently dried in a stream of inert gas (argon is used most frequently), and stored under an 
atmosphere of the same gas, in a desiccator, to avoid high humidity and the oxidation of the probe. The 
sputtering techinique can be used to functionalize the AFM tip with a metal coating in order to induce 
specific properties to the tip. Some of these properties are: electric and thermal conduction, optical 
reflectivity and ferroelectricity [28].  

Hereafter, some forms of analysis offered by CFM will be next discussed: measurement of contact 
angle (θ), force vs. distance curves, histograms, and adhesion maps. 

Contact angle is frequently used to characterize surface energy properties across the three-phase 
boundaries, where liquid, gas and solid phases meet [16], and to gain a better understanding of 
force/adhesion events related to apolar and polar components. θ represents the ability of a liquid to 
spread on a plane surface and it is measured as the angle between the outline tangent of a drop 
deposited on a solid and the surface of this solid [29–31]. In addition, contact angle can also be related 
to thermodynamic concepts and are measured by fitting a mathematical expression to the shape of the 
drop and then calculating the slope of the tangent to the drop at the three-phase boundaries interface 
line. Here is important highlight the Cassie’s law. This law is derived from the thermodynamic 
definition of contact angle and concerns to the contact angle of a macroscopic droplet on a chemically 
heterogeneous surface and is successfully used to explain the superhydrophobicity and self-cleaning 
mechanism of various natural and artificial surfaces [32–34]. Examples of such analysis can be 
observed in Figure 2. 

Figure 2. Chemical force microscopy (CFM): principle and application to the probing of 
hydrophobic forces. Water contact angle (θ) values measured on mixed self-assembled 
monolayers (SAMs) of CH3- and OH-terminated alkanethiols, plotted as a function of the 
molar fraction of CH3-terminated alkanethiols (reprinted from [29] with permission). 

 

Force vs. distance curves (or force vs. displacement vertical curves) are used to collect quantitative 
and direct information on the force and adhesion forces between the AFM tip and the sample, 
including elongation, separation, elastic deformation (stretch), and binding forces. These curves can 
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provide significant details of recognition events, homogeneity, chemical composition of the sample 
and biological events. Figure 3 briefly explains each part of a force vs. distance curve during the 
approach and retraction of the tip. Note that the force at point E is the pull-off force, defined as the 
highest force required separating the probe from the surface [27]. 

Figure 3. Force-displacement curves were formed. (A) tip is a far distance from the 
surface and there is no interaction; (B) the tip contacts the surface; (C) the cantilever is 
bent and a repulsive force (positive) is measured; (D) the cantilever holder is retracted 
from the surface and an adhesive (negative) interaction between the tip and surface is 
measured; (E) the pull-off point (reprinted from [9] with permission). 

 

In order to confirm the results and quantify the differences between adhesion/repulsive force 
measurements and eliminate possible noise caused by artifacts, it is required to record a large number 
of force vs. distance curves: at least forty for every type of measurement. These data should be plotted 
as a histogram of the frequency (%) of the values observed for each interaction vs. the adhesion force 
(pN) [35]. These histograms show the statistical distribution of the adhesion forces, which are given by 
the vertical distance found in the force curve (point E to horizontal line). 

Given that adhesive forces are directly linked to interactions between chemical functional groups on 
the tip and the sample surface [32], adhesion maps can give additional, and not less important, 
information with respect to the force vs. distance curves. As it can be seen in Figure 4, an adhesion 
map is a way of mapping surface forces with a very high spatial resolution (usually 10 nm) [9]. Here, 
the approach relies on combining information from the force vs. distance curves at each point (pixel) in 
an image field with simultaneously acquired topographic data to yield a high-resolution map of 
chemical interaction sites [9]. 

The white lines displayed on the adhesion force map (Figure 4) are a result of the specific 
interaction between the antigen in the tip and its specific antibody (light grey). Thus, as may be clear, 
an adhesion map is built as result of repeated specific interactions between the tip and the surface. 
Depending on the system studied, this repetitive process can damage the functional molecules on the 
tip apex during mapping, which can be a hard challenge to deal with [36]. Adhesion maps have 
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another remarkable application: establishing a fingerprint for each molecule, substance, and receptor or 
complexation event in order to recognize and locate specific substances on a surface [37]. This could 
be a useful tool that enables surface differentiation in cutting-edge technologies [38]. A typical adhesion 
map is formed by pixels of specific recognition (differences detected in the deflection signal) [39,40]. 

Figure 4. A schematic diagram of an antigen-coated probe mapping specific interaction sites 
on a substrate patterned with three antibody species (reprinted from [26] with permission). 

 

The interpretation of adhesion maps and force curves can occasionally be difficult because of the 
surface roughness and elastic behavior of the sample. Sometimes it is necessary to process the primary 
results with statistical programs, depending, of course, on the form in which the AFM software outputs 
the results. 

Additional physical techniques are used to support CFM data. Usually, these are traditional 
methods used to analyze the molecular and elemental composition of surfaces, such as X-ray 
Photoelectron Spectroscopy (XPS), Fourier Transformed Infrared Spectroscopy (FTIR) and Raman 
Spectroscopy. For instance, Raman spectroscopy provides additional information on the chemical 
composition of materials and, because of that, may confirm whether the tip was indeed  
functionalized [41,42]. The same is valid to FTIR and XPS, which provide, respectively, the molecular 
composition of the surfaces of materials and the measurement of the elemental composition of the 
surface [43,44]. Nevertheless, it is also worth mentioning that these cited techniques provide a spatial 
resolution limited by diffraction and should be used just as complementary information to the CFM 
studies. Additionally, all of these techniques can also be compared with Dynamic Molecular Model 
Data too, and used to verify what is predicted by these models. 

Finally in CFM studies, it is important to make the building process of the nano(bio)sensor 
reproducible in order to make the CFM measurements reproducible. Because of that, the majority of 
the parameters involved in their construction and operation should be kept as constant as possible, such 
as surrounding humidity and temperature, environment medium of analysis (air, liquid or vacuum) and 
time of incubation of reagents, as previously indicated. Even small changes in the parameters that 
determine the chemical force interaction between the tip and the sample can lead to enormous changes 
in images, curves and results [21]. 
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3. Nanomechanical Cantilever Sensors (NCS) 

The detection of chemical species through sensors is one of the most intensely investigated fields of 
science and technology, owing to the importance and variety of applications. A chemical sensor is an 
instrument that, when exposed to a particular type of substance (the analyte), transforms the chemical 
information, such as polarity or difference in concentration, for example, into an analytically 
measurable signal, such as electrical resistance, conductivity, potential difference or frequency.  
This transformation is called signal transduction and is of central importance to the working of any 
sensor [33]. 

Microcantilevers were first used in Scanning Force Microscopy. The deflection of a cantilever can 
be measured with an optical sensor when it is a small deflection; the vertical displacement of the tip 
(Z) is directly proportional to the force on it (F) and is thus a direct measurement of the strength of 
interaction between the tip and a surface (Figure 5). The principle of operation of a cantilever sensor is 
based on the adsorption of analytes at the surface of the cantilever (coated with a sensing layer), which 
usually leads to an induced surface stress and an increase of the apparent mass of the cantilever [8–34]. 
The change in mass leads to deflection of the cantilever in the Z direction. 

Figure 5. Illustration of the displacement of the cantilever (h, w and l, thickness, width and 
the length of the cantilever, respectively). 

 

Treating the rectangular cantilever as a vibrating spring-mass system, its resonance frequency (fres) 
can be calculated as: 

m
k=fres π2

1  (1) 

where k is the spring constant and m the mass.  
The mass of a cantilever can be expressed as: m = ρ.h.l.w, where ρ is the density of the material, h 

its thickness, w its width and l the length. 
The spring constant k is a function of the geometric and material parameters: 
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where E is Young’s modulus of the material in the cantilever. For example, for silicon  
(100) E = 1,3 × 1011 N/m2. The surface stress is uniform and acts on the surface, increasing (in the case 
of compressive stress) or decreasing (in case of tensile stress) the surface area. If this stress is not 
compensated at the opposite side of a cantilever, the whole structure will bend. A change in surface 
stress on only one side of the cantilever will cause a static deflection and the deflection can be 
calculated as: 

συ Δ−Δ 2

2

h*E
)1(3l=Z  (3) 

where ν  is the Poison rate (ν  = 0.24 for a rectangular cantilever), Δσ= σ1 − σ2 the difference in 
surface, σ1 and σ2 being the stress on the upper and lower side of the cantilever, respectively. Poisson’s 
ratio is 0.24 for a rectangular cantilever and the difference in surface stress approximately follows 
Stoney’s equation [45], which relates cantilever deflection (Z) to applied stress (σ). 

The cantilevers can be operated in two modes static and dynamic. The static mode allows the 
analysis of cantilever bending in different ambient conditions to measure surface stress changes while, 
in the dynamic mode, the change in resonance frequency of the cantilever is monitored. Changes  
in surface stress result from the adsorption or electrostatic interactions between molecules on the 
surface, as well as changes in surface hydrophobicity and conformational changes in the adsorbed  
molecules [35].  

When cantilevers are functionalized with sensitive materials such as metals, polymers, enzymes, 
thin layers, among others, the sensitive coating may interact with analyte molecules that selectively 
adsorb or bind by chemical affinity, converting the cantilever into a selective and sensitive sensor [36], 
which responds to specific substances or groups of substances.  

The interaction between the analyte and the surface layer on the sensor can be reversible or 
irreversible. In the reversible case, the analyte interacts with the surface layer of the sensor to produce 
a response and when the analyte molecules are removed, the senor returns to its original state. In the 
irreversible case, the analyte undergoes a chemical reaction at the sensor surface catalyzed by the 
sensor material. Here, the analyte is consumed in the sensing process, although the number of 
molecules reacting is often a small proportion of the total number within the sample. 

The method used in the functionalization has a strong influence on the sensitivity, because this 
depends on a number of parameters such as uniformity of the coating and the possibility of molecular 
reorganization by changing interactions due to external stimuli or analytes. The cantilever selectivity 
depends on the detection layer, which may be built according to principles of molecular recognition. 

Several methodologies have been described in the literature for microcantilever surface 
modification with organic [37] or inorganic layers [39,40,46], some of which are described below. 
Functionalized cantilever bending may be due to the adsorption of gas, if the expansion coefficients of 
the materials on the two sides are different. The absorption of water vapor into an inorganic sensing 
layer has been investigated by Thundat et al. [39]. They coated one side of the silicon cantilever with a 
thin film of gelatin or phosphoric acid, as hygroscopic materials. The functionalization was carried out 
by sliding the cantilever into the solution until completely covered. The resonance frequency was 
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measured in different conditions of relative humidity. The cantilevers functionalized with phosphoric 
acid (H3PO4) showed a decrease in the resonant frequency with the reduction of relative humidity due 
to the increasing effective mass, while the cantilevers coated with gelatin film showed an increase in 
the resonant frequency. Thundat et al. [40] also reported the deflection of commercially cantilevers, 
using a position sensitive detector. Silicon nitride cantilevers were supplied with 4 nm chromium and 
40 nm gold layers and other cantilevers with 5–13 nm of aluminum on one surface. For the gold coated 
cantilever the deflection varied almost linearly and reversibly with changes in relative humidity, while 
in the uncoated cantilever, the deflection was negligible. The cantilevers with 5–13 nm of aluminum 
were very sensitive to changes in relative humidity. Pinnaduwage et al. [46] reported the detection of 
10–30 parts per trillion of pentaerythritoltetranitrate and hexahydro-1,3,5-triazine within 20 s of contact 
with a silicon microcantilever whose gold surface had been modified by immersing the cantilever into a 
6 × 10−3 M solution of 4-mercaptobenzoic acid, to build a self-assembled monolayer. The monolayer 
coating was shown to be quite stable for several months under normal operating conditions. 

Functionalizing the cantilever with polymer coating renders possible highly sensitive identification 
of gases and volatile organic compounds. The possibility of using different polymers allows one to 
functionalize the cantilevers with a selective coating to analyze mixtures of volatile organic 
compounds [47]. When cantilevers are functionalized with polymeric layers, they can absorb molecules 
of an analyte, causing a swelling of the polymer matrix and thus resulting in a differential cantilever 
stress. This expansion induced cantilever surface stress can occur in two different ways: target 
molecules can be adsorbed on to the functionalized surface (Figure 6(a)) or penetrate the sensing layer 
deposited on the surface of the cantilever (Figure 6(b)) [38]. Spin-coating of the polymers usually 
results in uniform films with controlled thickness, which is easily varied by changing the spin speed or 
switching to a different viscosity. However, in the literature there are divergences over the technique 
of spin-coating deposition. Spin-coating with polymer layers usually causes an unwanted deposition on 
the passive side of the microcantilever. On the other hand, microcantilevers were coated on one side by 
using a spin-coating technique by Betts et al. [48]. The difference in the resonance frequency between 
the coated and uncoated microcantilever is related to the change in the mass of the resonating structure. 
The results showed that the selectivity, as indicated by differences in relative responses to the test 
analytes, was different for the solvents phases which differed significantly in polarity (Figure 7). 

Figure 6. Sketch of the absorption-induced surface stress at the surface of cantilevers:  
(a) absorption and (b) penetration of target molecules into the sensing layer (reprinted  
from [38] with permission). 
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Figure 7. Cantilevers (A) treated with Aqua regia; (B) coated with gold, removed from one 
side by a focused ion beam and (C) coated with gold and thin films of polymeric 
chromatographic stationary phases, removed from one side a focused ion beam (reprinted 
with permission [48]). 

 

Boisen et al. [49] have developed integrated piezoresistive read-out cantilevers and investigated 
their use as humidity and alcohol sensors. The cantilevers are silicon/silicon oxide layers with 
integrated polysilicon resistors. For application of cantilever based-sensors as humidity and alcohol 
sensors in water it was necessary coating one of the sides of the cantilevers with a water absorbing 
polymer. The humidity was controlled by mixing dry and wet nitrogen gas (2 to 60% of relative 
humidity) into a chamber. Although the response of the cantilever sensor to humidity change was not 
linear, it was reproducible. On the other hand, the alcohol sensor in water responded successfully to 
different amounts of alcohol, being the cantilever deflection proportional to alcohol entering the 
polymer and expelling water from the film. So, this sensor can be used to detect alcohol in water. 
Goericke and King [50] have reported finite element simulations of piezoresistive cantilevers. These 
authors investigated the sensitivity of piezoresistive cantilevers with respect to changes in cantilever 
length, width and thickness, and piezoresistor size, location, and depth. In the piezoresistive cantilever 
sensor, the cantilever width is an important parameter, which should be maximized for optimal 
sensitivity. The cantilever length, however, is not critical for high sensitivity. The sensitivity of 
piezoresistive cantilevers increases with decreasing piezoresistor thickness. The piezoresistor width 
need only be kept below 60% of the cantilever width for good sensitivity and the piezoresistor length 
should be minimized to reduce overall resistance and increase device sensitivity. 
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Then et al. [47] used a system of six differently polymer-coated cantilevers to analyze 
quantitatively and qualitatively a series of volatile organic compounds and a mixture of three different 
components (1-butanol, toluene and n-octane). The polymers were chosen to cover a wide range of 
polarities and different chemical behavior. The coating of the six different polymers (polydimethylsiloxane, 
polyetherurethane, poly(cyanopropylmethyldimethylsiloxane), phenylvinyl-polydimethylsiloxane, 
poly(phenylmethyldimethylsiloxane) and polyethyleneglycol) on the cantilevers was performed by 
micromanipulator, patch-clamp pipettes and spray-coating. The array of the six differently coated 
cantilevers together with principal component regression was capable of quantitative analysis of 
complex gas mixtures as showed for ternary mixture of 1-butanol, toluene, and n-octane. The 
interactions of a polar polymer with a polar analyte are much stronger and therefore the partition 
coefficient increases. Partition coefficient is the ratio of concentrations of a compound in the two 
phases of a mixture of two immiscible solvents at equilibrium. The polar 1-butanol with the ability of 
additional H-bonding shows up with the lowest detection limit (LOD), toluene which can be polarized 
as an aromatic system ranges in the middle and the non-polar n-octane has the highest LOD. 

Dong et al. [51] assessed three polymer layers (polyethyleneoxide, polyvinylalcohol and 
polyethylenevinylacetate) on resonant microcantilever for the detection of volatile organic compounds. 
They coated the surface of the microcantilever with an air brush and pipettor. The polarity of the 
volatile compound strongly influenced its diffusivity in the polymer layer. It was observed that the 
most hydrophilic (polyvinylalcohol) and hydrophobic (polyethylenevinylacetate) polymers showed the 
lowest sensitivity to the least polar solvents (hexane and octane) and most polar solvents (ethanol and 
acetone), respectively. 

Silicon microcantilevers for humidity detection were studied by Singamaneni et al. [52].  
The cantilever with a low flexural rigidity was coated with a plasma-polymerized methacrylonitrile 
monolayer [Figure 8(a,b)] and it showed for instantaneous changes of humidity a response time of  
9.5 ms in the range from 10 to 90% of humidity [Figure 8(c)]. It was observed a linear response in the 
ramps of humidification and desiccation (1% of relative humidity per second) showed in [Figure 8(d)], 
with resolution of ±10 ppb of water vapor. The authors suggested that the desirable responsive 
behavior of the bimaterial cantilever is associated with the integration of a crosslinked polymer, high 
internal stresses, and firm adhesion to the silicon. 

Sub-ppm sensitivity and the response of piezoresistive cantilevers arrays coated with different 
polymers [polyvinyl alcohol (PVA), polyethylene imine, polyacryl amide and polyvinyl pyrrolidone] to 
detect various alkanes were investigates [53]. It was demonstrated that this array of sensors coated 
with different polymers had the selectivity of discriminated individual alkanes in a homologous series 
using principal component analysis of the pattern formed from the responses of polymer-coated 
cantilevers. Accordingly, the sensitivity of the piezoresistive cantilever was determined to be  
0.05–0.13 ppm. The adsorption of analytes on the polymer layers induces surface stress due to swelling 
of the polymers, resulting in the bending of the cantilevers. The adsorption of water molecules on the 
surface of the cantilever increases its mass and thereby decreases its resonance frequency. 
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Figure 8. (a) Simplified diagram of the functionalization of the silicon cantilever coated 
with polymer; (b) Chemical structure of methacrylonitrile; (c) Deflection of cantilever  
in response to sudden humidity change and (d) Dynamic sampling during linear 
humidification and desiccation (reprinted with permission [52]).  

 

Electronic noses with arrays of cantilever sensors that respond individually to vapors can produce a 
distinguishable response pattern for each separate type of analyte or mixture. Their use opens up 
applications in many fields such as quality and process control, medical analysis, fragrance, oenology, 
and as sensing devices for volatiles compounds [54]. 

Baller et al. [54] used an artificial nose based on a microfabricated array of eight silicon cantilevers 
to detect analyte vapors. Each cantilever of the array was functionalized with a different polymer 
(polyvinylpyridine, polyurethane, polystyrene and polymethylmethacrylate). To observe the transduction 
of physical and chemical processes into deflection, the swelling of a polymer layer on the cantilever 
was monitored during exposure to the analyte. It was observed that the swelling process is related to 
the vapor pressure and the solubility characteristics of the analyte in the polymer. A standard 
recognition patterns was created upon exposure to known gaseous analytes, so that alcohols, acetone, 
dichloromethane, toluene and heptane could be identified. 

Lang et al. [55] also evaluated the use of an artificial nose with a microcantilever sensor array to 
characterize solvent vapors and fragrances. All eight cantilevers were functionalized with a polymer 
layer by the inkjet spotting technique. The deflection was measured with a surface emitting laser and a 
position-sensitive detector received the optical beam. The cantilever deflection in response to solvent 
vapors and fragrances was caused by the diffusion of the molecules, resulting in a swelling of the 
polymer layers. When the cantilever was exposed to dry nitrogen, the beam returned to its initial 
position, demonstrating that the sensing process is reversible and reproducible. 
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4. Microcantilever-Based Biosensors (MC-B) 

The great interest in developing microcantilever-based biosensors stems from the binding 
specificity of biomolecules for analytical sensing, combined with the unlimited ability of this device to 
transduce signals between the biomolecule and an electronic device. According to the International 
Union of Pure and Applied Chemistry (IUPAC) definition [56], a biosensor is a sensor possessing 
biological components (antibodies, enzymes, DNA), which detects their interaction with the analyte of 
interest by a dedicated transduction mechanism. The transducer is the device capable of converting  
the physical (e.g., resistance, voltage, conductivity) or chemical signals (electron transfer from a 
chemical reaction) into measurable, usually electronic, signals whose magnitude is proportional to the 
concentration of the species or chemical grouping.  

The advantages of microcantilever-based biosensors are small size, label-free detection, and a 
potential for arrayed operation [57]. Instrumentation based on microcantilever arrays would be very 
attractive because it could detect multiple biomarkers simultaneously with high sensitivity and 
selectivity in small sample volumes [58]. 

Microcantilevers are micromechanical devices with dimensions on the order of 100 μm × 30 μm × 
0.6 μm [6]. They can readily be fabricated on silicon wafers and other materials, but silicon 
microcantilevers are the most commonly used in biosensors. They are physical sensors that respond to 
surface stress changes due to chemical or biological processes [59]. These sensors can measure forces 
and stresses with extremely high sensitivity when fabricated with very small force constants [58]. 
Adsorption of molecules on one of the surfaces of the biomaterial cantilever results in a differential 
surface stress due to adsorption-induced forces, which is manifested as a deflection [58,60]. In addition 
to cantilever bending, the resonant frequency of the cantilever can be changed by mass loading [58,61]. 
These two types signal, namely the adsorption-induced cantilever bending when adsorption is confined 
to one side of the cantilever and the adsorption-induced vibrating frequency change due to mass 
loading, can be monitored simultaneously [40]. Resonant cantilevers immersed in liquid suffer from 
high damping losses and reduced sensitivity [62]. Thus, the resonant frequency operating mode of the 
cantilever is normally limited to the detection of gas-phase samples, while the bending mode can be 
used for both gas and liquid samples [57,62].  

The commonest method used to measure cantilever displacement is the optical lever (see  
Figure 5) [63,64]. A focused laser beam is reflected off the cantilever surface, and captured by a PSD 
(position sensitive detector). The cantilever displacement causes movement of the laser spot on the 
PSD and hence a change in its output voltage [65]. In microcantilever biosensors, the accuracy of 
measurement depends strongly on accurate determination of the surface deflections. This optical lever 
approach is not suitable for a cantilever array, because the response of only one device can be 
captured. Custom-made arrays of lasers and PSDs for use with several cantilevers in parallel lead to 
greatly increased instrumentation complexity and difficulty of alignment [66]. The cantilever bending 
may also be sensed with a deflection sensor integrated into the cantilever [38]. A major advantage of 
this set-up is that it allows massively parallel arrays and can be performed without the need for optics. 
For deflection sensing with elements integrated into the cantilever, piezoresistive sensing is the most 
widespread approach [67], although there are others, including piezoelectric [68] or capacitive  
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sensors [69]. The high piezoresistive coefficient of doped single-crystal silicon makes silicon 
piezoresistive sensors an attractive option [70]. 

The sensitivity of microcantilever biosensors can be increased by optimizing the geometry of the 
cantilevers and immobilization techniques. For adsorption-induced cantilever deflection, longer and 
thinner cantilevers with small force constants show higher sensitivity. However, larger area cantilevers 
show faster detection of low concentrations of target molecules. Thus, the optimal cantilever dimension 
will depend on the dimension of the cantilever chamber and the analyte delivery system [58]. The use 
of a reference cantilever basically improves sensitivity. New piezoresistive cantilevers designs have 
been developed that show less drift and higher signal-to-noise ratios. Selectivity of detection with 
microcantilever sensors in complex samples still remains to be solved [71]. 

The functionalization of the microcantilever surface is the most important step in the development 
of microcantilever-based biosensors. This step is critical to cantilever sensing because it determines the 
surface density of receptor molecules and thus the number of binding events on the active surface. It 
may also affect how efficient the transduction is from the biomolecular interaction to the change in 
surface stress on the cantilever. Additionally, an effective passivation can significantly reduce the 
nonspecific binding, so that the background signal can be minimized. Depending upon the final 
application of the device, various types of immobilization can be used. Generally, cantilevers are 
coated on one side with 2–3 nm of chromium and 25–30 nm of gold. Chromium acts as an adhesive 
layer for the gold. When the functionalization of the microcantilever surface involves silanization, both 
side of the cantilever is used; and when the coating involves thiol, only the gold side of the cantilever 
is used. For thiol self-assembled monolayers (SAMs) and organosilane modification, dip coating is the 
preferred method for functionalization, to allow high density immobilization on the cantilever surface. 
Thiol SAMs are self-limited to coverages of a monolayer of the thiol on a gold film. Silane coating can 
yield multilayered films upon extended exposure to the solution. Regardless of the type of coverage, it 
must be prepared no more than 48 h before analysis [58]. 

Since 1990, the technique of sensing by means of the bending response of microcantilevers is  
being increasingly used for the detection of biomacromolecules, rather than small molecules. A. 
Subramanian et al. [6] described a glucose oxidase-coated microcantilever for the specific detection 
and quantitation of glucose and they assessed the signal transduction mechanism. The enzyme was 
immobilized on one side of a silicon cantilever, coated with gold. The magnitude of the bending 
response of the glucose oxidase-derivatized microcantilever was concentration dependent over a large 
range of glucose concentrations. 

The combination of the microcantilever with a highly specific enzyme provides a unique approach 
to quantifying enzyme substrates without the complication of sample labeling. The detection of 
hepatitis B virus DNA was achieved with a silica nanoparticle-enhanced microcantilever sensor.  
Gold-coated microcantilevers were functionalized with thiolated cDNA. Cr/Au layers (10 nm/50 nm) 
were deposited on the bottom side of the microcantilever with an e-beam evaporator. The resonant 
frequency was measured by an impedance analyzer and the working concentration range was 
approximately from 23 fM to 2.3 × 106 fM (Figure 9) [72]. 



Sensors 2012, 12 8293 
 

 

Figure 9. The results of the HBV DNA assay with silicon-nanoparticle (SiNP) enhanced 
dynamic microcantilevers: (a) plots of the resonant frequency shifts acquired from the 
HBV DNA assay and the SiNP enhanced HBV DNA assay; (b) SEM image of the 
microcantilever surface with the captured SiNPs at 2.3 pM HBV target DNA, and the 
fluorescent images of the microcantilevers; (c) top side and (d) bottom side at 2.3 pM 
(reprinted from [72] with permission). 

 

A class of microcantilever-based biosensors is the microcantilever immunosensors, which utilize 
highly selective antigen-antibody interactions. The immunosensors offer a common platform for  
high-throughput, multiplexed label-free analyses of biomolecules in a single step in real time, based on 
specific biomolecular binding, such as protein-protein binding. When antibody molecules are 
immobilized on one surface of a cantilever, specific binding between antibodies and antigens produces 
cantilever deflection. Zhao et al. [73] have developed a microcantilever immunosensor and an indirect 
competitive enzyme-linked immunosorbed assay (icELISA), which use a highly sensitive and specific 
monoclonal antibody (designated mAb6A9) against a copper-chelate complex. The half maximum 
inhibition concentration values (IC50) and working range, based on 10–90% inhibition of binding of 
mAb6A9 to Cu(II)-ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA) [Cu(II)-EDTA], of the 
icELISA were approximately 1.8 ng·mL−1 and 0.2–17 ng·mL−1, respectively. A bending response of 
the microcantilever immunosensor was detectable at or below 1 ng·mL−1 of Cu(II)-EDTA complex. 
The two assays developed (microcantilever immunosensor and icELISA) were sensitive enough to 
monitor Cu(II) in drinking water at the legal limits set by China, the U.S. Environmental Protection 
Agency (EPA) and World Health Organization (WHO). The results correlated well with those obtained 
by graphite furnace atomic absorption spectrometry.  

Among the biomolecular detection assays, the microcantilever technology can also be used for 
DNA-DNA hybridization detection, including accurate positive/negative detection of single base-pair 
mismatches [74]. This type of assay can be used to detect mutations in the DNA sequence of target 
DNA responsible for many cancers. The detection occurs where a single non-complementary nucleotide 
appears in the sequence. Single-stranded DNA (ssDNA) is immobilized on the side of the cantilever 
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coating with gold, by means of a thiol linker bonded to one end of the ssDNA. The change in surface 
stress resulting from the adsorption of ssDNA on a cantilever has been found experimentally to be  
30–50 mN/m. Of particular interest in current genomics research is the detection of single-nucleotide 
polymorphisms (SNPs). The ability to locate and characterize SNPs would aid in the early detection, 
diagnosis, and perhaps treatment of individuals carrying mutations causing diseases such as cystic 
fibrosis and thalassaemia, among others. Hansen et al. [34] have used hybridization-induced cantilever 
deflection to demonstrate that the number and location of DNA pair mismatches in a target 10-mer 
oligonucleotide can be discerned under high-stringency static and flow conditions using gold-coated 
silicon microcantilevers. Gold-coated silicon microcantilevers were functionalized with thiolated  
20- or 25-mer probe DNA oligonucleotides. The magnitude of deflection was greater for the hybrids 
with two internal mismatches than for those with one internal mismatch, which indicates that the 
degree of repulsion increased due to additional base-pair mismatch. 

Prostate-specific antigen (PSA) was assayed by optically detecting nanoscale motions of  
two-dimensional arrays of microcantilever beams [75]. Antibodies were used, covalently bound to one 
surface of the microcantilevers. The 2D cantilever array chip contained 80–120 reaction wells, where 
each well consisted of a microfluidic chamber containing 4–8 independent cantilever sensors. The 
surface of the microcantilever was coated with a 25-mm layer of gold, which served as the surface for 
immobilizing capture molecules (antibodies). A collimated laser light beam with an expanded spot size 
about the same size as the whole cantilever array illuminated the gold surface of the cantilevers  
from the glass side. The laser light reflected off each cantilever’s end pad and was collected as an  
array of “spots” by a charge coupled device (CCD) camera. In this study, the authors used  
2-[methoxypoly(ethyleneoxy)propyl]trimethoxysilane, a silane-conjugated polyethylene-glycol chain 
(henceforth referred as PEG-silane) for the effective surface passivation. Quantitative detection of PSA 
as low as 1 ng/mL was demonstrated with an array of 400 μm long cantilevers, which yielded 2 mJ/m2 
surface stress change due to the binding of the antibody and antigen.  

There have been some efforts to modify the design of the microcantilever, with the purpose of 
developing microcantilever-based biosensors with greater sensitivity and signal-to-noise ratio.  
Godin et al. [76] showed that the bending of the cantilever depends on the surface roughness of the 
gold film and gold films with larger grain sizes on the cantilever showed increased bending sensitivity.  
Tabard-Cossa et al. [77] investigated the surface stress response of micromechanical cantilever based 
sensors as a function of the morphology, adhesion, and cleanliness of the gold sensing surface. The 
surface morphology was found to influence strongly the surface stress response for molecular 
adsorption where ordering of the molecules is dependent on their coverage and domain size. These 
authors concluded that the sensitivity of bending also depends on the uniformity of the immobilization 
layer and cleanliness of sensing surface [77]. 

Ansary and Chao [78] have investigated the deflection and vibration analysis of rectangular, 
triangular, and step profile microcantilevers having basic and modified shapes. The surface stress 
induced deflection in the microcantilever is modeled by an equivalent in-plane tensile force acting on 
the top surface of the cantilever, in the length direction. To increase the overall sensitivity of 
microcantilever biosensors, both the deflection and the resonant frequency of the cantilever should be 
increased at the same time. The triangular and step cantilevers have better deflection and frequency 
characteristics than rectangular ones. The deflections usually range a few tens to a few hundreds of 
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nanometers. Measuring deflections of this order requires extremely sophisticated readout arrangements. 
As the sensitivity of a microcantilever biosensor depends on the design sensitivity of the cantilever and 
the measurement sensitivity of the deflection measurement system, the challenge is to increase the 
sensitivity of a microcantilever without increasing the complexity of the deflection detection system. 
These authors [79] also presented a new microcantilever design with a rectangular hole at the fixed end 
of the cantilever, which was about 75% more sensitive than the conventional design, and the frequency 
analysis showed that the natural resonant frequency of the proposed design was about half the 
conventional frequency, i.e., f0, proposed = 0.47 f0,conventional.  

The piezoresistive cantilever based biosensors are sensitive to temperature change, owing to their 
relatively large surface-to-volume ratio, which can have some impact on the sensor stability [80]. The 
geometrical parameters of this type of sensor should be optimized for optimal sensitivity. The 
sensitivity increases with decreasing cantilever thickness due to the reduced stiffness of the device 
when the ratio of piezoresistor thickness to cantilever thickness is fixed [80]. 

Temperature compensation has been proposed, in which a parallel microcantilever is used, with one 
active cantilever and another reference cantilever for noise reduction, but the different composition of 
the cantilevers may lead to a serious offset [81]. Yang et al. [81] proposed a bridge circuit composed 
of an active cantilever, a reference cantilever and two fixed piezoresistors for in situ surface stress 
measurements of a biochemical reaction. This circuit proved effective in offset voltage adjustment and 
temperature drift compensation.  

Microcantilever based-biosensors can also be used in a liquid environment. Kwon et al. [82] 
reported the in situ real-time monitoring of a specific protein antigen-antibody interaction, using a 
resonating microcantilever immersed in a viscous fluid. The precise in situ real-time monitoring of 
protein-protein interactions was ascribed to the high quality factor of the resonating piezoelectric 
thick-film microcantilever. 

5. Conclusions 

In this review we have attempted to show the wide field of application of the atomic force 
microscopy (AFM) technique. Among the AFM technique, the Chemical Force Microscopy (CFM) 
which is based on AFM tips chemically modified with specific exposed functional groups, carefully 
architected to carry out a specific function in a system, appears as a powerful tool. The possibility of 
controlling the chemical interactions between the AFM tip and the sample can provide sensitive 
resources to measure and to map the surface chemistry information and to quantify the adhesive or 
repulsive forces associated to inorganic materials and biological samples.  

The potential use of microcantilevers in a broad range of applications is also arising as a powerful 
tool coming from the AFM. Depending on the specific application of microcantilevers, they may be 
functionalized either with biological material, which converts them into microcantilever-based 
biosensors (MC-B) or may be functionalized with inorganic materials, which converts them into 
Nanomechanical Cantilever Sensors (NCS). There are two types of signals in these devices, which can 
be monitored simultaneously, adsorption-induced cantilever bending when adsorption is confined to 
one side of the cantilever and adsorption-induced vibrating frequency change due to mass loading. 
Depending upon the final application of the device, variety of techniques can be used to functionalize 
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the microcantilever surface. The method used in the functionalization has a strong influence on the 
sensitivity and selectivity of device since they depend on the detection layer, which may be built 
according to principles of molecular recognition. This technology enables the development of sensors 
that can detect low concentrations of analytes in very small volumes of liquid or gas, with great 
sensitivity, reproducibility and repeatability. 
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