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Abstract: This paper describes how the quantitative analytical tools of CMEIAS image 
analysis software can be used to investigate in situ microbial interactions involving cell-to-cell 
communication within biofilms. Various spatial pattern analyses applied to the data 
extracted from the 2-dimensional coordinate positioning of individual bacterial cells  
at single-cell resolution indicate that microbial colonization within natural biofilms is not  
a spatially random process, but rather involves strong positive interactions between 
communicating cells that influence their neighbors’ aggregated colonization behavior. 
Geostatistical analysis of the data provide statistically defendable estimates of the 
micrometer scale and interpolation maps of the spatial heterogeneity and local intensity at 
which these microbial interactions autocorrelate with their spatial patterns of distribution. 
Including in situ image analysis in cell communication studies fills an important gap in 
understanding the spatially dependent microbial ecophysiology that governs the intensity 
of biofilm colonization and its unique architecture. 

Keywords: bacterial cell-to-cell communication; biofilm; calling distance; CMEIAS; 
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1. Introduction 

Our team of microbiologists, mathematicians and computer scientists has been developing a suite of 
software applications for computer-assisted microscopy to enhance studies of microbial ecophysiology 
in natural and managed habitats. The long-range goal is to build a computing toolkit that strengthens 
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microscopy-based approaches for understanding microbial ecology at spatial scales directly relevant to 
their ecological niches, without the need for cultivation [1]. The software suite is named CMEIAS  
(for Center for Microbial Ecology Image Analysis System), and as components become fully 
developed and documented, they are released for free download at the project website [1]. The 
CMEIAS ver. 3.10 upgrade currently under construction [2] includes a spatial ecology module, based 
on motivation to create quantitative tools that will help users obtain better, statistically defendable 
answers to pertinent questions of microbial ecophysiology that are influenced by spatial patterns of 
microbial distribution during biofilm colonization on biological and non-biological surfaces. 

A central goal in spatial ecology is to define what a measured characteristic at one location can reveal 
about that same variable at neighboring locations. Analyses of in situ spatial ecology are designed to 
scrutinize patterns of distribution at a given spatial scale and produce predictive models of microbial 
colonization behavior that can help to reveal ecophysiological processes on surface habitats. Of central 
importance in that assessment are tests for patterns of complete spatial randomness. The essence of the 
statistical pattern analysis is to distinguish between spatial distributions of the organisms that can be 
explained by chance versus those that cannot. Complete spatial randomness implies that no microbial 
interactions affect the events resulting in their patterns of distribution. In contrast, significant deviations 
from complete randomness in spatial patterns indicate that regionalized microbial interactions between 
neighboring cells have affected their colonization behavior. Aggregated (clustered) spatial patterns of 
microbial colonization imply positive interactions that promote growth physiology among neighboring 
cells, whereas uniform patterns of distribution imply negative (inhibitory) microbial interactions 
resulting in their maximal, over dispersed, self-avoiding colonization behavior. This information is of 
significant ecological importance because spatial heterogeneity resulting from both types of nonrandom 
interactions between individuals tends to stabilize ecological systems [3,4]. Also, knowing the location 
and intensity of clustered behavior for organisms can improve the ability to understand the underlying 
processes that generate and sustain the interdependent microbe-environment relationships within  
biofilm architectures.  

At the core of these positive (cooperative) and negative (conflict) interactions that reduce  
spatial randomness are various types of microbial cell-to-cell communication events that regulate 
genes affecting their colonization behavior. The key connection between biofilm spatial ecology and 
cell-to-cell communication occurs when positive or negative interactions are found to be spatially 
autocorrelated, i.e., structured to operate at spatial scales that extend sufficiently to affect neighboring 
attached cells. Other papers in this special issue of Sensors describe the biochemical and genetic 
details of bacterial cell-cell communication. This paper describes 18 different experimental tests on 
data derived from CMEIAS computer-aided microscopy to analyze the spatial ecology of bacterial 
colonization within biofilms, providing (in the broadest sense) both indirect and direct evidence of 
bacterial cell-to-cell communications mediated by environmental sensing phenomena and the 
geospatial scale at which they occur in situ at individual, single-cell resolution.  
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2. Experimental Section 

2.1. Indirect Examination of Bacterial Cell-to-Cell Communication Using Spatial Pattern Analysis 

This first experimental system involved many types of spatial pattern analyses to test for microbial 
interactions indicative of cell-to-cell communication among individual microbes in natural biofilms. 
Microbial assemblages were allowed to develop on clean glass microscope slides submerged for  
four summer days in the Red Cedar River on the campus of Michigan State University (East Lansing, 
MI, USA). Slides were retrieved and their underside wiped clean. The top surfaces of the slides were 
mounted in water with a cover slip and examined by phase-contrast light microscopy using a 100X 
Planapochromat Phase 3 objective lens to resolve individual bacterial cells. Digital 8-bit grayscale images 
of the biofilms were acquired using a monochrome digital camera, then segmented to binary, spatially 
calibrated and analyzed using CMEIAS image analysis software [1,2,5,6] to produce the 2-dimensional 
coordinate systems that accurately define the geospatial location of individual attached bacterial  
cells. Extracted data were analyzed statistically using StatistiXL [7], EcoStat [8], ProStat [9], GS+ 
Geostatistics [10], and in-house CMEIAS Data ToolPack software [2].  

The accuracy of CMEIAS image analysis software to measure and compute the object  
centroid-to-centroid 1st and 2nd nearest neighbor distances was evaluated using a high-resolution 3-frequency 
grid distortion target (Edmund Optics, Barington, New Jersey, USA) as ground truth. The accuracy of 
CMEIAS color segmentation software used to process the color images for analysis was previously 
measured as 99+% [11]. 

2.2. Direct Examination of Bacterial Cell-to-Cell Communication Using Rfp-Source and Gfp-Sensor 
Reporter Strains 

The second experimental system was designed to further advance our understanding of bacterial 
cell-to-cell communication during their colonization of plant roots. CMEIAS image analysis was used 
to reevaluate the spatial scale of calling distances and the variations in intensity of gene expression 
activated by extracellular signal communication molecules produced by neighboring cells of 
Pseudomonas putida reporter strains during their colonization of tomato roots. Details on construction 
of fluorescent reporter derivatives of P. putida IsoF serving as the source and sensor strains for these 
bacterial cell communication studies using N-acylhomoserine lactone (AHL) signal molecules are 
previously described [12–16]. Briefly, the “AHL-source” strain produces N-hexanoyl-, N-decanoyl-, 
and N-dodecanoyl-acylhomoserine lactone signal molecules and harbors a plasmid with constitutive 
expression of the red fluorescent protein. The “AHL-sensor” strain, P. putida F117 (pKR-C12) has a 
mutation in its single copy of the ppuI-gene that abolishes its ability to synthesize AHLs, but contains 
an AHL-inducible reporter plasmid pKR-C12 with a green fluorescent protein (GFP)-encoding sensor 
cassette. This sensor cassette contains an AHL-regulated promoter for ppuA (encoding acetyl-CoA 
ligase) coupled to the Gfp gene that responds with high specificity and differential sensitivity to 
defined AHLs (C10- and C12-HSLs and 3-oxo-C10 to 3-oxo-C14-HSLs) at threshold concentrations 
as little as 10 nmol/L [14].  

Axenically grown seedling roots were inoculated with both the AHL-producer and AHL-sensor 
strains of P. putida at 109 cells per plant, grown gnotobiotically, harvested and examined by laser 
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scanning microscopy in the epifluorescence confocal mode [15]. Georeferenced, confocal RGB images 
were merged into loss-less montages, segmented using CMEIAS Color Segmentation software [11], 
and analyzed using CMEIAS image analysis software [2,5,6] to evaluate the in situ spatial relationships 
and luminosity of segmented red-fluorescent AHL-source and green-fluorescent AHL-sensor cells 
colonized on the root surface. To avoid errors in measurement of in situ calling distances and gene 
expression, communicating cells attached to root hairs and cells located above or below the optisections 
used to prepare the montage of X | Y projected images were excluded from analysis, as was done in our 
previous study [15]. 

3. Results and Discussion 

3.1. Spatial Pattern Analysis Reveals Aggregated Colonization Behavior Indicative of Bacterial  
Cell-to-Cell Communication 

Figure 1(A,B) is binary images of two natural microbial assemblages developing in freshwater 
biofilms on glass slides that are used here to illustrate a CMEIAS spatial pattern analysis that reveals 
their colonization behavior and intensity of bacterial cell-to-cell communication. Various quantitative 
features were extracted from each individual cell to test for complete spatial randomness in their 
distribution using point pattern and geostatistical methods. These spatial features included the X and Y 
Cartesian coordinates of each foreground object’s centroid (georeferenced to the 0,0 X,Y landmark 
origin assigned to the image’s lower left corner), the µm distance from each object centroid to its 1st 
and 2nd nearest neighboring cell, the cumulative Empirical Distribution Function of the 1st nearest 
neighbor distance, and the CMEIAS Cluster Index that measures the clustering intensity of each cell in 
relation to its local environment [2,6,17]. The measured error rates of the centroid-to-centroid 1st and 
2nd nearest neighbor distances used to compute these spatial attributes were 3.2% and 2.3%, 
respectively, with an overall combined accuracy of 97.2% (n = 38). 

Figure 1. In situ spatial distribution of freshwater microbial assemblages in biofilms 
labeled as (A) CS4; and (B) CS25 on microscope slides. Bar scales are 10 µm.  

 

Statistical analyses indicated that the frequency distribution of the 1st and 2nd nearest neighbor 
distances and cluster indices of cells in these biofilms were significantly skewed and lacked normality 
(Table 1). The Mann-Whitney non-parametric test indicated that their median values were significantly 
different, and the cluster index was significantly more intense in the CS25 biofilm (Table 1). 
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Table 1. Statistical inference tests of the distributions of nearest neighbor distances and 
clustered indices between individual bacteria within images of the CS4 and CS25 freshwater 
biofilm assemblages. 

Statistical Test 
(accept or reject stated 

condition) 

1st Nearest Neighbor 
Distance (μm) 

2nd Nearest Neighbor 
Distance (μm) 

CMEIAS Cluster 
Index (μm−1) 

CS4 CS25 CS4 CS25 CS4 CS25 
Normal Distribution? 
(Shapiro-Wilks W) 

0.906 a 
(No) 

0.715 a 

(No) 
0.937 a 

(No) 
0.817 a 

(No) 
0.924 a 

(No) 
0.979 a 

(No) 

Significant Skewness? 
1.028 a 
(Yes) 

2.794 a 
(Yes) 

1.143 a 
(Yes) 

1.922 a 
(Yes) 

0.848 a 
(Yes) 

0.399 a 
(Yes) 

Median 1.591 1.257 2.711 1.905 0.629 0.796 
Significantly Different 

Median? 
(Mann-Whitney U) 

CS4 > CS25 
(Yes, U = 115293 a) 

CS4 > CS25 
(Yes, U = 113652 a) 

CS25 > CS4 
(Yes, U = 112649 a) 

a Significance level is indicated when the P value was ≤0.05. 

These results justified subsequent analyses to test whether the spatial patterns of microbial 
distribution deviated from complete spatial randomness, and if so, the intensity of their clustered 
aggregation. Several methods of spatial statistics were performed on the CMEIAS data to test this 
hypothesis. The first evaluation, called the Empirical Distribution Function, is a plot of the cumulative 
ranking of the 1st nearest neighbor distances measured between individual cells in the sample 
compared to the distribution that would result if the pattern were completely random. In this latter 
case, the data points would distribute along the diagonal, dashed blue staircase. The resultant plot of 
the empirical distribution function indicated that both biofilm samples had aggregated patterns of 
distribution, and that this colonization behavior was more intense in biofilm CS25 (Figure 2). 

Figure 2. Cumulative empirical distribution function of the nearest neighbor distances 
between individual bacteria within images of biofilms CS4 (green diamonds) and CS25 
(red squares). Differences in intensity of aggregated patterns are indicated by  
empirical distribution values that ascend above the diagonal dashed line of complete  
spatial randomness.  
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The same data on 1st and 2nd nearest neighbor distances were evaluated by four other spatial point 
pattern statistical tests (Holgate Aggregation, Russ Randomness, Clark and Evans Dispersion/Spatial 
Density, and Hopkins and Skellam Aggregation) for complete randomness in spatial distribution of 
cells. These 4 tests indicate spatially aggregated patterns when the corresponding upper class limits of 
their indices computed from the 1st and 2nd nearest neighbor distances are >0.5, <1.0, <1.0 and >1.0, 
respectively. The results of all of these point pattern tests rejected the null hypothesis of spatial 
randomness in favor of the alternative hypothesis of aggregated distributions, and the intensity of this 
colonization behavior was significantly higher in the CS25 biofilm sample (Table 2). 

Table 2. Ecological statistics to test if the microbial distribution in the CS4 and CS25 
biofilms deviate from complete spatial randomness, and compare the intensity of spatial 
aggregation in their colonization behavior. 

Spatial Pattern Metric Features Used CS4 (p <) b CS25 (p <) b Cluster Intensity 
Holgate Aggregation 1st & 2nd NND a 0.556 (0.001) 0.561 (0.001) CS25 >> CS4 
Russ Randomness 1st & 2nd NND 0.961 (0.01) 0.727 (0.001) CS25 > CS4 
Clark & Evans Dispersion 1st NND, Spatial Density 0.929 (0.01) 0.764 (0.001) CS25 > CS4 
Spatial Density (cells/mm2) Cell Count per Image 

Area Normalized to mm2 
54,735 63,458 CS25 > CS4 

Hopkins & Skellem 
Aggregation 

Random Point to Nearest 
Object, 1st NND 

1.523 (0.000) 12.582 (0.000) CS25 >> CS4 

Fractal Geometry Cumulative Intersection 1.892 2.140 CS25 > CS4 
Effective Range 
Separation Distance 

Object Centroid X,Y 
Coordinates, Cluster Index

4.4 μm 46.5 μm CS25 >> CS4 

Moran’s I Spatial 
Autocorrelation Index 

Object Centroid X,Y 
Coordinates, Cluster Index

4.244 10.579 CS25 > CS4 

a NND = nearest neighbor distances; b P values are indicated in parentheses. 

Concepts derived from fractal theory are fundamental to an understanding of the landscape 
complexity of scale-related phenomena in ecology [18]. Values greater than 1.000 for this self-similarity 
statistic are indicative of the complexity of an aggregated pattern of distribution resulting from the 
scale-dependent heterogeneous fractal variability in limiting resource partitioning, and reflect the high 
efficiency at which cells position themselves spatially and physiologically when faced with the 
interactive forces of microbial coexistence to optimize their allocation of nutrient resources on a local 
scale [19]. Thus, the fractal geometry of landscapes can reflect microhabitat fragmentation and 
heterogeneity in resource utilization rates [19]. CMEIAS fractal dimension analysis of Figure 1(A,B) 
indicated that the bacterial distribution in both biofilm assemblages exhibited positive fractal 
geometry, and that the intensity and complexity of this spatially dependent adaptation was again 
stronger for the CS25 biofilm (Table 2). 

The cluster index, computed as the inverse of 1st nearest neighbor distances, is a sensitive, local 
sensor of positive (cooperative) bacterial cell-to-cell interactions affecting their colonization behavior 
over the entire spatial domain. High values of this metric extracted from surface-attached cells indicate 
that they are arranged in spatially aggregated patterns that facilitate cell communications resulting in 
positive metabolic cooperations promoting their localized growth into populations of microcolony 
biofilms [6,17,20].  
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The CMEIAS 1-dimensional classifier was used to sort individual cells in the two biofilm images 
into bins based on division of a scale defined by a single measurement feature [5]. Figure 3(A,B) 
shows the classifier output of rendered images that provide a quick, visual appraisal of the binned 
clustered index assigned to each individual bacterium in situ in the CS4 and CS25 biofilms. This 
pseudocolored classification scheme indicates a preponderance of well-dispersed cells and a few small 
clusters (cluster indices < 0.4) in the CS4 biofilm (Figure 3(A)), and a larger proportion of cells 
grouped into aggregates (cluster indices > 0.4) in the CS25 biofilm (Figure 3(B)), (also see Table 1 
median test). 

Figure 3. In situ classification of each microbial cell within the (A) CS4; and (B) CS25 
biofilm landscapes into bins defined by the upper limit of their CMEIAS Cluster Index. 
The pseudocolor assignment for each bin class covering the range of the CMEIAS Cluster 
Index is indicated at the bottom of the images.  

 

The frequency distribution of the cluster indices for these microbes is presented in Figure 4. This 
histogram plot indicates the shift to higher cluster indices for the bacteria in the CS25 biofilm 
landscape, indicative of their higher intensity of aggregated colonization behavior in situ. 

Figure 4. Frequency distribution of each cell’s Cluster Index within CS4 and CS25 biofilms. 
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Geostatistical analysis is the most powerful category of spatial pattern analysis that can be used to 
unravel the spatial uncertainty of interactions between individual microorganisms. This geospatial 
method examines the continuity or continuous variation of spatial patterns over the entire domain by 
testing whether a user-defined, continuously distributed regionalized variable (called the “Z-variate”) 
is spatial autocorrelated, i.e., exhibits spatially-dependent structure [21]. The analysis indicates 
whether cells at one location (georeferenced by its X,Y Cartesian coordinates) express the Z-variate 
with sufficient intensity to influence (thereby communicate) the same regionalized response of 
neighboring cells at another location. Thus, patterns displaying spatial autocorrelation indicate that 
operations involve a spatial process, i.e., its intensity is significantly influenced by the location of 
neighboring cells, rather than occurs independent of the location of their neighbors. When found, the 
autocorrelation result can be mathematically modeled to accurately connect various spatially 
dependent relationships derived from regionalized variable theory, plus make optimal, statistically 
rigorous interpolation (kriging) maps of the local intensity of the measured Z-variate parameter within 
that spatial domain, based on analysis of its weighted average from sampled locations. From the 
microbial ecology perspective, cellular interactions that are autocorrelated with spatial patterns of 
microbial distribution within biofilms statistically indicate that communication events (in the broadest 
sense) significantly influence the in situ colonization behavior (cooperation vs. conflict) of neighboring 
cells over a defined scale within the spatial domain. At the core of geostatistical analysis is the 
variogram plot, which defines the extent to which the measured Z-variate exhibits spatial dependence 
between sample locations. It does so by examining how the values of the Z-variate become different as 
the spatial separation between the sample points increases. In this example, geostatistics using a 
simulation analysis of 10,000 subsamples were performed to test for connectivity of each georeferenced 
cell’s cluster index values to their spatial patterns within the 2 biofilm image domains. Semivariance 
analyses of the clustered indices of the bacteria in the CS4 and CS25 biofilms indicated that this 
regionalized variable positively autocorrelated with the spatial pattern of distribution (Figure 5(A,B)), 
and Moran’s Index of the same georeferenced data indicated that the intensity of this spatially 
autocorrelated structure was more than twice as strong for the CS25 biofilm sample (Table 1).  

The mathematical model that statistically best fits the variogram’s autocorrelation data (represented 
by the solid blue line in Figure 5(A,B)) also indicates the effective separation range (computed as the 
X axis intercept at 95% of the modeled asymptote height) that each cell positively influences the 
measured Z variate of neighboring bacteria present. This range defines the separation distance between 
neighboring cells in which the measured Z-variate remains spatially autocorrelated. The Z-variates of 
cells at sampling points separated by more distance than the maximum of the effective range are 
independent of one another. In this study, the effective separation range at which each cell positively 
influenced the aggregated colonization behavior of its nearest cell neighbors extended out to a radial 
distance of 46.5 µm in the CS25 biofilm sample as compared to 4.4 µm in the CS4 biofilm sample 
(Table 2). Thus, the in situ spatial scale of the separation distance at which bacterial cells exhibit 
positive, autocorrelated clustering behavior was more than 10-fold longer for cells in the CS25 biofilm 
sample (Table 2). These radial effective separation distances encapsulate 96% of the bacteria in the 
CS4 biofilm and 100% of the bacteria in the CS25 biofilm. These results statistically define the in situ 
spatial scale of that positive, autocorrelated cell-to-cell interaction where the bacteria have attached 
and the highly common occurrence at which those spatially dependent, cooperative communication 
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events occur. The results illustrate how the powerful method of geostatistics can be used to analyze 
bacterial sensing of their neighbors and precisely define the real-world spatial scales at which they 
occur in situ during biofilm development. 

Figure 5. Isotropic semivariograms of the spatially autocorrelated cluster indices of cells in 
the CS4 (A) and CS25 (B) biofilm assemblages. Note the greater effective separation 
distance (95% of the asymptote) and Moran’s Index (inserted plots) for cells in the CS25 
biofilm, indicating that they have a stronger autocorrelated intensity of clustered 
distribution pattern and are positively interacting over a wider radial in situ spatial scale.  

 

After the autocorrelation model was optimally fit to the data, 1,000 simulations of multigrid 
refinements of the model were computed to produce the corresponding kriging maps. These  
high-resolution pseudocolored graphics elegantly map the spatial autocorrelation in the data. This 
knowledge is used to derive accurate, unbiased estimates of the spatial continuity of Z-variate values 
within the sampling unit, thereby precisely resolving detailed spatial patterns with known variance for 
each interpolated point [21]. In this study, the kriging maps depict the centers of local clustered cell 
intensities that provide a vivid, geostatistically autocorrelated, continuous interpolation of the spatial 
variability in aggregated colonization behavior over the entire spatial domain, even in areas not 
sampled (Figure 6(A,B)). Included in the kriging maps are isopleth lines whose curvature connects 
points of equal intensity (like a weather map). The pseudocolored, intensity-scaled Z-variate and 
isopleth-defined contours provide clear recognition of the larger patch sizes and greater intensities of 
this clustered colonization behavior in the CS25 biofilm sample. This experimental test result maps the 
similarities and differences in the spatial ecology of cells communicating their clustered colonization 
behavior with neighboring cells. 
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Figure 6. 2-dimensional Kriging maps of the spatially autocorrelated local cluster indices for 
the microbes within the CS4 (A) and CS25 (B) biofilm samples. Note the significantly 
greater patch size and interpolation of higher intensity of clustered patterns in the CS25 
biofilm (B). 

 

Considered collectively, the results presented in Figures 2–6 and Tables 1–2 provide multiple, 
statistically significant indications that microbial colonization within these natural biofilms is not a 
spatially random process, but rather is controlled by strong, positive cooperative interactions between 
communicating cells that influence their neighbors’ aggregated colonization behavior. Statistical 
evaluation of the CMEIAS image analysis data extracted from images of the CS4 and CS25 biofilm 
assemblages at single-cell resolution indicate that the intensity and spatial scale over which these 
positive cell-to-cell communication events occur are consistently and statistically stronger for the 
CS25 biofilm sample and encapsulate all of the cells in that biofilm landscape.  

3.2. Direct in situ Geospatial Analysis of Cell-to-Cell Communication by Individual Bacteria during 
Their Colonization of Plant Roots 

3.2.1. Analysis of in situ Calling Distances 

It is generally thought that high bacterial population densities are needed to exceed the threshold 
level of AHL signal concentrations required to activate genes and their physiological functions. Hence, 
this specific type of microbial communication has become known as ‘quorum sensing’ that functions 
primarily as sensors of high population density, thus optimizing the expression of functions that are 
most beneficial when simultaneously performed by dense populations. Despite its wide appeal, this 
quorum sensing paradigm has been challenged since the methods commonly used to detect it require 
high populations, and neither the need for group action nor the selective conditions required for its 
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evolution have been definitively demonstrated [22]. Recently developed technologies using fluorescent 
reporter strain constructions, confocal microscopy, computer-assisted digital image analysis, and 
geostatistical modeling for single-cell resolution experiments have been used to measure the in situ 
spatial scale and local population requirements of AHL-mediated cell-to-cell communication during 
bacterial colonization of plant roots [15]. These stimulus-response studies using genetically engineered 
reporter strains of Pseudomonas putida have shown that this form of cell communication can be 
accomplished by single, individual bacterial cells that are separated from each other and from high 
population densities by relative long-range distances. Rhizobacteria were able to conduct cell-to-cell 
communication on roots with a minimum quorum requirement of two cells (source and sensor) and a 
maximal in situ separation ‘calling distance’ of up to 78 µm (equivalent to two people talking to each 
other while standing approximately 130 m apart). In addition, individual bacteria in small clusters  
(2–3 cells) communicated with each other even when separated from dense populations by even longer 
distances. Thus, during colonization of plant roots, one individual bacterium is able to produce 
sufficient AHL signal molecules to communicate with another single bacterial cell neighbor even 
when those two cells are separated apart by a wide range of distances. Geostatistical modeling of local 
spatial densities predict that AHL-mediated cell-to-cell communication is governed more by the in situ 
spatial proximity of cells within AHL gradients than by a quorum requirement of high population 
density, and therefore this type of cell-to-cell interaction is likely to be more commonplace in biofilms 
than originally thought [15]. Follow-up studies [23,24] have tested this hypothesis in 3-dimensional 
analyses of other experimental model systems and confirmed that as few as two individual bacterial 
cells can communicate with each other over long-range distances when confined to microenvironments 
with low cell density. In this study, the scale of calling distances for rhizobacterial communication is 
addressed on another landscape of the tomato root surface to further test the hypothesis that bacteria 
communicate with one another via AHL signal molecules even when they have not congregated into 
high local population densities.  

An example of direct in situ evidence of AHL-mediated cell-to-cell communication during bacterial 
colonization of a tomato root is provided in Figure 7(A). In this case, the green-fluorescent 
pseudomonad sensor cells are positioned to perceive sufficient concentrations of the AHL signal 
molecules within gradients made by the red-fluorescent pseudomonads, and respond through gene 
expression of green fluorescent protein. CMEIAS image analysis at single pixel resolution of the 
shortest linear distance between each activated (green-fluorescent) sensor cell and its 1st nearest 
neighboring (red-fluorescent) AHL-source cell (Figure 7(B)) indicated a frequency distribution of 
calling distances with a mode of 5–6 µm and maximum of 63 µm (Figure 7(C)). These descriptive 
statistics are similar to our earlier results (mode of 4–5 µm, maximum of 57–78 µm) of a larger 
analysis of bacterial cell-to-cell communication during colonization on tomato and wheat roots [15]. 
Control experiments indicated that the gnotobiotic culture systems were maintained free of extraneous 
microbes (including AHL-producers) and that the AHL-sensor strain did not fluoresce green when 
inoculated alone on the plants, thereby excluding a false-positive result due to autoinduction or 
activation by an AHL-mimicking compound of plant origin. Of course, the three-dimensional scale of 
such AHL gradients in natural rhizospheres would be influenced by the extent of its adsorption to the 
root and to inanimate soil particles (e.g., clay and humic particulates), quenching by AHL-degrading 
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likely reflects, inter alia, their spatial position within the concentration gradients of the signal molecules 
at the root surface. This experimental test result illustrates the awesome power of computer-assisted 
microscopy to quantitatively measure bacterial cell communication at single-cell resolution, and also 
leads one to predict that commonly used population-level measurements of gene expression by sensor 
strains may grossly underestimate the real-world variation in these same signal transduction responses 
within biofilms.  

Figure 8. (A) Red fluorescent AHL-source and green fluorescent AHL-sensor strains 
colonized on a tomato root surface; (B) Color segmented and annotated cells of green 
fluorescent AHL-sensor cells; (C) Frequency distribution of the mean luminosity per green 
fluorescent AHL-sensor cell. Bar scales equal 100 μm.  

 

4. Conclusions  

Albert Einstein once said: “Sometimes what is counted doesn’t count, and what really counts cannot 
be counted!” Studies on cell communication within microbial biofilms can benefit by incorporating a 
spatial context, because in this habitat, “spatial relationships really matter”. This paper describes how 
CMEIAS-assisted microscopy can help measure what really counts in this field: quantitative data  
in spatial ecology that bestow new insights to help piece together the complicated story of biofilm 
development by gaining a clearer understanding of spatially-dependent interactions involving cell 
communication at real-world spatial scales important to the microbe’s perspective. Characterizing the 
spatial scale of bacterial interactions resulting from cell-to-cell communication is important because it 
is a strong determinant of spatial patterns that reflect their colonization behavior, and certain ecological 
processes may operate at a particular scale but not at all at a different scale.  

Eighteen different experimental tests were described using two types of sensors. Sixteen tests using 
the first sensor type (nearest neighbor-based cluster indices) differentiated the intensity of autocorrelated 
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spatial structure in aggregated colonization behavior between two natural freshwater biofilms. Two 
other tests using the second type of sensor (genetically engineered strains to report signal molecule 
production and perception) indicated the range of calling distances between individual bacterial cells 
in situ and the variation in intensity of that cell-to-cell communication. These quantitative methods of 
spatial ecology performed at single-cell resolution provide statistically definitive information on 
bacterial sensing events that far surpasses what can be inferred from a visual interpretation of 
micrographs alone. They are also more accurate and precise in defining the real-world minimum 
quorum requirements, intensity and spatial scale of bacterial communication than are other methods 
that require higher populations to detect positive signals. Applying the central principles of spatial 
pattern analysis to cell communication events within microbial biofilms fills an important gap in 
understanding the strategies and forces that govern microbial ecophysiology while colonizing surfaces 
leading to variations in their biofilm architecture.  

Spatial ecology studies reported here confirm and expand upon previously acquired data [15,23,24] 
indicating that bacteria within biofilms communicate with each other at both low and high local cell 
densities. They indicate again that one individual cell can produce and excrete enough signal 
molecules allowing it to communicate with and activate genes in a neighboring cell. Cells colonized on 
plant root surfaces exhibit significant cell-to-cell variation in the intensity of this stimulus-response. 
These studies also indicate that cells within biofilms are arranged in aggregated patterns in situ, and 
predictably, that autocorrelated colonization behavior facilitates positive metabolic cooperations that 
promote their growth into microcolonies [6,20]. The significance of these results support the model 
that microcolony development can help microbes to maintain their ecological niche and gain the 
cooperative benefits of multi-cellularity within biofilms, that spatial aggregation can readily produce 
local cell densities that exceed the threshold concentration of signal molecules needed for cells to 
communicate with each other, and that maintaining honesty in signaling can be avoided when the 
signaling cells grow into microcolonies [25]. 

Future work should continue to further test and validate these ecophysiological models of cell 
communication and colonization behavior by microbes at single-cell resolution during dynamic stages 
of biofilm development, including their spatiotemporal redistribution within various natural habitats.  
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