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Abstract: The dynamic behaviors of an Atomic Force Microscope are of interest, and 
variously unpredictable phenomena are experimentally measured. In practical measurements, 
researchers have proposed many methods for avoiding these uncertainties. However, 
causes of these phenomena are still hard to demonstrate in simulation. To demonstrate 
these phenomena, this paper claims the tip-jump motion is a predictable process, and the 
jumping kinetic energy results in different nonlinear phenomena. It emphasizes the 
variation in the eigenvalues of an AFM with tip-sample distance. This requirement ensures 
the phase transformations from one associated with the oscillation mode to one associated 
with the tip-jump/sample-contact mode. Also, multi-modal analysis was utilized to ensure 
the modal transformation in varying tip-sample distances. In the presented model, 
oscillations with various tip-sample distances and with various excitation frequencies and 
amplitudes were compared. The results reveal that the tip-jump motion separates the 
oscillation orbit into two regions, and the jumping kinetic energy, comparing with the 
superficial potential energy, leads the oscillation to be bistable or intermittent. The sample-
contact condition associates to bifurcation and chaos. Additionally, the jumping is a strong 
motion that occurrs before the tip-sample contacts, and this motion signal can replace the 
sample-contact-signal to avoid destroying the sample. 
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1. Introduction 

Dynamic atomic force microscopy (AFM) is widely used in high resolution imaging on a 
nanometer scale. The most commonly used operating mode of dynamic AFM involves a feedback 
system of amplitude modulation and exploits the fact that the tip of the microcantilever oscillates with 
amplitudes of a few tens of nanometers. A hard interaction between tip and sample introduces a strong 
nonlinearity in the motion of the tip; such nonlinearity includes tip-jump, bistability [1,2], snapping, 
hysteresis, intermittency [3], period doubling, and bifurcation from periodic to chaotic oscillations [4]. 
These nonlinear behaviors reduce the accuracy of measurement by AFM and should be avoided in 
making measurements. Some of the above phenomena have been observed experimentally; however, 
few mathematical models have been developed to simulate or demonstrate the mechanisms. The 
reasons are that the models are simplified to a single degree of freedom and the stiffness of the 
microcantilever in AFM does not vary with the tip-sample distance. Therefore, the continuities of the 
eigenvalues, displacements, and velocity of the microcantilever cannot be verified at the moment of 
tip-jump and sample-contact.  

This paper claims that the tip-jump is a required condition that results in different nonlinear 
phenomena, and those can be predicted. The tip-jump is caused by the asymmetric two-wall potential 
that is determined using Liapunov stability theory [5], and the disequilibrium between the restoring 
force of the microcantilever and the superficial force results in chaos [6]. The tip-jump has been 
described with reference to some physical phenomena, such as strange contours, unexpected height 
shifts, and sudden changes in the apparent resolution of acquired images [7–9]. There is no exhaustive 
description of jumps and their relationship to snapping, bistability, hysteresis, and intermittency. Some 
studies have, however, addressed the prevention of jumping by controlling geometric properties or 
excitation frequencies/amplitudes [10,11].  

In addition to the nonlinear phenomena, the superficial force that governs the microcantilever of an 
AFM yields two significant characteristics. The natural frequency of the microcantilever changes 
directly with the tip-sample distance [12–14], and its motion includes oscillation, tip-jump, and the 
sample-contact oscillation. Unfortunately, most presented models are based on a constant eigenvalue 
and do not capture the rapidly change in eigenvalue before/after a jump, and models that are based on 
single degree of freedom [15–17] cannot simulate the modal transformation before/after jump or 
contact. As a result, a multi-modal analysis with eigenvalues that vary with the tip-sample distance is 
required in AFM simulation. 

This investigation involves a multi-modal analysis of AFM microcantilever, in which the natural 
frequencies vary with the tip-sample distance, to ensure the accuracy of oscillation of AFM 
microcantilever suffering from superficial forces. The tip-jump mechanism was based on force 
disequilibrium, and a force-displacement diagram helped explain the tip-beginning and tip-ending 
positions on the superficial potential force curves. Then the discretization method [18,19] was utilized 
to separate the superficial potential force curve into several piecewise linear segments. Each piecewise 
linear segment was related to a particular tip-sample distance, and the microcantilever oscillation could 
be determine exactly for each segment. Moreover, multi-modal analysis and the associated 
orthogonality conditions [20,21] ensured the continuities at the positions where these segments  
met and at the transformation between oscillation and tip-jump/sample-contact. The time-dependent 
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boundary conditions modified from Mindlin [22] were also adopted to solve the superficial potential 
force at the tip-end and the excitation force at AFN base end. Notably, unlike the author’s previous 
study, this paper elucidated the superficial force effects and the tip-jump effect on the nonlinear 
phenomena. In this study, oscillations driven at various tip-sample distances and excitation 
frequencies/amplitudes were compared on phase portraits.  

This investigation makes three main contributions. It provides an easy understanding of the  
tip-jump mechanism by demonstrating the force equilibrium. The method used also elucidates the 
cause of the zero-eigenvalue and points out the tip begin/end positions of the jumping. The second 
contribution is that this paper claims the tip-jump motion is a predictable process, and the jumping 
energy comparing with the superficial potential force energy, results in bistability for large kinetic 
energy and snapping for low kinetic energy. Furthermore, if the tip contacts the sample, the bistable 
motion may become hysteresis and the snapping motion may become intermittency or chaos. The third 
contribution is that this paper proposes the tip-jump motion is a strong signal occurred before the tip 
contacts the sample, and the detected jumping-signals can replace the traditional sample-contact signal 
to avoid destroying the sample. 

2. Mathematical Model of Oscillation of Microcantilever 

The typical microcantilever in an AFM is constructed from a piezoelectric oscillator at one end with 
amplitudes that the tip at the free end can tap samples. As shown in Figure 1, the microcantilever was 
clamped at x = 0 and had a tip at x = L. Table 1 presents the material properties of the soft 
microcantilever that was made of the si-si 111 material [8]. The microcantilever model was justified 
because the deflection of the tip-end was small and the thickness of the microcantilevers was less than 
the length of the beam. The effects of the axial force, transverse shear, and rotary inertia were assumed 
to be negligible; the tip was assumed to be rigid. The separation of variables was used in this linear 
elastic analysis. The excitation of AFM base was subjected to be a sinusoidal wave, and the 
microcantilever motion was obtained exactly in every piecewise linear segment of the superficial 
potential curve.  

Table 1. Material properties of microcantilever. 

Description Symbol Si-Si (111) case 
Length L 449 μm 
Width b 46 μm 

Thickness h 1.7 μm 
Tip radius R 150 nm 

Material density ρ 2,330 kg m−3 
Static stiffness κ 0.11 N m−1 

Elastic modulus E 176 GPa 
Q factor (air) Q 20 

Hamaker (rep.) A1 1.3596 × 10−70 J m6 
Hamaker (att.) A2 1.865 × 10−19 J 
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Figure 1. Schematics of the deflection of AFM microcantilever. Δ1(t) denotes elevation of 
AFM base, Δ2(t) is static deflection caused by deflection dependent tip-end force, and  
ξ(l, t) is the dynamic deflection caused by the surface homogeneous wave.  

 

2.1. Decoupled Equations of Motion 

The elastic Bernoulli-Euler equation of the microcantilever motion is:  
2 2 2

2 2 2

( , ) ( , ) ( , )[ ( ) ] ( ) ( ) ( )w x t w x t w x tEI x m x c q x p t
x x t t

∂ ∂ ∂ ∂+ + =
∂ ∂ ∂ ∂

 (1) 

Where w(x,t) is the deflection; E is Young’s modulus; I(x) is the moment of inertia and is assumed to 
be constant; m(x) is the mass per unit length with the microcantilever assumed to be homogeneous);  
c is the damping coefficient, and q(x)p(t) represents the applied force per unit length on the 
microcantilever. The deflection of the microcantilever is modified from the work of Mindlin and 
Goodman [22]: 

2

1
( , ) ( , ) ( ) ( )i i

i
w x t x t t g xξ

=

= + Δ∑  (2) 

in which ξ(x,t) is the surface homogeneous wave function, and Δi(t)gi(x) is the shift-time function 
associated for time-dependent boundary conditions. Δ1(t)g1(x) is the rigid body motion along the 
microcantilever that is caused by AFM base; Δ2(t)g2(x) represents the static deflection with AFM base 
at various positions. Substituting Equation (2) into Equation (1) yields: 

2

1

( ) ( ) [ ]IV IV
i i i i i i

i

EI m c q x p t EI g m g c gξ ξ ξ
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+ + = − Δ + Δ + Δ∑  (3) 

The deflection ξ(x,t) under constant boundary conditions is expressed by: 

1
( , ) ( ) ( )n n

n
x t x T tξ

∞

=

= Φ∑  (4) 

in which Φn(x) are the mutually orthogonal mode shape functions; and Tn(t) are the mode time 
functions. Orthogonality can be used to expand gi(x), gi

IV, and qi(x) in Equation (3) as a series of mode 
functions:  
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,1
( ) ( )i i n nn

g x G x∞

=
= Φ∑  (5) 

*
,1

( ) ( )IV
i i n nn

g x G x∞

=
= Φ∑  (6) 

1
( ) ( )i n nn

q x Q x∞

=
= Φ∑  (7) 

in which the coefficients (Gi,n, ܩ,כ , Qn) depend on the boundary conditions of the tip-end. Substituting 
Equations (5)–(7) into Equation (3), dividing both sides by mΦn(x)Tn(t), and setting the equation equal  ߱ଶ yield the equations: 

2 0IV
n n nEI m ωΦ − Φ =  (8) 

2
2 *

, , ,
1

( ) [ ]n n n n n i i n i i n i i n
i

mT cT mT p t Q EI G m G c Gω
=

+ + = − Δ + Δ + Δ∑  (9) 

The solutions to Equations (8) and (9) are: 

cos sin cosh sinhn n n n n n n n nC x D x E x F xβ β β βΦ = + + +  (10) 
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 (11) 

where ࣀ ൌ ࢼ ,ሻ࣓ሺ/ࢉ ൌ ට࣓/ඥ/ࡵࡱ, and ࣓ࡰ ൌ ඥ࣓ െ  ,. The coefficients (Cn, Dn, Enࣀ

Fn) can be obtained by applying boundary conditions at the base-end and the tip-end, and [An(t0), 
Bn(t0)] can be obtained by applying the initial conditions in every piecewise linear segment. Note that 
the integration intervals in Equation (11) should be relatively smaller than the jumping interval when 
the numerical accuracy is considered. 

2.2. Analysis of Geometric Modes under Boundary Conditions 

The clamped end of the microcantilever (x = 0) is supported by the piezoelectric oscillator, and the 
boundary conditions are: 

(0, ) ( )fw t S tω=  (12) 

(0, ) 0w t′ =  (13) 

( , ) 0w l t′′ =  (14) 

in which S(ωft) is the amplitude of excitation at frequency ߱. The boundary conditions at the tip-end 
involve the superficial force F(w): 

( , ) ( ) 0EIw l t F w′′′ + =  (15) 

where F(w) is defined by the Lennard Jones (LJ) potential force: 
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1 2
8 2( )

180( ) 6( )
A R A RF w
Z w Z w

= − +
− −

, (16) 

in which Z is the distance between AFM base and the sample; R is the radius of the tip, and A1 and A2 
are the Hamaker constants. F(w) is discretized into several piecewise linear segments, Fi(w); and 
accordingly, Fi(w) is expanded at with a slope of ݇כ, and ܨሺݓሻ ൌ ܨ  ݇כሺݓ െ ሻݓ ൌ ܨ  ݇ߞכ. 
Substituting Equation (2) into Equations (12)–(15) yields the boundary conditions of the mode 
functions: 

2
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Let Δ1 = S(ωft) and Δ2 = ܨ݈ଷ/ሺ3ܫܧሻ. The boundary conditions can be rewritten: 
*(0, ) 0, (0, ) 0, ( , ) 0, ( , ) 0it t l t EI l t kξ ξ ξ ξ ξ′ ′′ ′′′= = = + =  (21) 

1 1 1 1(0) 1, (0) 0, ( ) 0, ( ) 0g g g l g l′′′′ ′′= = = =  (22)

2 2 2 2 2 0(0) 0, (0) 0, ( ) 0, ( ) 0ig g g l EI g l F′′′′ ′′= = = Δ + =  (23)

The polynomials of g1 and g2 that satisfy Equations (22) and (23) are obtained by: 

1( ) 1g x =  (24) 

2 3 3
2 ( ) (3 ) /(2 )g x l x x l= −  (25) 

Applying Equations (4) and (10) to Equation (21) yields Cn = −En and Dn = −Fn; the eigenvalues βn 
can be numerically determined by solving: 

3 *[1 cos cosh ] [sin cos sinh ] 0n n n i n n n nEI l l k l coh l l lβ β β β β β β+ + − =  (26) 

This equation describes a clamped-free condition when ߚܫଷ ب ݇כ, and a clamped-pinned conditions 
when ߚܫܧଷ ا ݇כ. The eigenvalue βn, depending on ݇כ, vary among the above piecewise linear 
segments. Moreover, the orthogonality conditions in this modal analysis can be modified from the 
author’s earlier study [20]: 

0
( ) ( )d 0

l

m nm x x xΦ Φ =∫  (27) 

*

0
( ) ( ) ( ) ( ) ( ) d 0

l

m n m nEI x x x l k x x xδ′′ ′′⎡ ⎤Φ Φ − − Φ Φ =⎣ ⎦∫  (28) 
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2.3. Continuities at Interfaces between Adjacent Segments 

When the tip of the microcantilever oscillates from one segment to another one, the displacement 
and velocity conditions in the former segment are regarded as the initial conditions in the new 
segment. The orthogonality conditions derived in Equations (27) and (28) are used to transform the 
dynamics from the previous modal basis to the new modal basis. At the interchange time t0, the initial 
conditions w0(x,t0) and ݓሶ ሺݔ,  ሻ those were obtained from previous segment are expanded in newݐ
modal basis: 

2

0 0 0 0
1 1

( , ) ( ) ( ) ( ) ( )n n i i
n i

w x t x T t t g x
∞

= =

= Φ + Δ∑ ∑  (29) 

2

0 0 0 0
1 1

( , ) ( ) ( ) ( ) ( )n n i i
n i

w x t x T t t g x
∞

= =

= Φ + Δ∑ ∑  (30) 

Applying Equations (27) and (28) to Equations (29) and (30) yields the time coefficients at the 
initial time t0 of the interchange: 

2

0 0 0 00 0
1

( ) [ ( , ) ( ) ( )] ( )d ( ) ( )d
l l

n i i n n n
i

T t w x t x g t x x x x x
=

= − Δ Φ Φ Φ∑∫ ∫  (31) 

2
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1
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l l
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i
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=

= − Δ Φ Φ Φ∑∫ ∫  (32) 

2.4. Dynamic Solutions under Sinusoidal Oscillation 

Equations (8) and (9) have exact solutions when the piezoelectric oscillator of AFM base is driven 
by a certain sinusoidal amplitude, S(ωft) = Amsin(ωft), in which Am is the amplitude and ωf is the 
frequency. The applied forces p(t)Qn are set zero. Since gi

W = 0, ܩ,כ ൌ 0, Δ1 = Amsin(ωft) yields ∆ሷ ଵൌ െܣ߱ଶ sinሺ߱ݐሻ, and Δ2 = ܨ݈ଷ/ሺ3ܫܧሻ yields ∆ሷ ଶൌ 0. Rather, Equation (9) is simplified by:  
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2 [(1 )cos 2 sin ]
,

[(1 ) (2 ) ]

m n f n f n f
n

n n n

m n n f n f n f

n n n

A G t t
A w t

A G t t

ω β ω ςβ ω
ω β ςβ

ς ω ω β ω ςβ ω
ω β ςβ

− −
= −

− +

− +
−

− +

 (35) 



Sensors 2012, 12  
 

 

6673

3 2
1, 0 00

2 2 2 2

2 2
1, 0 0

2 2 2 2

[(1 )sin 2 cos ]( )
[(1 ) (2 ) ]

2 [ (1 )cos 2 sin ]
.

[(1 ) (2 ) ]

m n f n f n fn n
n

Dn Dn n n n

m n n f n f n f

Dn n n n

A G t tw t AB
w

A G t t
w

ω β ω ςβ ωςω
ω ω β ςβ

ς ω ω β ω ςβ ω
ω β ςβ

− ++= −
− +

− − +
−

− +

 (36) 

Applying the orthogonality conditions to gi(x) yields the coefficient functions: 

, 0 0
( ) ( )d ( ) ( )d

l l

i n i n n nG g x x x x x x= Φ Φ Φ∫ ∫ . (37) 

Coefficients G1,n and G2,n can be exactly obtained as: 
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in which the norm satisfies:  

[ ] 2 2

0

2 2 2 2

( ) ( ) d cosh ( )(sinh 2sin ) cos

( )(sin 2sinh ) 2 (sin sinh ) 2 /(2 )

l
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x x x l C D l l l

C D l l C D l C l

β β β β
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⎡Φ Φ = + − +⎣

⎤× − − + − + ⎦

∫  (40) 

Substituting Equations (34), (38), and (39) into Equations (2), (4), and (5) yields the exact solutions 
for every segment. 

2.5. Jump Mechanism 

Figure 2(a,b) shows force-displacement relations of the restoring force of the microcantilever and 
the LJ potential force. The LJ potential curve is plotted upside-down and with the restoring force curve 
of the microcantilever, that is modified from Ashhab et al. [23]. The points where these two curves 
cross represent the equilibrium positions of the tip. Accordingly, the LJ potential curve that is related 
to a restoring force curve of a stiff microcantilever is compared with that related to a restoring force 
curve of a soft microcantilever in Figure 2(c,d). The stiff microcantilever is associated with one cross 
point when AFM base moves toward sample. However, the soft microcantilever case exhibits one, 
two, or three cross points. 
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Figure 2. (a) Force-displacement relationship for microcantilever. (b) Force-displacement 
relationship for the LJ potential curve. (c) For a stiff microcantilever, cases of single cross 
point are shown. (d) For the soft microcantilever, cases of one, two, and three cross points 
are shown.  

 
 
In Figure 3, the cross points A and C are stable points, and the cross point B is a saddle point. When 

a small ξ(l,t) disturbs the tip to the right of Point B, the restoring force, which exceeds the attracting 
force, allows the tip to move upward and then to oscillate around Point A. When ξ(l,t) disturbs the tip 
to the left of Point B, the attracting force causes the tip to move downward and then to oscillate around 
Point C. As a result, the tip of the soft microcantilever oscillates naturally around its equilibrium 
position. No jump occurs in this free vibration. 

Figure 3. Schematics of the three equilibrium points for soft stiffness microcantilever. 
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In Figure 4, as the AFM base approached the sample that Δ1(t) increased, the critical positions were 
utilized to determine where the tip-jump began and ended. Once, the line of the restoring force became 
a tangent to the potential curve. Points A and B in Figure 3 degenerated to Point D, and Point C in 
Figure 3 was replaced by Point E. Then AFM base continued to move toward the sample, and the 
unbalanced attractive force allowed the tip to jump from Point D to Point E. Then the released 
attractive energy caused the tip oscillate around Point E in Region III. Next, when AFM base was 
retracted, the unbalanced restoring force caused the tip to jump from Points F to G and then to oscillate 
in Region I. Figure 4 is easy to be understood since it bases on force equilibrium not on the numerical 
results when it is compared with other method. 

Figure 4. Schematics of tip-jump mechanism. When the microcantilever restoring force 
curve meets the tangent line at Point D (or F), a small disturbance may move the 
microcantilever from Point D (or F) to Point E (or G).  

 
 
To estimate the displacements and the velocities of the microcantilever after jump occurred, a 

model was developed by using the conservation of energy. The tip-jump from Point D to Point E was 
considered as an example, and that from Point F to Point G was similar. The tip-jump was assumed to 
occurred immediately after leaving Point D or F, and the tip-jump concerned only on the static 
attractive deflection term Δଶாሺݐሻ, the concept was modified from [24]. Before jump, the velocity of the 
microcantilever is: 

. (41) 

After jump, the velocity of the microcantilever is: 
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Finally, the total potential energy equals the kinetic energy ΔEk = ΔU. The unknown Δሶ ଶா, could be 
obtained numerically. Accordingly, wE(x) and ݓሶ ாሺݔሻ are the initial conditions for the next segment of 
oscillation in Region III.  

3. Numerical Evaluation and Discussion 

3.1. Variations of Eigenvalues and Mode Shape Functions 

The eigenvalues of the microcantilever with respect to the tip-sample distance were obtained 
numerically by using Equation (26). Figure 5 displays the first eigenvalues sharply decreasing from 
right to left in Region I and remaining at zero in Region II. Then the first eigenvalue rises from right to 
left and then remains constant in Region III. The region in which first eigenvalue is zero is the area of 
disequilibrium where the jump occurs. The mode shape functions were obtained using Equation (10). 
Figure 6 plots the first mode shape functions for five tip-sample distances (Z-w) , denoted ‘a, b,…,d’, 
corresponding to the positions ‘a, b,…,d’ in Figure 5. As (Z-w) decreases, the mode shape function 
changes from a cantilever-type ‘a,’ through an unbalance ‘c,’ to a clamped-pinned beam-type ‘d.’ The 
above result indicates a significant characteristic of AFM. 

Figure 5. Relationship between first three eigenvalues and tip-sample distance. 

 

Figure 6. First mode shape functions for various tip-sample distances in Figure 5. 
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3.2. Vibration with Initial Tip Disturbance 

When the AFM base was located at a particular elevation, the microcantilever bent and the tip 
moved to the equilibrium point (Point A or C in Figure 3). Once the microcantilever underwent a 
minor disturbance, a free vibration occurred and the tip oscillated around its equilibrium point until the 
energy was dissipated.  

In the following numerical discussion, 30 piecewise linear segments were considered within a 
certain region (11 nm) from the sample to AFM base. Note that the interval in each piecewise segment 
is setup to be around 1/3 times small than the jumping interval to ensure the simulation accuracy. In 
this case, the base was arbitrarily set up at Δ1 = 8.084 nm, and the equilibrium at Points A and C were 
obtained at 7.2 and 1.935 nm. Figure 7 presents phase portraits of free vibrations under various initial 
conditions. The numerical analysis considered the first three modes. IC1 or IC2 represents an initial 
disturbance of displacement and velocity of the tip. In these two cases, motion begins in Region II, and 
the tip travels into Region I or Region III, oscillates around the equilibrium points. 

Figure 7. Phase portrait of tip under free vibration with two tip initial conditions and 
various damping ratios.  
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Unlike damped driven spring systems that have been described elsewhere, this system exhibited a 
jump region that separated AFM dynamics into two oscillation systems. One oscillation system was in 
Region I and exhibited noncontact oscillation, and its behavior was simple. The other oscillation 
system was in Region III and involved noncontact and contact states; the oscillating behavior in 
contact state was complicated and was the most likely cause of bifurcation and chaos. 

3.3. Forced Vibration with Various Driven Amplitudes 

When the AFM base was set at a certain height elevation, two forced vibrations were driven at two 
equilibrium points with various amplitudes. In the cases considered herein, area Aab was set to exceed 
area Abc, as shown in Figure 3, since the tip always approached the sample from far away. 
Accordingly, the oscillation around A was more stable than that oscillation around C. Figures 8 and 9 
the tip phase portraits under sinusoidal forced excitation with various amplitudes, Am = 0.05, 0.09, 0.2, 
and 0.4 nm. The first 20 modes were considered in the simulation. Two excitation frequencies were set 
to values determined by the first eigenvalues when the tip was located at Points A (Z-w = 7.2 nm) and 
Point C (Z-w = 1.935 nm). They were ߱ = 6.5575 × 104 rad s−1 in Figure 8 and ߱ = 2.12447 × 105 
rad s−1 in Figure 9. The orbit a’s (red) and the orbit c’s (blue) represent oscillations triggered from A 
and C, respectively; the steady state orbits were acquired to demonstrate the final periodicity.  

Figure 8. Tip phase portraits with various driving amplitudes at ߱ = 6.5575 × 104 rad s−1. 
The orbits marked by ‘a’ (red) are driven at Point A (Z-w = 7.2 nm), and the orbits marked 
by ‘c’ (blue) are driven at Point C (Z-w = 1.935 nm) (a) Am = 0.05 nm. (b) Am = 0.09 nm. 
(c) Am = 0.2 nm. (d) Am = 0.4 nm.  
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doublings seems to depend on the amplitudes of oscillation and the sample-contact condition. In  
Figure 8(c) with Am = 0.2 nm, the orbit c initially circles around C; then snaps to Region I, and finally 
circles around A. The tip does not return to Region III because its amplitude is too low to leave in 
Region I. In Figure 8(d), with the excitation amplitude Am = 0.4 nm, both orbits oscillate through three 
regions and exhibit hysteresis, and 14 period doublings occur. Unlike a damped driven spring system, 
which exhibits contact and noncontact behaviors, AFM oscillates in Region I, jumps in Region II, and 
exhibits either noncontact or contact oscillation in Region III. The results also indicate bistability when 
the amplitude is sufficiently large, period doubling when the vibrating tip is shown in Region III, and 
snapping when the amplitude is too small to exhibit hysteresis.  

The excitation frequency was set to ߱ in Figure 9, where ߱ was the natural frequency when the 
tip was located at Point C. The excitation amplitude was set to Am = 0.05, 0.09, 0.2, and 0.4 nm in 
Figure 9(a–d), respectively. In Figure 9(a), the amplitude of oscillation of the orbit a (red) is less than 
that in Figure 8(a), but that of the orbit c (blue) is greater. In Figure 9(b–d), applying the same 
excitation frequency but different excitation amplitudes yields the orbit c that initially oscillates in 
Region III; jumps to Region I, and then remains in Region I, oscillating with small amplitude. The 
orbits marked by ‘a’ remain stable in Region I. Hence, the excitation frequency ߱, obtained from 
Region III, affects large oscillation amplitude in Region III, causing it to snap into Region I. The 
excitation frequency ߱ produces extremely stable oscillation in Region I.  

Figure 9. Phase portraits with various driving amplitudes at ߱ = 2.12447 × 105 rad s−1. 
The orbits marked by ‘a’ (red) are driven at Point A (Z-w = 7.2 nm), and the orbits marked 
by ‘c’ (blue) are driven at Point C (Z-w = 1.935 nm). (a) Am = 0.05 nm. (b) Am = 0.09 nm. 
(c) Am = 0.2 nm. (d) Am = 0.4 nm. 
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Figure 10(a–d) shows time histories that correspond to the cases in Figures 8(c), 8(d), 9(b), and 
9(d), respectively. In Figure 10(a,b), the time histories marked by ‘a’ (red) are associated with the 
oscillation that is driven at initial Point A with ߱, and the time histories marked by ‘c’ (blue) are 
associated with the oscillation that is driven at initial Point C with ߱. All time histories are run from 
transient states to steady states, and jumps are explicitly indicated. The orbit c in Figure 10(a) presents 
the snapping phenomenon. In Figure 10(b), the orbit a and the orbit c exhibit hysteresis. Figure 10(c,d) 
displays the time histories that are associated with the cases in Figure 9(b,d). Clearly, the orbit c’s 
finally converge to the orbit a’s, so their phase portraits overlap, as displayed in Figure 9(b,d). These 
figures also reveal that the time histories have smaller amplitudes and are relatively stable in Region I 
since they are not driven at their dominate frequency. The tip might jump to the other region, while the 
driving amplitudes are sufficiently large enough to pass Region II. As a result, the acquired kinetic 
energy exceeded the superficial potential energy is an important criterion for snapping and intermittency. 

Figure 10. Time histories associated with phase portraits in Figures 8(c), 8(d), 9(b), and 
9(d). (a) Am = 0.2 nm. (b) Am = 0.4 nm. (c) Am = 0.09 nm. (d) Am = 0.4 nm. 
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Figure 11. Phase portraits for various tip-sample distances. (a) Schematics of 
microcantilever levels and tip-sample distances. (b) Z-w = 8.019 nm. (c) Z-w = 6.694 nm. 
(d) Z-w = 5.368 nm. (e) Z-w = 4.706 nm. (f) Z-w = 2.010 nm. 
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Figure 12(a), intermittency is evident in the time history a, which ends in chaos. In Figure 12(b), the 
time history a snaps to Region III, and the time history c remains stable in Region I. In Figure 12(c,d), 
the orbit c’s exhibit intermittency and then become chaotic, but the orbit a’s remain periodic and 
exhibit hysteresis. 

Figure 12. Time histories for various tip-sample distances. (a) Z − w = 6.694 nm.  
(b) Z − w = 5.368 nm. (c) Z − w = 4.706 nm. (d) 2.010 nm. 
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This investigation noted that characteristics of the microcantilever that varies with the tip-sample 
distance is a significant requirement in the numerical simulations. This requirement ensures that the 
eigenvalue of the microcantilever transitions continuously from one associated with the oscillation 
mode to one associated with the jump mode. Three regions are defined to separate the tip motion 
range. Region I represents the tip motion before jump, Region II is the region where jump occurred 
and the first eigenvalue is vanished, and Region III is the interval between jump and contact. This 
achievement sets the model herein apart from other damped-spring models. This paper reveals that the 
elevation of the base of AFM can markedly influences the static characteristics of the microcantilever, 
including its natural frequency and shape functions. The results of forced oscillation show that a jump 
occurred if and only if the acquired kinetic energy exceeds the superficial potential energy. The results 
show large excitation amplitudes lead to the acquisition of much kinetic energy. A change in the 
excitation frequency can increase/reduce its kinetic energy, and to an extent that depends on whether 
the tip is where the resonant frequency of microcantilever is close to the excitation frequency.  

The simulation results reveal that snapping occurs following a jump when the kinetic energy 
obtained in the region after jump region is too low to enable to jump back. Bistability is occurred by 
periodic jumps when the kinetic energy obtained in Region I and Region III suffices to maintain 
periodic jumps. Bistability with contacts may result in hysteresis, and snapping with contacts may lead 
intermittency or chaos. Moreover, the results indicate that the excitation frequency obtained in Region 
III can increase the sensitivity of measurement relative to that obtained in Region I. That also can 
eliminate the uncertainties in AFM detection and can avoid the tip to contacting or destroying the 
sample.  
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