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Abstract: The paper presents an indoor navigation solubyprombining physical motion
recognition with wireless positioningwenty-sevensimplefeatures are extracted from the
built-in accelerometers and magnetometers smartphoneEight common motiorstates
usedduring indoor navigatiorare detected by heast SquarSupport Vector Machines
(LS-SVM) classification algorithme.g., static, standing with hand swinging, normalking
while holding the phone in hand, normalalking with hand swinging, fast walking,
U-turning, going up stairs, and going down stalitse results indicate that the motistates
arerecognizedwith anaccuracyof up to 95.53%or thetest casesmployed in this study
A motion recognition assied wireless positioningpproachis applied to determine
the position of a mobile usefField tess showa 1.22 m mean error iAStatic Testo and
a3.53 m infiStopGo Tesso.

Keywords: motion recognition; LSSVM; indoor navigation positioning; wirelss;
smartphone

1. Introduction

Nowadays, with the explosive growth of the capabilities in handheld devices, various components
are embedded intgmartphong, such as GPS, WLAN (a.k.a. \M), Bluetooth, accelerometgr
magnetometey camers, etc. Becauseof their locating capabilities which arequickly becoming
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one of the standard features in mobile devices, more and more people are getting used to the
locationenabled life. Employing Global Navigation Satellites Syst@@NSS), the applications in the
fismard devicescan greatly enrich the end users' outdoor activities. However, given the nature of
GNSS design, they are clearly nuatell-suited for applications in urban canyons and indoor
environmentsSatellitebased positioning technologies continaestruggle indoorsdue to well known

issues such as the weak signal or nlime-of-sight (NLOS) conditions between the mobile user and
satellites.

To address positioning and navigation in GN&fgraded or denied agaarious technologies are
broadly esearchefll]. Most research topics focus on the hggmsitivity GNSJ2], optical navigation
systemg3,4], ultrasound solutiong], WLAN [6], Bluetooth[7,8], ZigBee[9], Ultra Wide Band10],
cellular networks[2], RFID [11], magnetic localizatiof12], inertial measurement unifd3,14],
signals of opportunity15], biosensof16,17], and also hybrid solutio48i 21].

Benefiing from the existing infrastructure, RFased technologse such as WLAN, Bluetooth,
cellular networkandRFID, are definitey one ofhighestpotential alternatives. RADARS] wasone of
the first WLAN-based positioning systento compute the mobile deviée location based on radio
signal strength (RSS) from many access points (APs). Skylwoeless $ a system that depends on
information about the A8 coordinates in a databasedrder to predict locatiof22]. Ekahau[23]
provides an easy ambsteffective solution for locating people, assets, inventory and other objects
usng Wi-Fi. The Active Badgg24] system uses ceilingmounted infrared sensor detectors to detect
signals from a minile active badge. Place L§P5] has even more ambitious goalsseeking to create
a comprehensive location database that uses-ézgunodiy Wi-Fi, GSM and Bluetooth devices as
global beacos.

Meanwhile, human physical actiyitecognition using MEMS sensors has been extensively applied
for health monitoring, emergency services, athletimiing, navigation,etc. [26,27]. Since motion
sensors such as accelerometgggoscopesnd magnetoners are integrated intosmartphonethey
bring the opportunity to assist navigation with knowledge about the motion of a ped@&2&8h

Sincemobile devices arebecoming smarter and smarter nowadays, the smartphone already contains
the potential ér indoor navigation and positioninvgthin the existing infrastructurg4.9]. This paper
presents an indoor pedestrian navigation solution relying on magoagnition in an office
environmenutilizing the existing/VLAN infrastructure

2. Motivation

Rdated research indicatehat utilizing opportunstic signals of e.g, WLAN, is an efficient
locating alternative in GR8enied environmest However, in order to minimize a smartphone
battery drain, the WLAN scanning interval is always limited. Fotaimse, most of the Nokia mobile
phones refresh the scanned WLAN informatimoximately every § 10 s. The default scanning
interval of most Android devices is 1& On the other handpther builtin sensors such as
accelerometers are always turnediamgrderthat thephysical orientation afhe smartphones always
known to the systenThesesensors provide an alternative for positioning while WLAN positioning is
unavailable.
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During the gaps where no wireless signal is updated, the most essential € meavigation are
the movement speed and orientat{or., heading) As long as they ardeterminedit is possible to
estimate the position of the user every seassidg deaegreckoning Therefore, this papgresents a
method to uséhe builtin tri-axial accelerometer and magnetometer on a smartphone to recognize the
user's movemenparametersThe proposed solution detects the physical movements using simple
acceleration and orientation features throughout the navigation process. With the recogtiaes,
it is possible toeasonablyestimate thespeed angosition over the periodetweenwirelessscans

Human motion has been widely studied for deca@speciallyin recent years usingomputer
vision technology Poppegives an overview of igion based human motion analysis [30]. Aside
from visionbased solutions, sensbased approachesre also extensivelyadopted inbiomedical
systems[31i 34]. Most of the previous motion recognition related research assumed that the
Micro-ElectroMechanicalSystemgMEMS) inertial sensorsisedare fixed on a human bod$5i 38|
(e.g, in a pocket, clipped to a belt or on a lanyard) #mak an inference model can be trained
according to a handful of body positions. Some of them use phones as a sensorttaatiiiges for
off-line analysis purposs [39]. Campared to the daily activitiesuch asfSittingd, i Wa |l ki ng o
fiRunning, AJumping, the motions of a pedestriamho is using a smartphone for navigation in
threedimensional indoor structureme far moe complicated due to the arbitrary gestures while a
phone is kept in handtHence thigpaperprimarily focuses on thpossiblemotionstatesof a user with a
phone in hand while navigatingrReferences [28] and [2%ave briefly presented the preliminary
reaults of our previous research in this topic.

3. Motion States

Unlike the solution with senseffixed on the body,a smartphone in hand has more degrees of
freedom (DOFMuring the navigation process. Even if we only consider thewehseethe user holds
the phone in hand, the motion behaviour is still complicated. For this reasatefinedeight most
common motiorstatesduring pedestrian navigatiin this paperin order to classify the motion states,
twenty-sevenfeatures are investigated in this tsec.

3.1.Motion Definition
The motionstatesas defined in Table &ye grouped into four series as follow

Table 1. Motion gatedefinition.

State Series Definition
ST S A state where a user keeps a phone in hand without any movement.
SS S Uselts location does not change but the phone is in a swinging
WS W Walking with a small arm swinging
WH W Using the navigation application on the handset while walking
WF W Fast walking with aignificantly arm swinging
uT T Making a Uturn.
us \% Goingup stairs
DS \% Going down stairs
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(1) S-series motiorstates(Figure 1)refer to the stationary behavior during a navgaprocess.
ST is astatewhere a user keeps a phone in hand without any movement. In contrast, SS is a
category of the movement wharseis location does not chandaut the phonesimoving in a
swinging.

Figure 1. S-serieqleft and middle: ST, right: S

(2) W-series is relevant to walkinghfter observing the walking behaviour of the user when
navigating, three types of walking nmt statehave beemlefined. As shown in the left image
of Figure2, WH represents the moti@tatewhere the user is using the navigation application
on the handset while walking. The user often kekissor hereyes on the screen af
smartphonan this state. WS stands for the normal walking behavieuren the user is not
using the navigation application but is holding the smartphone in his or herAmtitecenter
image ofFigure 2 indicates,a small arm swingng motionexists when the user is watj in
normal speed, whil¢he right image of Figure 2 showise WF state, which represenésfast
walking behaviour with significalyt armswinging.

Figure 2. W-serieg(left: WH, middle: WS, and right: WE
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(3) T-series igelated toturning motions UT representsso-called Uturning whichis a spot turn
without anyhorizontaldisplacementAs shown inFigure3, a UT motionresults in eheading

changeof 18(° after turning.

Figure 3. T-seriegUT).
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(4) V-series concesamotions in the vertical dimensionn Figure 4, US and DS are going
up/down the stairgespectively

Figure 4. V-serieqleft: US and right: D
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3.2 FeatureDefinition

When usingtri-axis accelerometer senspthe sensor orientation determines the local coordinate
system of each (x, yz) reading. Most previous research work motion recognition has used
body-worn accelerometer sensorg,, sensorattachedo the bodyin a constrained orientatiokiVhen
smartphonsg are used as portable sensorsgptientation of the sensors is natdwna priori. Figure5
gives a typical examplef theaccelerometer readingdter filteringfrom asmartphoneavhile different

motion states are performed
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Figure 5. Accelerometer readings

To avoid this orientation problem, the magnitude of the accelenet er si gnal (se
line of Figure 5) can be used. This solution, however, will cause the -tireetional acceleration
information to be lost. Therefore, we use an estimated gravity vector as a reference to compute the
dynamics of the ssmat phoneébés orientation. The gravity ve
static status (see the left image of Figure 1) in a calibration phasel(®s). When the estimated
gravity vector is known, it enables the estimatiorihgfvertical conponent and the magnitude of the
horizontalc o mponent of a. userds motion [ 39

The gravity vector is denoted:as

(1)

whereg,, gy, g; are the meanmaluesof the gravity vectoalongthe respective axeserthe calibration
phase.
The acceleratiomector can be expressed as

(2)

whereay, ay, a; are the accelerometer readirasngthe respective axes at the given time.

The projection ofA (denoted asd,) onto the gravity vectoG can be calculated as the vertical
component inside oA. Thevertical component oA can be calculated as the projectionfabnto the
gravity vectorG:

3)

Then the horizontal componeft can be computed using vector subtraction:

(4)



