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Abstract: The paper presents an indoor navigation solution by combining physical motion 

recognition with wireless positioning. Twenty-seven simple features are extracted from the 

built-in accelerometers and magnetometers in a smartphone. Eight common motion states 

used during indoor navigation are detected by a Least Square-Support Vector Machines 

(LS-SVM) classification algorithm, e.g., static, standing with hand swinging, normal walking 

while holding the phone in hand, normal walking with hand swinging, fast walking,  

U-turning, going up stairs, and going down stairs. The results indicate that the motion states 

are recognized with an accuracy of up to 95.53% for the test cases employed in this study.  

A motion recognition assisted wireless positioning approach is applied to determine  

the position of a mobile user. Field tests show a 1.22 m mean error in ñStatic Testsò and  

a 3.53 m in ñStop-Go Testsò. 

Keywords: motion recognition; LS-SVM; indoor navigation; positioning; wireless; 

smartphone 

 

1. Introduction  

Nowadays, with the explosive growth of the capabilities in handheld devices, various components 

are embedded into smartphones, such as GPS, WLAN (a.k.a. Wi-Fi), Bluetooth, accelerometers, 

magnetometers, cameras, etc. Because of their locating capabilities, which are quickly becoming  
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one of the standard features in mobile devices, more and more people are getting used to the  

location-enabled life. Employing Global Navigation Satellites Systems (GNSS), the applications in the 

ñsmartò devices can greatly enrich the end users' outdoor activities. However, given the nature of 

GNSS design, they are clearly not well-suited for applications in urban canyons and indoor 

environments. Satellite-based positioning technologies continue to struggle indoors, due to well known 

issues, such as the weak signal or non-line-of-sight (NLOS) conditions between the mobile user and 

satellites.  

To address positioning and navigation in GNSS-degraded or denied areas, various technologies are 

broadly researched [1]. Most research topics focus on the high-sensitivity GNSS [2], optical navigation 

systems [3,4], ultrasound solutions [5], WLAN [6], Bluetooth [7,8], ZigBee [9], Ultra Wide Band [10], 

cellular networks [2], RFID [11], magnetic localization [12], inertial measurement units [13,14], 

signals of opportunity [15], biosensor [16,17], and also hybrid solutions [18ï21]. 

Benefiting from the existing infrastructure, RF-based technologies, such as WLAN, Bluetooth, 

cellular network, and RFID, are definitely one of highest potential alternatives. RADAR [6] was one of 

the first WLAN-based positioning systems to compute the mobile deviceôs location based on radio 

signal strength (RSS) from many access points (APs). Skyhook wireless is a system that depends on 

information about the APôs coordinates in a database in order to predict location [22]. Ekahau [23] 

provides an easy and cost-effective solution for locating people, assets, inventory and other objects 

using Wi-Fi. The Active Badge [24] system uses ceiling-mounted infrared sensor detectors to detect 

signals from a mobile active badge. Place Lab [25] has even more ambitious goals as seeking to create 

a comprehensive location database that uses fixed-commodity Wi-Fi, GSM and Bluetooth devices as 

global beacons.  

Meanwhile, human physical activity recognition using MEMS sensors has been extensively applied 

for health monitoring, emergency services, athletic training, navigation, etc. [26,27]. Since motion 

sensors such as accelerometers, gyroscopes and magnetometers are integrated into a smartphone, they 

bring the opportunity to assist navigation with knowledge about the motion of a pedestrian [28,29].  

Since mobile devices are becoming smarter and smarter nowadays, the smartphone already contains 

the potential for indoor navigation and positioning within the existing infrastructures [19]. This paper 

presents an indoor pedestrian navigation solution relying on motion recognition in an office 

environment utilizing the existing WLAN infrastructure.  

2. Motivation  

Related research indicates that utilizing opportunistic signals of, e.g., WLAN, is an efficient 

locating alternative in GPS-denied environments. However, in order to minimize a smartphoneôs 

battery drain, the WLAN scanning interval is always limited. For instance, most of the Nokia mobile 

phones refresh the scanned WLAN information proximately every 8ï10 s. The default scanning 

interval of most Android devices is 15 s. On the other hand, other built-in sensors such as 

accelerometers are always turned on, in order that the physical orientation of the smartphone is always 

known to the system. These sensors provide an alternative for positioning while WLAN positioning is 

unavailable.  
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During the gaps where no wireless signal is updated, the most essential elements for navigation are 

the movement speed and orientation (i.e., heading). As long as they are determined, it is possible to 

estimate the position of the user every second using dead-reckoning. Therefore, this paper presents a 

method to use the built-in tri-axial accelerometer and magnetometer on a smartphone to recognize the 

user's movement parameters. The proposed solution detects the physical movements using simple 

acceleration and orientation features throughout the navigation process. With the recognized motions, 

it is possible to reasonably estimate the speed and position over the period between wireless scans. 

Human motion has been widely studied for decades, especially in recent years using computer 

vision technology. Poppe gives an overview of vision based human motion analysis in [30]. Aside 

from vision-based solutions, sensor-based approaches are also extensively adopted in biomedical 

systems [31ï34]. Most of the previous motion recognition related research assumed that the  

Micro-Electro-Mechanical Systems (MEMS) inertial sensors used are fixed on a human body [35ï38] 

(e.g., in a pocket, clipped to a belt or on a lanyard) and that an inference model can be trained 

according to a handful of body positions. Some of them use phones as a sensor to collect activities for 

off-line analysis purposes [39]. Compared to the daily activities, such as ñSittingò, ñWalkingò, 

ñRunningò, ñJumpingò, the motions of a pedestrian who is using a smartphone for navigation in  

three-dimensional indoor structures are far more complicated due to the arbitrary gestures while a 

phone is kept in hand. Hence this paper primarily focuses on the possible motion states of a user with a 

phone in hand while navigating. References [28] and [29] have briefly presented the preliminary 

results of our previous research in this topic.  

3. Motion States 

Unlike the solution with sensors fixed on the body, a smartphone in hand has more degrees of 

freedom (DOF) during the navigation process. Even if we only consider the case where the user holds 

the phone in hand, the motion behaviour is still complicated. For this reason, we defined eight most 

common motion states during pedestrian navigation in this paper. In order to classify the motion states, 

twenty-seven features are investigated in this section.  

3.1. Motion Definition 

The motion states, as defined in Table 1, are grouped into four series as follows: 

Table 1. Motion state definition. 

State Series Definition 

ST S A state where a user keeps a phone in hand without any movement. 

SS S Userôs location does not change but the phone is in a swinging. 

WS W Walking with a small arm swinging. 

WH W Using the navigation application on the handset while walking. 

WF W Fast walking with a significantly arm swinging. 

UT  T Making a U-turn. 

US V Going up stairs. 

DS V Going down stairs. 
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(1) S-series motion states (Figure 1) refer to the stationary behavior during a navigation process. 

ST is a state where a user keeps a phone in hand without any movement. In contrast, SS is a 

category of the movement where userôs location does not change, but the phone is moving in a 

swinging.  

Figure 1. S-series (left and middle: ST, right: SS).  

 

 

(2) W-series is relevant to walking. After observing the walking behaviour of the user when 

navigating, three types of walking motion states have been defined. As shown in the left image 

of Figure 2, WH represents the motion state where the user is using the navigation application 

on the handset while walking. The user often keeps his or her eyes on the screen of a 

smartphone in this state. WS stands for the normal walking behaviour, when the user is not 

using the navigation application but is holding the smartphone in his or her hand. As the center 

image of Figure 2 indicates, a small arm swinging motion exists when the user is walking in 

normal speed, while the right image of Figure 2 shows the WF state, which represents a fast 

walking behaviour with significantly arm swinging. 

Figure 2. W-series (left: WH, middle: WS, and right: WF). 
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(3) T-series is related to turning motions. UT represents so-called U-turning, which is a spot turn 

without any horizontal displacement. As shown in Figure 3, a UT motion results in a heading 

change of 180° after turning. 

Figure 3. T-series (UT). 

 

 

(4) V-series concerns motions in the vertical dimension. In Figure 4, US and DS are going 

up/down the stairs, respectively.  

Figure 4. V-series (left: US and right: DS). 

 

3.2. Feature Definition 

When using tri-axis accelerometer sensors, the sensor orientation determines the local coordinate 

system of each (x, y, z) reading. Most previous research work on motion recognition has used  

body-worn accelerometer sensors, i.e., sensors attached to the body in a constrained orientation. When 

smartphones are used as portable sensors, the orientation of the sensors is not known a priori. Figure 5 

gives a typical example of the accelerometer readings after filtering from a smartphone while different 

motion states are performed. 
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Figure 5. Accelerometer readings. 

 

 

To avoid this orientation problem, the magnitude of the accelerometer signal (see the óAccFilterô 

line of Figure 5) can be used. This solution, however, will cause the three-directional acceleration 

information to be lost. Therefore, we use an estimated gravity vector as a reference to compute the 

dynamics of the smartphoneôs orientation. The gravity vector is trained with the data obtained in the 

static status (see the left image of Figure 1) in a calibration phase (e.g., 10 s). When the estimated 

gravity vector is known, it enables the estimation of the vertical component and the magnitude of the 

horizontal component of a userôs motion [39].  

The gravity vector is denoted as:  

       (1) 

where gx, gy, gz are the mean values of the gravity vector along the respective axes over the calibration 

phase.  

The acceleration vector can be expressed as: 

      (2) 

where ax, ay, az are the accelerometer readings along the respective axes at the given time.  

The projection of A (denoted as Ap) onto the gravity vector G can be calculated as the vertical 

component inside of A. The vertical component of A can be calculated as the projection of A onto the 

gravity vector G:  

      (3) 

Then the horizontal component Ah can be computed using vector subtraction: 

       (4) 


