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Abstract: In a biometric authentication system using protected templates, a pseudonymous 
identifier is the part of a protected template that can be directly compared. Each compared 
pair of pseudonymous identifiers results in a decision testing whether both identifiers are 
derived from the same biometric characteristic. Compared to an unprotected system, most 
existing biometric template protection methods cause to a certain extent degradation in 
biometric performance. Fusion is therefore a promising way to enhance the biometric 
performance in template-protected biometric systems. Compared to feature level fusion 
and score level fusion, decision level fusion has not only the least fusion complexity, but 
also the maximum interoperability across different biometric features, template protection 
and recognition algorithms, templates formats, and comparison score rules. However, 
performance improvement via decision level fusion is not obvious. It is influenced by both 
the dependency and the performance gap among the conducted tests for fusion. We investigate 
in this paper several fusion scenarios (multi-sample, multi-instance, multi-sensor,  
multi-algorithm, and their combinations) on the binary decision level, and evaluate their 
biometric performance and fusion efficiency on a multi-sensor fingerprint database with 
71,994 samples. 
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1. Introduction 

To achieve the purpose of biometric template protection, standard encryption mechanism, such as 
DES, AES, …, etc., can be applied to convert the plaintext biometric templates to ciphertexts. 
However in this case, decryption is always required before comparison to tolerate the sample 
acquisition distortion of the fuzzy biometric signals. This demands an additional secure hardware 
environment for decryption and comparison. Moreover, standard encryption mechanisms become 
reversible when the secret key is available to the deciphering entity, such as in the system intrusion or 
insider attack scenarios. Unlike the standard encryption mechanisms which suffer from these drawbacks, 
many biometric template protection mechanisms have been proposed in recent years [1–10] to enhance 
the templates’ security and privacy aspects by enabling renewable protected templates [11] and 
comparison thereof in a securely transformed domain. The security and privacy requirements [11] to 
these biometric template protection solutions are irreversibility (from the protected templates to 
original biometrics characteristics/features) and unlinkability (among diversified protected  
templates). Jain et al. categorized the popular biometric template protection algorithms into four 
approaches [12]—salting (biohashing or random projection [3]), non-invertible transform [4], key 
binding biometric cryptosystem [1,2], and key generating biometric cryptosystem [9–10]. Most 
existing template protection algorithms sacrifice their biometric performance in terms of recognition 
accuracy to achieve a higher security and privacy level. For biohashing and the non-invertible 
transform, diversification parameters (i.e., projection vectors and transformation parameters) is 
insecure to be public [13] and thus have to be kept secret to guarantee the irreversibility and 
unlinkability [11] of the protected templates. Although an algorithm assuming public parameters can 
be secure (i.e., [8]), it usually sacrifices biometric performance. Even in this secret parameters case, the 
performance may degrade because: (1) diversification parameters are random and thus not optimized 
to the input biometric feature and (2) both random projection and non-invertible transform are 
surjective functions and thus reduce the features’ distinguishability especially in the case of short 
feature vectors. For the key binding biometric cryptosystem such as fuzzy commitment [1] and fuzzy 
vault [2], biometric performance is constrained to the feature robustness limited by the error correction 
capability. For the key generating biometric cryptosystem such as the secure sketches [9,10], the 
biometric performance can be constrained by the contradictive interaction between distinguishing 
ability and stability of the generated key due to the quantization essence of secure sketches. In 
addition, biometric template protection algorithms may suffer from the performance degradation due to 
the difficulty in absolute pre-alignment of plain biometric templates (such as in some hand-based 
modalities) while post-alignment can hardly be done in the protected domain.  

On the other hand, the usability of biometric-enabled authentication systems demands well-preserved 
biometric performance from the protected templates compared to their plain counterparts. While 
template protection algorithms themselves are struggling in improving recognition performance, fusion 
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based on multi-biometrics [14] provides another simple-but-effective way to achieve the same goal in 
a practical system. In general, fusion can be performed on four levels [14]: sample, feature, score, and 
decision levels; however, fusion on feature and score levels are difficult to realize for a given template 
protection system since these two levels usually interfere with the protection mechanism and algorithm 
design. Fusion at the sample level is however limited to the case that the original biometric sample 
instead of the derived biometric features (e.g., fingerprint minutiae) are used. We study the decision 
level fusion for protected templates in this paper because decision level fusion is independent of 
template protection algorithms and thus maximally adaptable to different template protection 
algorithms in addition to its high operating efficiency. Four fusion scenarios—multi-sample,  
multi-instance, multi-sensor, and multi-algorithm—and their combinations are tested under different 
sensors by several fingerprint minutiae based template protection algorithms developed in the research 
project TURBINE [15].  

The remaining part of this work is organized as follows: Section 2 presents the concepts of 
pseudonymous identifiers used for biometric template protection and the tested template protection 
algorithms in this work; Section 3 provides background information of this performance evaluation 
work including the tested database, fusion scenarios, and testing settings; Section 4 presents the 
biometric performance testing results under different fusion scenarios; Section 5 gives a brief 
evaluation and analysis over the performance testing results. Section 6 concludes this work. 

2. Fingerprint Minutiae Templates Protection Algorithms under Testing 

2.1. Reference Architecture for Biometric Template Protection 

A reference architecture (shown in Figure 1) was defined in [11], which can be used to analyze a 
biometric template protection mechanism’s components in terms of functionality. In this reference 
architecture, a protected template (a.k.a reversible biometric reference (RBR) in Figure 1) consists of 
two parts—Pseudonymous Identifier (PI) and Auxiliary Data (AD). 

Figure 1. Reference architecture of template protection defined in [11]. 
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A Pseudonymous identifier (PI) derived from biometric features is defined in [11] as “part of a 
renewable biometric reference that represents an individual or data subject within a certain domain by 
means of a protected identity that can be verified by means of a captured biometric sample and the 
auxiliary data (if any)”. The Auxiliary Data (AD) is defined in [11] as “subject-dependent data that is 
part of a renewable biometric reference and may be required to reconstruct pseudonymous identifiers 
during verification or for verification in general”. Simply to say, for a typical biometric template 
protection algorithm, PI is used as an identifier to a subject and for direct comparisons; AD is used for 
PI recoding or new PIs’ reconstruction (i.e., diversification). PI and AD can be separated logically or 
even physically in a practical system. Existing template protection mechanisms can be well mapped 
into this reference architecture (seen in Table D.1 in Annex D of [11]).  

A RBR is required to have enough irreversibility and unlinkability [11] to guarantee the security 
and privacy of the original biometric characteristics/features. The irreversibility and unlinkability 
requirements are strictly imposed on PI which should be deemed as public data stored in a database. 
Depending on the application requirements and template protection algorithms’ devise, AD can be 
public (e.g., fuzzy schemes [1,2,6] and dynamic random projection [8]), semi-public (i.e., publishing 
AD will cause security level degradation, e.g., cancelable biometrics [4], random projection [3], and 
Biotoken scheme [5]), or must be kept secret (e.g., the case using standard encryption keys as AD). 
Since authentication of individuals is based on comparing PIs, decision level fusion is applied on 
individual PI comparison decisions in this work. 

2.2. The Template Protection Algorithms under Testing 

The minutiae feature is a standardized fingerprint feature that is widely adopted by existing 
fingerprint recognition systems. Template protection algorithms developed for minutiae features can 
thus be applied on any existing minutiae template based fingerprint recognition systems. In the 
TUBIRNE project, three fingerprint minutiae based template protection algorithms [6–8] were 
proposed by the project partners which all passed the security and privacy analysis [16] conducted by 
an independent project partner with cryptographic and cryptanalysis expertise. All algorithms were 
intended to meet the biometric performance target FRR ≤ 1% at FAR = 0.1%, which is more  
security-oriented than convenience-oriented, on a sequestered (publicly accessible but limited to  
on-premise use with dissemination prohibited by the Norwegian Data Privacy Agency) fingerprint 
database GUC100 [17]. The three algorithms generate a protected template from a plain ISO  
standard [18] conformed minutiae template each in a different way and result in different data syntax 
and formats for both PI and AD. The basic principle for each of the individual algorithms is briefly 
described as follows.  

Algorithm 1 (Spectral minutiae based fuzzy commitment): its feature extraction was based on [6] 
which uses the spectral minutiae technique to obtain a stable and fixed-length binary vector from a 
fingerprint sample and subsequently performs a fuzzy commitment operation [1] to bind a randomly 
generated secret S with the binary representation which yields AD. The hashed secret S serves as PI. 
The fuzzy commitment scheme instead of the commonly-used fuzzy vault scheme was selected as the 
template protection method in this algorithm because fuzzy commitment can clearly separate the 
feature extraction step from the template protection step. This separation has two merits: first, the 
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feature extraction method [6] can be improved in performance independently without causing too 
much negative impact on security; second, the security analysis [19] and enhancement [20] tasks can 
directly follow the information-theoretical way over the fuzzy commitment scheme working on  
fixed-length binary codes in a feature-agnostic way. Comparatively, fuzzy vault is increasingly 
criticized due to its non-separability in its feature extraction (simply minutiae coordinates) and the 
protection method (secret hiding by chaff points), which makes the linkability attack [21] (same 
minutiae coordinates among diversified templates), the substitution attack [21] (hiding imposter secrets 
as chaff points in the same vault), and also the brute-force attack [22] feasible.  

Algorithm 2 (Minutiae vicinity based distance binarization): it was based on [7] which uses  
N randomly-generated minutiae vicinities (as AD) to measure their distance from a fingerprint vicinity 
and in this way N bits are generated as PI. External security protocols [23] are employed to guarantee 
the confidentiality of AD and thus the security of the template protection scheme as a whole.  

Algorithm 3 (Minutiae vicinity based dynamic random projection): it was based on [8] which uses 
input-dependent random vectors in a random vectors group (thus the whole group can be public as AD 
under security analysis) to project a real-value minutiae vicinity vector constructed from neighboring 
minutiae relationship, which results in a binary sequence as PI. The security achieved by this algorithm 
is dependent on the computational complexity to find the genuine pre-image of a protected template. 

The above-mentioned three developed algorithms in the TURBINE project represent three types of 
ideas for biometric template protection: (1) binary secret binding and release realized by fuzzy 
schemes (Algorithm 1) with binary and fixed-length PI; (2) hybrid (software + hardware) scheme 
(Algorithm 2) with binary and varied-length PI; and (3) irreversible transformation (Algorithm 3) with 
binary and varied-length PI. More information including biometric performance and security analysis 
of these three algorithms can be found in the references given in the above algorithm descriptions and 
the reference [16]. A quick look at their biometric performance can be found at the “without fusion” 
case in Figure 3 and Table 3 in Section 4. 

Note that in the following sections, due to project partners’ request, the above three algorithms are 
anonymously flagged as A1, A2 and A3, i.e., Ai (i = 1, 2, 3) does not necessarily denotes Algorithm i 
(i = 1, 2, 3) in the above. But throughout all the testing results, the three algorithms’ flags Ai (i = 1, 2, 3) 
don’t change. 

3. Decision Level Fusion Settings under Testing 

Due to the challenging quality of the collected fingerprint samples in the GUC100 database, none of 
above-mentioned individual algorithms proposed by TURBINE met the performance target of the 
project. Hence, decision level fusion was proposed as a fallback plan to improve the recognition 
performance which finally achieved the goal. Decision level fusion was considered in this case just 
because the three algorithms have different characteristics and also different score and threshold 
setting mechanisms. It is also highly efficient to implement and configure in performance testing.  

3.1. Rationale for Decision Level Fusion 

Although score-level fusion is preferred in many multi-modality biometrics [24], it was not adopted 
in TURBINE because (1) it is not flexible enough to plug-in future algorithms for testing if their score 
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and threshold settings are different and even incompatible to existing scoring systems (e.g., for fuzzy 
schemes [1,2] using mathematical hashing, only a binary decision thus a binary score can be obtained);  
(2) even score normalization schemes can be used to align the score dynamic range, they will 
inevitably cause information loss compared to raw scores [24]. Decision level fusion, however, does 
not suffer from such inconveniences and therefore was adopted in TURBINE. 

Note that the argument that decision level fusion can improve the biometric performance does not 
always hold but strongly depends on the assumption of independence and marginal performance gap 
among the elements for fusion [25]. For example, using the fusion rule OR will increase the False 
Acceptance Rate (FAR) and at the same time decrease the False Rejection Rate (FRR); and using the 
fusion rule AND will have the opposite effect [this is easier to see from the Equations (1–4) in  
Section 3.3 under the case that the two elements for fusion are independent]. It is not necessary in 
theory that we can always obtain improve biometric performance through decision level fusion. The 
major factor is the performance gap between the two fusion elements. The fusion result could be worse 
than the one resulted from using the stronger element alone if the performance gap is distinct [25]. 
Another factor is the independence between the two elements for fusion–obviously dependency among 
fusion elements will reduce the information difference that can be exploited for performance 
improvement. 

In TURBINE experiments, we observed some performance gaps among sensors and algorithms, but 
not noticeably among samples and instances. Whether these performance gaps will degrade the 
performance improving effort by applying fusion will be investigated in the experimental section. On 
the other hand, we assume there is dependence among the decisions obtained from different samples, 
sensors, and algorithms; and the dependence could even be among different instances from the same 
subject. To which degree such dependence among elements for fusion will degrade the performance 
improving effort by applying fusion will also be investigated. We describe different fusion scenarios 
and testing settings in the following sub-section. 

3.2. GUC100 Database for Testing 

The GUC100 fingerprint database contains fingerprint samples collected in Norway in the  
winter-spring season of 2008. The samples are challenging in quality due to the cold and dry 
Scandinavian weather conditions, even though the collection took place inside a standard office room. 
This database was predominately used for testing purposes in the course of the TURBINE project and 
is also freely available to other researchers provided that testing is conducted at the GUC (Gjøvik 
University College) premises. It is a multi-sensor fingerprint database which had been created for 
independent and in-house performance and interoperability testing of third party algorithms. The 
samples were collected by six different fingerprint sensors, namely the TST BiRD 3, L-1 DFR 2100, 
Cross Match L SCAN 100, Precise 250 MC, Lumidigm V 100 and Sagem MorphoSmart (as shown in 
Figure 2 from left to right). Over several months, fingerprint samples from 12 sessions of all 10 fingers 
from 100 subjects (aged from teens to seniors with both genders balanced) on all six sensors were 
collected. This should result in 72,000 fingerprint images, but in practice only 71,994 valid images 
were recorded finally (the other six images are either from wrong fingers or are duplicates caused by 
software bugs and were thus removed). 
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Figure 2. Left: fingerprint sensors used to collect data for GUC100 (from left to right): 
TST BiRD 3, L-1 DFR 2100, Cross Match L SCAN 100, Precise 250 MC, Lumidigm V 
100 and Sagem MorphoSmart; Right: interface of the data collection program.  

 

3.3. Fusion Scenarios 

Decision level fusion can be done in five scenarios [14]: multi-presentation, multi-sensor,  
multi-instance, multi-algorithm, and multi-modality. In our tests, only one sensor is used for each 
presentation of a finger, so the multi-presentation scenario translates to the multi-sample scenario with 
samples from different sessions. Also note that multi-instance in [14] and in this paper means multiple 
instances of the same type of biometric modality, e.g., different fingers, instead of multiple samples as 
done in [26]. Since only the fingerprint modality is concerned, we test the former four scenarios 
(multi-presentation, multi-sensor, multi-instance, and multi-algorithm) to improve the recognition 
performance of the pseudonymous identifier based protected fingerprint templates. In our experiments, 
there were in total eight fusion scenarios which were divided in three fusion layers tests as follows: 

Single-layer fusion 
(1) Multi-sample fusion (i.e., multi-presentation);  
(2) Multi-algorithm fusion;  
(3) Multi-sensor fusion; 
(4) Multi-instance fusion; 
Bi-layer fusion 
(5) Multi-sample-algorithm fusion; 
(6) Multi-sample-sensor fusion; 
(7) Multi-sample-instance fusion; 
Tri-layer fusion 
(8) Multi-sample-instance-algorithm fusion. 

For the bi- and tri-layer fusion scenarios, we use the multi-sample fusion scenario as the basic layer 
because multi-sample is the easiest and also the most practically convenient scenario to realize fusion 
in a typical single-sensor-and-single-algorithm fingerprint recognition system—just to continuously 
capture multiple samples from one time of finger probing while asking the subject to slightly move the 
finger or modify the finger’s contacting surface. 

In our experiments, in light of testing efficiency, only binary decisions obtained from the left index 
finger (assumed to generating relatively good samples in quality) samples from 99 subjects (excluding 
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one subject without full records) in 12 sessions are included for the first three fusion tests  
(multi-sample, multi-sensor, and multi-algorithm) and the right index finger is also used for the fourth 
fusion test (multi-instance). For the multi-sample fusion case, only binary decisions obtained from the 
a certain fingerprint sensor S and a minutiae extractor selected from a certain project partner have been 
fused, since in general best performances were observed from this sensor/minutiae-extractor 
combination. For the multi-sensor fusion, the three sensors L-1 DFR 2100, Precise 250 MC, and 
Sagem MorphoSmart in cooperation with the selected minutiae extractor are adopted. In this sensor 
fusion scenario, only the best biometric template protection algorithm A1 was employed for testing 
since in general best performances were observed from this algorithm/minutiae-extractor combination. 
Concerning both multi-algorithm fusion and multi-instance fusion, the sensor S and the selected 
minutiae extractor are used. To obtain the genuine scores for each subject, each sample out of the 12 
samples (from 12 sessions) of the same finger was compared against the remaining 11 samples. In this 
way totally 12 × 11 × 99 = 13,068 genuine decisions were obtained. Each sample out of the 12 samples 
of the Nth subject (N = 1,2,…,98) was compared against the same-session samples out of all the other 
99-N ({N + 1, N + 2,…,99}th) subjects. Note that the last subject (No. 99) is only contributing to the 
genuine decisions but not to the imposter decisions. In this way, ∑98

i = 112i = 58212 impostor scores 
were obtained.  

To investigate decision level fusion’s baseline effectiveness on performance improvement, we test 
only the simplest fusion rules such as AND and OR. In general, the decision OR rule may reduce the 
False Rejection Rate (FRR) but increases the False Acceptance Rate (FAR), whereas the decision 
AND rule may reduce the FAR but increases the FRR. This will be absolutely true if all the biometric 
tests are independent [25] and in this case the combined probability of False Reject p(FR) and False 
Accept p(FA) will be as follows using OR:  

p(FR) = p1(FR) p2(FR) (1) 

p(FA) = p1(FA) + p2(FA) – p1(FA)p2(FA) (2) 

where p1 and p2 correspond to two independent biometric tests; and the case using AND: 

p(FA) = p1(FA) p2(FA) (3) 

p(FR) = p1(FR) + p2(FR) – p1(FR)p2(FR) (4) 

In our tests, the OR-rule is adopted because in the TURBINE project a FAR = 0.1% was rigidly 
required to assure the security of the biometric authentication system. Under this context, the 
performance operation points in the Detection Error Trade-off (DET) curve before fusion are mainly 
distributed in the FAR range < 0.1% for all the three algorithms and thus OR is suitable to approach 
the performance target FAR = 0.1% while greatly reducing FRR. Although the independence condition 
may not be well satisfied in the fusion scenarios, we still expect the effect of reduced FRR brought by 
OR. The specific settings for the different fusion scenarios are given in the following sub-section. 

3.4. Scenario Settings 

There are both some common settings among all the scenarios and some special settings for each 
different scenario. Table 1 lists the common settings in all experiments and Table 2 differentiates the 
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scenarios by those special settings. As mentioned in Section 2.2, due to project partners’ request, the 
three template protection algorithms are anonymously flagged as A1, A2 and A3. Similarly, we 
annonymize the three sensors L-1 DFR 2100, Precise 250 MC, and Sagem MorphoSmart used in the 
experiments and flag them as S1, S2, and S3 (S is one of them) in the remaining part of this paper, but 
throughout all the testing results, the three sensors’ flags Si (i = 1, 2, 3) don’t change. 

Table 1. Common settings for all fusion scenarios. 

Algorithm A1 (Annonymized flag) 
Sensor S (one of S1, S2, and S3) 

Finger instance Left index finger 
Minutiae extractor Selected one from one project partner 

Number of genuine scores generated from each 
algorithm/sensor/finger 

13,068 

Number of imposter scores generated from each 
algorithm/sensor/finger 

58,212 

Table 2. Special settings for different fusion scenarios. 

 Algorithm Sensor Finger instance Nr. of samples 
Multi-sample A1, A2, A3 S left index 2~5 

Multi-algorithm 
A1 + A2, A2 + A3,  

A1 + A3, A1 + A2 + A3
S left index 1 

Multi-sensor A1 
S1 + S2, S2 + S3,  

S1 + S3, S1 + S2 + S3 
left index 1 

Multi-instance A1, A2, A3 S 
left index +  
right index 

1 

Multi-sample-algorithm A1 + A2 + A3 S left index 2~5 
Multi-sample-sensor A1 S1 + S2 + S3 left index 2~5 

Multi-sample-instance A1, A2, A3 S 
left index +  
right index 

2~5 

Multi-sample-instance-
algorithm 

A1 + A2 + A3 S 
left index +  
right index 

2~5 

Besides the concise presentation of all the scenarios settings in the Table 1 and Table 2, we describe 
the settings for each scenario in a self-supporting way as follows: 

(1) Multi-sample fusion 

The studied left-index-finger samples were captured by the sensor S and processed into minutiae 
templates by the selected minutiae extractor. M binary decisions made from verifications of the M 
samples circularly-neighboring in the session order are fused. E.g., if we index the 11 binary  
decisions from genuine comparisons as d1, d2, …, d11, the 11 fused binary decisions are (∑M

i = 1di) > 0,  
(∑M+1

i = 2di) > 0, (∑M+2
i = 3di) > 0, …, (∑11

i = 10di + ∑M-2
i = 1di) > 0, and (∑11

i = 11di + ∑M-1
i = 1di) > 0. All the three 

algorithms A1, A2, and A3 are for tests.  
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(2) Multi-algorithm fusion 

The studied left-index-finger samples were captured by the sensor S and processed into minutiae 
templates by the selected minutiae extractor. By an arbitrary template protection algorithm, there are 
13,068 genuine comparison decisions and 58,212 imposter comparison decisions that can be obtained. 
Every two algorithms among A1, A2, and A3 are fused to generate (13,068 + 58,212) binary decisions. 
Besides, all the 3 × (13,068 + 58,212) binary decisions obtained from all of A1, A2, and A3 are fused 
into (13,068 + 58,212) binary decisions. 

(3) Multi-sensor fusion 

The studied left-index-finger samples were processed into minutiae templates by the selected 
minutiae extractor. From data collected from an arbitrary sensor, there are 13,068 genuine comparison 
decisions and 58,212 imposter comparison decisions that can be obtained. Every two sensors among 
S1, S2, and S3 are fused to generate (13,068 + 58,212) binary decisions. All the 3 × (13,068 + 58,212) 
binary decisions from the three sensors S1, S2, and S3 are fused into (13,068 + 58,212) binary 
decisions. In this scenario, the template protection algorithm A1 is used for testing since it in general 
demonstrated the best biometric performance. 

(4) Multi-instance fusion 

The studied left-index-finger and right-index-finger samples were captured by the sensor S and 
processed into minutiae templates by the selected minutiae extractor. On an arbitrary finger, there are 
13,068 genuine comparison decisions and 58,212 imposter comparison decisions that can be obtained. 
Both the (13,068 + 58,212) binary decisions from the left index finger and the (13,068 + 58,212) 
binary decisions from the right index finger are fused into (13,068 + 58,212) binary decisions. All 
three algorithms, A1, A2, and A3, are for tests. 

(5) Multi-sample-algorithm fusion 

This scenario further fuses the multi-sample fusion results obtained respectively from the three 
template protection algorithms A1, A2, and A3 into (13,068 + 58,212) binary decisions, i.e., 
combination of scenario (1) and scenario (2).  

(6) Multi-sample-sensor fusion 

This scenario further fuses the multi-sample fusion results obtained respectively from the samples 
captured by the three sensors S1, S2, and S3 into (13,068 + 58,212) binary decisions, i.e., a 
combination of scenario (1) and scenario (3).  

(7) Multi-sample-instance fusion 

This scenario further fuses the multi-sample fusion results obtained respectively from the left and the right 
index fingers into (13,068 + 58,212) binary decisions, i.e., a combination of scenario (1) and scenario (4).  

(8) Multi-sample-instance-algorithm fusion 

This scenario further fuses the multi-sample-instance fusion results obtained respectively from the 
three template protection algorithms A1, A2, and A3 into (13,068 + 58,212) binary decisions, i.e., a 
combination of (7) and (2). 
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4. Testing Results 

The computational complexity in the cross-comparisons in performance evaluation phase of the 
TURBINE project was so large that it took months for four workstations to complete just a small scale 
(settings specified in Section 3.2) test under a limited range of parameters combinations. To achieve 
better testing efficiency but without loss of generality, all three template protection algorithms A1, A2, 
and A3 generate only four operational performance points distributed mainly in the FAR range ≤ 0.1% 
in the DET curves instead of a dense-populated DET curve before applying any fusion. Another reason 
that we chose to generate sparse-populated DET operation points is that the mathematical hash based 
algorithm—spectral minutiae based fuzzy commitment—only generate binary decisions from template 
comparisons and thus is not straightforwardly able to generate dense-populated operation points by 
thresholding the comparison scores like other two algorithms. As mentioned in Section 2 and 3, for the 
request from the project partners, we anonymize the three algorithms and the three sensors in the 
testing results and show only algorithm flags A1, A2, A3 and sensor flags S1, S2, S3 in all figures and 
discussions, i.e., no clear links are indicated between the algorithms/sensors and their flags. The testing 
results from different fusion scenarios are given as follows: 

(1) Multi-sample fusion 

Figure 3(a–c) shows both the performance without fusion and the biometric performance of the 
multi-sample fusion by the algorithm A1, A2, and A3. Table 3 shows the performances which are 
closest to the target (FRR ≤ 1%, FAR = 0.1%) by the three algorithms. In the results, M = 2~5 samples 
from neighboring sessions were used for fusion. It is clear to notice that the performance can be 
improved by increasing the number of samples used for fusion. 

Figure 3. Multi-sample fusion results from the three anonymized biometric template 
protection algorithms A1, A2, and A3 developed in project TURBINE. 
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Figure 3. Cont. 

 

The algorithm A1 demonstrates the best performance but its performance point (FRR = 0.0256, 
FAR = 0.0010, while M = 4) closest to the target has not reached the target yet. 

Table 3. Best performance (operation points closest to the performance target FRR ≤ 0.01 
@ FAR = 0.001)—multi-sample fusion. 

Number of samples used for fusion Error rates A1 A2 A3 

1 (without fusion) 
FAR 0.0009 0.0002 0.0009 
FRR 0.0647 0.1860 0.1985 

2 
FAR 0.0012 0.0004 0.0005 
FRR 0.0360 0.0952 0.1267 

3 
FAR 0.0007 0.0007 0.0008 
FRR 0.0318 0.0667 0.0882 

4 
FAR 0.0010 0.0009 0.0011 
FRR 0.0256 0.0529 0.0690 

5 
FAR 0.0012 0.0011 0.0014 
FRR 0.0215 0.0439 0.0576 

(2) Multi-algorithm fusion 

Figure 4 shows both the biometric performance without fusion and the performance with the multi-
algorithm fusion from the algorithm A1, A2, and A3. Table 4 shows the performances which are 
closest to the target (FRR ≤ 1%, FAR = 0.1%) when fusing the three algorithms. Since each algorithm 
provides four performance points, any two algorithms’ fusion generates 4 × 4 = 16 performance points, 
and all three algorithms’ fusion generates 4 × 4 × 4 = 64 performance points. It is observed that the 
performance can be improved by fusion of decisions from different template protection algorithms. 
The algorithm A1 demonstrates better performance than A2 and A3, and even better than the fusion of 
A2 and A3. Compared to the performance achieved without fusion and that achieved by two-algorithm 
fusion, the fusion of all three algorithms resulted in best performance but its performance point  
(FRR = 0.0586, FAR = 0.0010) closest to the target has not reached the target yet. 
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Figure 4. Multi-algorithm fusion results by the three anonymized biometric template 
protection algorithms A1, A2, and A3 developed in project TURBINE.  

 

Table 4. Best performance (operation points closest to the performance target FRR ≤ 0.01 
@ FAR = 0.001)—multi-algorithm fusion. 

Algorithm settings A1 + A2 A2 + A3 A1 + A3 A1 + A2 + A3 
FAR 
FRR 

0.0008 
0.0597 

0.0012 
0.1078 

0.0010 
0.0614 

0.0010 
0.0586 

(3) Multi-sensor fusion 

Figure 5 shows both the biometric performance without fusion and the performance with the  
multi-sensor fusion from the three sensors S1, S2, and S3. Table 5 shows the performances which are 
closest to the target (FRR ≤ 1%, FAR = 0.1%) when fusing the three sensors.  

Figure 5. Multi-sensor fusion results from the three anonymized biometric sensors S1, S2, 
and S3 tested in project TURBINE, using algorithm A1. 

 

Table 5. Best performance (operation points closest to the performance target FRR ≤ 0.01 
@ FAR = 0.001)—multi-sensor fusion. 

Sensor settings S1 + S2 S2 + S3 S1 + S3 S1 + S2 + S3 
FAR 
FRR 

0.0011 
0.0315 

0.0010 
0.0340 

0.0011 
0.0273 

0.0013 
0.0182 
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Since from each sensor, four performance points were generated, any two sensors’ fusion generates 
4 × 4 = 16 performance points, and all three sensors’ fusion generates 4 × 4 × 4 = 64 performance 
points. It is observed that the performance can be improved by fusion of decisions from different 
fingerprint sensors. Sensor S3 demonstrates a better performance compared to S1 and S2. The fusion 
of decisions from all three sensors resulted in the best performance but its performance point  
(FRR = 0.0340, FAR = 0.0010) closest to the target has not reached the target yet. 

(4) Multi-instance fusion 

Figures 6a–d show the biometric performance from the left and the right index fingers without 
fusion, the actual fusion results, and the theoretical fusion results estimated from Equations (1–2) 
assuming the independence of the two index fingers. Table 6 shows the performances which are 
closest to the target (FRR ≤ 1%, FAR = 0.1%) when fusing the two index fingers. The results were 
obtained by using the three algorithms A1, A2, and A3. In this scenario, we denote the corresponding 
thresholds for comparison scores by A1 to generate the original two groups of four performance points 
(for left and right index fingers respectively) as Set I, and then selected two new groups of thresholds 
as Set II which are larger (thus demanding a higher comparison score for a match) than Set I in order 
to generate two new groups of performance points with a lower FAR. The purpose of adding this 
second threshold group is mainly for keeping the performance points generated from the following  
bi- and tri-layer fusion scenarios remained in the range FAR ≤ 0.1%. It is clear to see that instance 
based fusion gives noticeable improvement in performance in all three algorithms. The fusion result 
using the algorithm A1 with the Set II thresholds resulted in best performance but its performance 
point (FRR = 0.0253, FAR = 0.0010) closest to the target has not reached the target yet. It is also 
interesting to note that there are conspicuous gaps in performance between the actual fusion results and 
the theoretical fusion results from all three template protection algorithms, which indicates dependency 
between the left and right index fingers. This dependency can be due to the sample quality, i.e., both 
index fingers from the same subject are usually in similar physiological quality and we will verify this 
by experiments in Section 5.1, but is still worthy of an in-depth investigation in the future. 

Figure 6. Multi-instance fusion results from the left and the right index fingers tested using 
the three algorithms A1 (Set I), A1 (Set II), A2, and A3 developed in project TURBINE. 
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Figure 6. Cont. 

  

Table 6. Best performance (operation points closest to the performance target FRR ≤ 0.01 
@ FAR = 0.001)—multi-instance (left and right index fingers) fusion. 

Algorithm A1-I A1-II A2 A3 
FAR 
FRR 

0.0012 
0.0247 

0.0010 
0.0253 

0.0004 
0.0740 

0.0013 
0.0835 

(5) Multi-sample-algorithm fusion 

Figure 7(a-b) shows the multi-sample-algorithm fusion results from the three algorithms {A1-I, A2, 
A3} and {A1-II, A2, A3} respectively, with fusing M = 2, 3, 4, and 5 samples. Table 7 shows the 
performances which are closest to the target (FRR ≤ 1%, FAR = 0.1%) when fusing the three 
algorithms. Since each algorithm provides four performance points, the three algorithms result in  
4 × 4 × 4 = 64 performance points. It is observed that the performance can be improved by increasing 
the number of samples used for fusion. This fusion test resulted in better performance than its  
single-layer fusion scenario (1) multi-sample and (2) multi-algorithm. But its performance point  
(FRR = 0.0222, FAR = 0.0010, while M = 4) closest to the target has not reached the target yet. 

Figure 7. Multi-sample-algorithm fusion results from the tested three algorithms A1  
(Set I), A1 (Set II), A2, and A3 developed in project TURBINE. 

  



Sensors 2012, 12 5261 
 

 

Table 7. Best performance (operation points closest to the performance target FRR ≤ 0.01 
@ FAR = 0.001)—multi-sample-algorithm fusion. 

Number of samples 
used for fusion 

Error 
rates 

A1-I 
+A2+A3 

A1-II 
+A2+A3 

2 
FAR 0.0010 0.0011 
FRR 0.0312 0.0317 

3 
FAR 0.0009 0.0011 
FRR 0.0265 0.0268 

4 
FAR 0.0012 0.0010 
FRR 0.0208 0.0222 

5 
FAR 0.0015 0.0008 
FRR 0.0175 0.0186 

(6) Multi-sample-sensor fusion 

Figure 8(a–b) shows the multi-sample-sensor fusion results from all three sensors S1, S2, and S3, 
with fusing M = 2, 3, 4, and 5 samples. Table 8 shows the performances which are closest to the target 
(FRR ≤ 1%, FAR = 0.1%) when fusing the three sensors. Since from each sensor four performance 
points were generated, fusing three sensors results in 4 × 4 × 4 = 64 performance points. It is observed 
that the performance can be improved by fusion of decisions from different fingerprint sensors using 
multiple samples. This fusion test resulted in better performance than its single-layer fusion scenario 
(1) multi-sample and (3) multi-sensor in the concurrent FAR range (around FAR = 0.01). However, we 
note that all fusion results have FAR > 0.001 and are therefore outside the performance target range. 

Figure 8. Multi-sample-sensor fusion results from the three sensors S1, S2 and S3, using 
the algorithm A1 (Set I) and A1 (Set II) developed in project TURBINE. 
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Table 8. Best performance (operation points closest to the performance target FRR ≤ 0.01 
@ FAR = 0.001)—multi-sample-sensor fusion. 

Number of samples used for fusion Error rates S1 + S2 + S3 A1-I S1 + S2 + S3 A1-II 

2 
FAR 0.0025 0.0019 
FRR 0.0087 0.0094 

3 
FAR 0.0037 0.0029 
FRR 0.0055 0.0060 

4 
FAR 0.0049 0.0038 
FRR 0.0040 0.0044 

5 
FAR 0.0061 0.0048 
FRR 0.0033 0.0034 

(7) Multi-sample-instance fusion 

Figure 9(a–d) show the multi-sample-instance fusion results from the left and the right index fingers 
by fusing M = 2, 3, 4, and 5 samples and using the algorithms A1-I, A1-II, A2, and A3. Table 9 shows 
the performances which are closest to the target (FRR ≤ 1%, FAR = 0.1%) when fusing the two  
index fingers.  

Figure 9. Multi-sample-instance fusion results from the left and the right index fingers, 
using the algorithms A1 (Set I), A1 (Set II), A2, and A3 developed in project TURBINE.  
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Table 9. Best performance (operation points closest to the performance target FRR ≤ 0.01 
@ FAR = 0.001)—multi-sample-instance (left and right index fingers) fusion. 

Number of samples used for fusion Error rates A1-I A1-II A2 A3 

2 
FAR 0.0009 0.0008 0.0007 0.0006 
FRR 0.0142 0.0149 0.0295 0.0497 

3 
FAR 0.0013 0.0011 0.0011 0.0009 
FRR 0.0088 0.0094 0.0183 0.0323 

4 
FAR 0.0017 0.0008 0.0014 0.0012 
FRR 0.0064 0.0079 0.0132 0.0239 

5 
FAR 0.0021 0.0009 0.0018 0.0015 
FRR 0.0049 0.0060 0.0109 0.0188 

It is observed that the performance can be improved by increasing the number of samples used for 
fusion. This fusion test resulted in better performance than its single-layer fusion scenario (1) multi-sample 
and (4) multi-instance. It has two performance points (FRR = 0.0079, FAR = 0.0008, while M = 4 using 
A1-II; and FRR = 0.0060, FAR = 0.0009, while M = 5 using A1-II) that meet the target. 

(8) Multi-sample-instance-algorithm fusion 

Figure 10(a–b) show the multi-sample-instance-algorithm fusion results from the left and the right 
index fingers by fusing M = 2, 3, 4, and 5 samples and fusing all three algorithms A1-I, A1-II, A2, and 
A3. Table 10 shows the performances which are closest to the target (FRR ≤ 1%, FAR = 0.1%) in this 
fusion scenario. Since each algorithm provides four performance points, fusing the three sensors 
results in 4 × 4 × 4 = 64 performance points. It is observed that the performance can be improved by 
increasing the number of samples used for fusion. This fusion test resulted in better performance than 
its single-layer fusion scenario (1) multi-sample, (2) multi-algorithm, and (4) multi-instance, but only 
marginally better (while M = 2 and 3) and no better (while M = 4 and 5) than the performance of the 
fusion scenario (7) multi-sample-instance.  

Figure 10. Multi-sample-instance-algorithm fusion results from the left and the right  
index fingers fusing the algorithms A1 (Set I), A1 (Set II), A2, and A3 developed in  
project TURBINE.  
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Table 10. Best performance (operation points closest to the performance target FRR ≤ 0.01 
@ FAR = 0.001)—multi-sample-instance-algorithm fusion. 

Number of samples used for fusion Error rates A1-I +A2+A3 A1-II +A2+A3 

2 
FAR 0.0010 0.0009 
FRR 0.0117 0.0123 

3 
FAR 0.0015 0.0008 
FRR 0.0070 0.0087 

4 
FAR 0.0020 0.0010 
FRR 0.0049 0.0060 

5 
FAR 0.0025 0.0013 
FRR 0.0036 0.0043 

It has two performance points (FRR = 0.0087, FAR = 0.0008, while M = 3 using A1-II; and  
FRR = 0.0060, FAR=0.0010, while M = 4 using A1-II) that meet the target. Comparison to the fusion 
scenario (7) multi-sample-instance shows that the performance improvement has been fully explored 
by the sample-and-instance fusion and the additional fused information from different algorithms did 
not gain noticeable improvement. 

5. Performance Evaluation and Analysis 

This section summarizes some experimental observations from our testing results. To fairly 
compare the fusion efficiency across different fusion scenarios, we evaluate the fusion efficiency via 
two criteria – efficiency per decision and efficiency per presentation. 

5.1. General Experimental Observations 

From the decision level fusion testing results, we can summarize the following experimental 
observations in a question (Q)/answer (A) way (note that all the answers apply only to our testing 
results and generalization to other cases should be carefully considered):  

Observations on Performance Comparison 

(1) Q: Does decision-level fusion always result in a better biometric performance? 

A: In most cases decision-level fusion results in a better biometric performance if the two tested 
elements for fusion have similar biometric performance (small performance gap) on their  
own [25]. The amplitude of performance improvement depends on the dependency between the 
two elements. In our experiments, almost all the generated fusion results excel their primary 
elements. But we can still find some exceptional cases of performance degradation, e.g., in the 
multi-algorithm fusion test (Figure 4), the resultant fusion operation point (FAR = 0.0012;  
FRR = 0.0703), which is obviously worse than A1’s performance in general, is generated from 
two primary operation points (FAR = 0.0002; FRR = 0.0840) in A1 and (FAR = 0.0009;  
FRR = 0.1985) in A3. In this case, the point (FAR = 0.0009; FRR = 0.1985) has a distinct 
performance gap from the point (FAR = 0.0002; FRR = 0.0840) in both FAR and FRR in the 
same time, which leads to performance degradation compared to the stronger biometric test A1. 
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physiological quality from the same subject. We investigated this correlation by comparing the 
NFIQ fingerprint quality scores [27] of the left-index-finger samples and the right-index-finger 
samples in our experiments–first, we form a genuine distance group by calculating the absolute 
values of the NFIQ score differences of the two same-subject index fingers from the 100 subjects 
and then form an imposter distance group by calculating the absolute values of NFIQ score 
differences of any two different-subject index fingers from the 100 subjects. Then classification 
of the two distance groups can show the correlation of the two instances from the same subject. 
In our test, on samples from 10 sessions in the GUC100 database, the average classification 
performance point closest to the Equal-Error-Rate (EER) (note that due to the narrow dynamic 
range of NFIQ scores (only 1~5) an accurate EER was not able to obtain) achieves FMR = 0.5054 
while FNMR = 0.3460. For comparison, we form another two distance groups for classification 
in which all distances are calculated from different subjects and this classification test achieves 
FMR = 0.5054 while FNMR = 0.4950 in average from 10 sessions. Now we can see the 
noticeable correlation in sample quality between the two same-subject instances from the former 
classification test. An example of the two classification results (DET curves) from one session 
in the GUC100 database is shown in Figure 12.  

Figure 12. Example of two classification tests to verify the correlation in fingerprint 
images’ quality from two same-subject index fingers. Samples are from one session of the 
GUC100 database. Classification test 1 (green curve): same-subject index finger samples 
are used to calculate genuine NFIQ score distances; classification test 2 (red curve): 
different-subject index finger samples are used to calculate “genuine” NFIQ score distances. 

 

(2) Q: Is there any dependency among the algorithms observed via fusion results? 

A: Algorithms, which themselves were supposed to be independent, may generate deeply-correlated 
decisions and/or have noticeable performance gaps among each other, which makes the fusion 
results not so impressive in our experiments as expected in recognition accuracy improvement 
compared to sample, sensor, and instance. 
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(3) Q: Is there any supplementary information that can be exploited to improve the performance 
from multiple samples captured from same and multiple sensors which are assumed to be  
highly dependent? 

A: The decisions obtained from multiple samples captured from the same or different sensors 
are not completely redundant, thus enabling in our multi-sample fusion and the multi-sensor 
fusion experiments a gain in recognition accuracy. 

Besides the above general observations, we found that only scenario (7) multi-sample-instance 
fusion and scenario (8) multi-sample-instance-algorithm fusion have some performance points that 
meet the recognition accuracy performance target for the project TURBINE. The best fusion result 
[FRR = 0.0060, FAR = 0.0009, while M = 5 using A1-II in the fusion scenario (7)] achieves around 
91% reduction in FRR compared to the best performance without fusion (FRR = 0.0647, FAR = 0.0009, 
using A1-I).  

5.2. Fusion Efficiency Comparisons 

Considering the number of decisions and convenience of finger probing can vary in different fusion 
scenarios, we need to evaluate the fusion efficiency in addition to the effectiveness we observed from 
the testing results and discussed in Section 5.1. To compare the fusion efficiency of different fusion 
scenarios in a more precise way than the general evaluation given in Section 5.1, we propose two 
criteria—efficiency per decision and efficiency per presentation—to evaluate the fusion efficiency. 

(1) Efficiency per decision 

Efficiency per decision is defined as the performance achievable by fusing the same amount of 
decisions, i.e., exploiting the same amount of fusion sources. Since the number of decisions as fusion 
sources are equivalent, the performance is more comparable. E.g., the 2-sample fusion, 2-sensor 
fusion, 2-algorithm fusion, and 2 instances fusion cases are comparable since they have the same 
amount of source decisions. Following the same logic, other examples can be that the 4-sample fusion 
is comparable to the 2-sample-and-2-instance fusion, and the 3-sample-and-2-instance fusion is 
comparable to the 2-sample-and-3-algorithm fusion. By this efficiency per decision criterion, we can 
compare the different fusion cases’ efficiency when they have the same amount of source decisions. 
Figures 13 a–b present the fusion performance points that are closest to the performance target  
(FRR ≤ 1%, FAR = 0.1%) under different fusion scenarios, in which the points with the same amount 
of decision sources (marked in the same color) are comparable among each other. On the other hand, if 
two fusion cases demonstrate the similar performance, the one using fewer source decisions has the 
advantage in storage and operational/computational complexity. For example, the 2-instance fusion 
and the 4-sample fusion in the Figure 13a demonstrate roughly the same performance but the  
2-instance fusion scenario excels under this efficiency per decision criterion. Table 11 translates the 
different fusion cases to their specific fusion scenarios settings defined in Section 3.4. 
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Figure 13. Fusion efficiency by “efficiency per decision”. (“sample”, “algorithm”, 
“sensor”, and “instance” are abbreviated as “sam.”, “alg.”, “sen.”, and “ins.”, respectively). 

 

Table 11. Fusion scenario settings for fusion cases by “efficiency per decision”. 

Decision amount for fusion Fusion case Scenario settings 

Fusion from 2 decisions 

2 samples Multi-sample, M = 2, A1 
2 sensors Multi-sensor, S1 + S3 
2 algorithms  Multi-algorithm, A1 + A2 
2 instances Multi-instance, A1 

Fusion from 3 decisions 
3 samples Multi-sample, M = 3, A1 
3 sensors Multi-sensor, S1 + S2 + S3 
3 algorithms  Multi-algorithm, A1 + A2 + A3 

Fusion from 4 decisions 
4 samples Multi-sample, M = 4, A1 
2 samples and 2 instances Multi-sample-instance, M = 2, A1 

Fusion from 6 decisions 
3 samples and 2 instances Multi-sample-instance, M = 3, A1 
2 samples and 3 algorithms Multi-sample-algorithm, M = 2 
2 samples and 3 sensors Multi-sample-sensor, M = 2 

Fusion from 9 decisions 
3 samples and 3 algorithms Multi-sample-algorithm, M = 3 
3 samples and 3 sensors Multi-sample-sensor, M = 3 

Fusion from 12 decisions 

4 samples and 3 algorithms Multi-sample-algorithm, M = 4 
4 samples and 3 sensors Multi-sample-sensor, M = 4 
2 samples and 2 instances and  
3 algorithms 

Multi-sample-instance-algorithm, 
M = 2 

Fusion from 15 decisions 
5 samples and 3 algorithms Multi-sample-algorithm, M = 5 
5 samples and 3 sensors Multi-sample-sensor, M = 5 

(2) Efficiency per presentation 

Efficiency per presentation is defined as the performance achievable under the same amount of 
finger presentations (times of probing), which takes into account the convenience to the subjects. Since 
the effort required is almost the same under the same amount of finger presentations, the performance 
is more comparable. This efficiency criterion matters mainly on the multi-algorithm fusion since it 
needs only one finger presentation. Figure 14(a,b) presents the fusion performance points that are 



Sensors 2012, 12 5269 
 

 

closest to the performance target (FRR ≤ 1%, FAR = 0.1%) under different fusion scenarios, in which 
the points with the same amount of finger presentation (marked in the same color) are comparable 
among each other. On the other hand, if two scenarios have the same amount of finger presentations, it 
is likely that the scenario which fuses more algorithms achieves a higher performance. For example, 
the 3-sample-and-2-instance-and-3-algorithm fusion and the 3-sample-and-2-instance fusion in the  
Figure 14(b) have the same amount of finger presentations but the former excels in performance. Table 12 
translates the different fusion cases to their specific fusion scenarios settings defined in Section 3.4. 

Figure 14. Fusion efficiency by “efficiency per presentation”. (“sample”, “algorithm”, 
“sensor”, and “instance” are abbreviated as “sam.”, “alg.”, “sen.”, and “ins.”, respectively) 

 

Table 12. Fusion scenario settings for fusion cases by “efficiency per presentation”. 

Presentation amount for fusion Fusion case Scenario settings 

Fusion from single presentation 

A1 Without fusion, A1 
A2 Without fusion, A2 
A3 Without fusion, A3 
3 algorithms Multi-algorithm, A1 + A2 + A3 

Fusion from 2 presentations 

2 samples Multi-sample, M = 2, A1 
2 sensors Multi-sensor, S1 + S3 
2 instances  Multi-instance, A1 
2 samples and 3 algorithms Multi-sample-algorithm, M = 2 

Fusion from 3 presentations 
3 samples Multi-sample, M = 3, A1 
3 sensors Multi-sensor, S1 + S2 + S3 
3 samples and 3 algorithms Multi-sample-algorithm, M = 3 

Fusion from 4 presentations 

4 samples Multi-sample, M = 4, A1 
2 sample and 2 instances Multi-sample-instance, M = 2, A1 
4 samples and 3 algorithms Multi-sample-algorithm, M = 4 
2 samples and 2 instances and 3 
algorithms 

Multi-sample-instance-algorithm, 
M = 2 

Fusion from 5 presentations 
5 samples Multi-sample, M = 5, A1 
5 samples and 3 algorithms Multi-sample-algorithm, M = 5 
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Table 12. Cont. 

Presentation amount for fusion Fusion case Scenario settings 

Fusion from 6 presentations 
3 sample and 2 instances Multi-sample-instance, M = 3, A1 
3 samples and 2 instances and  
3 algorithms 

Multi-sample-instance-algorithm, 
M = 3 

Fusion from 8 presentations 
4 sample and 2 instances Multi-sample-instance, M = 4, A1 
4 samples and 2 instances and  
3 algorithms 

Multi-sample-instance-algorithm, 
M = 4 

Fusion from 9 presentations 3 samples and 3 sensors Multi-sample-sensor, M = 3 

Fusion from 10 presentations 
5 sample and 2 instances Multi-sample-instance, M = 5, A1 
5 samples and 2 instances and  
3 algorithms 

Multi-sample-instance-algorithm, 
M = 5 

6. Conclusions 

We presented in this paper an evaluation of decision level fusion results of fingerprint minutiae 
based pseudonymous identifiers generated by three biometric template protection algorithms 
developed in the European research project TURBINE. There are eight different fusion scenarios 
covering multiple samples, algorithms, sensors, instances, and their combinations in our tests. Distinct 
biometric performance improvements were observed by decision level fusion which verifies the 
hypothesis to apply fusion to improve the recognition accuracy performance. For fair comparisons of 
achieved performance improvement, two fusion efficiency criteria were proposed to evaluate the 
different scenarios’ fusion efficiency.  

Future work will investigate other fusion rules such as AND, layered, and cascaded fusion; and also 
the in-depth implications of performance improvement by the fusion rule OR and the dependency 
among elements for fusion. With regards to privacy, we assume that the template protection algorithms 
used are secure and privacy-enhanced. However, decision level fusion implies linkability among the 
protected templates generated out of different samples, sensors, instances, and algorithms from the 
same biometric characteristic (in the sample, sensor, and algorithm cases) and the same subject (in the 
instance case). Whether or not this fact influences the protected templates’ security is quite  
algorithm-dependent, and therefore needs case-based security analysis. 
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