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Abstract: The expected errors of RADAR sensor networks with linear probabilistic 
location fingerprints inside buildings with varying Wi-Fi Gaussian strength are discussed. 
As far as we know, the statistical errors of equal and unequal-weighted RADAR networks 
have been suggested as a better way to evaluate the behavior of different system 
parameters and the deployment of reference points (RPs). However, up to now, there is still 
not enough related work on the relations between the statistical errors, system parameters, 
number and interval of the RPs, let alone calculating the correlated analytical expressions 
of concern. Therefore, in response to this compelling problem, under a simple linear 
distribution model, much attention will be paid to the mathematical relations of the linear 
expected errors, number of neighbors, number and interval of RPs, parameters in 
logarithmic attenuation model and variations of radio signal strength (RSS) at the test point 
(TP) with the purpose of constructing more practical and reliable RADAR location sensor 
networks (RLSNs) and also guaranteeing the accuracy requirements for the location based 
services in future ubiquitous context-awareness environments. Moreover, the numerical 
results and some real experimental evaluations of the error theories addressed in this paper 
will also be presented for our future extended analysis. 

Keywords: RADAR localization; RSS sensing; statistical errors; probabilistic fingerprints; 
Gaussian distribution 
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1. Introduction 

The significantly growing interest in ubiquitous computing and context-awareness applications has 
required reliable, accurate and real-time localization technologies to locate the users’ positions in  
high-speed, seamless and heterogeneous wireless personal networks (WPNs), especially in the  
in-building environments where the Global Navigation Satellite System (GNSS) and geolocation in 
cellular system are not accurate enough [1–3]. Ranging from the military to public uses, from the 
urban to rural regions, and from the outdoor to indoor areas, location based services (LBSs) were 
already widely favored and popularized in the recent decade [4–6]. The typical LBSs mainly involve 
human navigation in unfamiliar buildings, robot path planning and guidance, health care inside modern 
hospitals, location-based enhanced sensing, entity and storage tracking and management. In GNSS, the 
Global Positioning System (GPS) can provide 10 m accuracy for the standard positioning service [7]. 
Global Navigation Satellite System (GLONASS) can achieve 1.5 m accuracy for civilian use [8]. The 
Galileo Positioning System is supposed to provide the highest 1 m accuracy for civilian applications [9]. 
The Beidou System is planned to offer the 20 m accuracy with only three satellites [10]. However, the 
accuracy in all these systems will be seriously deteriorated in closed in-building environments by the 
infrastructure barriers, body shadowing, RSS attenuation and multi-path interference [11–13]. 

In the meantime, there is also a large body of in-building localization or navigation systems which 
can be commonly categorized into fingerprint, model and measurement-based systems [14–16]. With 
the help of RSS sensing from each visible Wi-Fi access point (AP) or the Wi-Fi wireless router, the 
world’s first and most representative fingerprint-aided RADAR system was presented by Microsoft 
Research in 2000 [17]. Cambridge’s Active Bat can find users’ positions by calculating the time 
difference of arrival (TDOA) between the ultrasound and radio frequency signals based on  
a multi-lateration algorithm [18]. Carnegie Mellon’s CMU-PM and CMU-TMI location systems, 
respectively, rely on the Manhattan distance and offset mapping relations of each fingerprint [19]. 
UCLA’ Nibble system can be suggested as the first signal to noise ratio (SNR)-based localization 
system in Bayesian networks [20]. The Horus system invented by The University of Maryland can be 
recognized as a practical and efficient solution to the small-scale attenuation compensation problem 
with the help of continuous space estimation and location clustering algorithms [21]. MIT’s Cricket 
system has been used to build interactive video games through the interaction between different 
pervasive computing devices and has also achieved better performance in location privacy, scalability 
and tracking agility [22]. In addition, The Pitt’s Voronoi system [23] and RWTH’s hidden Markov 
localizer [24] have also provided some preliminary analyses of how to improve the accuracy of 
fingerprint-aided localization. 

Among them, the Wi-Fi fingerprint-based localization system outperforms the other two systems 
because of the following three advantages: (1) RSS variations in real in-building areas cannot be easily 
characterized by a simple attenuation model due to the changes of directions or angles. Therefore, the 
construction of effective and reliable model-based localization systems will always involve high labor 
and time costs [25]; (2) meanwhile, measurement-based systems (e.g., the arriving time, time of 
difference and angles) will require special infrastructure and deployment which consequently results in 
higher maintenance and energy consumption [26]; (3) fingerprint-based systems rely on existing  
lower-priced Wi-Fi devices, non-registered 2.4 GHz ISM band and free 802.11 b/g protocol licenses [27]. 
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The Wi-Fi fingerprint-based localization in RLSNs generally consists of the following three  
steps [28–30]: (1) in the off-line (or calibration) phase, the Wi-Fi APs are deployed to provide sufficient 
and seamless RSS coverage in the target location areas, which means, at any physical position, the user 
can detect and sense the continuous-time RSS from two or more visible APs; (2) the coordinates of  
pre-calibrated RPs (or the physical locations for fingerprint matching) and their associated RSS samples 
will be saved as the fingerprints in the radio map. At this point, the fingerprints can be suggested as the 
mapping relationships between the physical coordinates and pre-sensed RSS values. For example, the 
fingerprints in RLSNs can be defined as the mapping relations between the 2-D coordinates and user 
datagram protocol (UDP) RSS samples; (3) in the on-line (or estimation) phase, by matching the new 
sensed RSS to the pre-stored fingerprints (fingerprint matching), the users’ positions will be estimated by 
the equal or unequal-weighted sum of the (K) neighbors’ coordinates. 

Therefore, we can observe that the statistical errors in RLSNs depend significantly on the 
fingerprint recording in the off-line phase and fingerprint matching in the on-line phase. To the best of 
our knowledge, three typical models are commonly used for studying the statistical errors in 
fingerprint-based RLSNs, known respectively as the experimental model, node-pair model and random 
model. The first model always involves significant labor and time cost, but it can be suggested as the 
simplest way to evaluate the performance and satisfy the industrial requirements [17]. The second one 
involves the idea of examining the RSS difference in each RPs’ pair. In this case, the bigger the 
overlap of the RSS distributions, the larger the statistical errors that will be probably induced [23]. The 
last one normally relies on computer simulations (e.g., the Monte Carlo method) with lower practical 
similarities [31]. 

This paper is divided as follows: Section 2 provides an overview of the in-building RADAR system 
in RLSNs and some related work on the statistical errors. In Section 3, with a general idea of the 
simple linear distribution model, the mathematical relations about the expected linear errors in the 
RLSNs are significantly discussed using the assumption of a logarithmic Gaussian strength-varying 
model. In Section 4, some numerical and experimental results in the equal and unequal-weighted 
RLSNs are addressed. Finally, the conclusions and challenges for our future extended work are 
summarized in Section 5. 

2. Related Work 

2.1. Architecture of RADAR System in RLSNs 

As we know, the fingerprint-based RADAR system in Wi-Fi RLSNs is also called the K nearest 
neighbors (KNN) or weighted K nearest neighbors (WKNN) localization, shown in Figure 1. Moreover, 
RADAR localization system can be recognized as a global matching process between the new sensed 
RSS and pre-stored fingerprints in a radio map, and find the front ܭ RPs with smaller RSS difference 
for the coordinates’ estimation. However, by the KNN or WKNN location algorithm, although the  
pre-sensed RSS-mean at the RPs can be normally characterized by some distance dependence models, 
the on-line new recorded RSS will always vary a lot. Therefore, if we assume the Gaussian model 
satisfied at the TP, the larger standard deviations will consequently result in larger confidence 
probabilities of selecting the physically distant RPs as the neighbors. 
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Figure 1. Fingerprint-based RADAR localization system in Wi-Fi RLSNs. 
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From Figure 1, we can observe that although the radio map construction involves a high labor 

cost and cumbersome work for the deployment of RPs and associated RSS sensing, it should be done 
during the off-line phase. Further, the fingerprint matching by KNN and WKNN algorithms will  
also significantly influence the accuracy performance of the RADAR system in RLSNs. The 
estimated positions ܥKNNכ  and ܥWKNNכ  by the KNN and WKNN algorithms are calculated respectively 
in Equation (1).  

( ){ } ( )

( ) ( ){ }
( ) ( ) ( ) ( ){ }{ } ( ){ }

( )

AP
1 2

2

, ,
1

*
KNN

1 1 1

*
WKNN

1 1 1

,  , 

:  ,  1,  ,  ,

:  min \ ,  ,

,  ,

,  ,

,  :  1,  

N

i i T t i t
t

K j j K

K s s K K

K K K

j j j
j j j

K K K

j j j j j j
j j j

j j j K i

R R P P

R R j K

R R N K

R K x K y K

w R w x w y

R x y R i

ρ ρ

γ ρ λ

λ ρ ρ λ λ

γ

=

= = =

= = =

=
⎛ ⎞= −⎜ ⎟
⎝ ⎠

= ∈ =

= ≤ =

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

= ∈ ⊂ =

∑

∑ ∑ ∑

∑ ∑ ∑

L

ρ

ρ

ρ ρ ρ ρ

C

C

{ }

( ) ( )AP AP

RP
1

,1 , ,1 ,

,  ,  ,

,  ,  ;  ,  ,  

K

j j z
z

T T T N i i i N

N w p p

P P P P P P
=

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪ =⎪
⎪
⎪ = =⎩

∑L

L L

 (1) 

where AܰP and RܰP are the numbers of APs and RPs; ்ܲതതത and ௜ܲ respectively denote the expectation of 
the RSS at TP and RSS-mean at the RP ܴ௜; ܰሼߣ௄ሺ࣋ሻሽ is the number of elements of the set ߣ௄ሺ࣋ሻ; ݌௭ሺݖ ൌ 1, ڮ ,  .ሻ represents the probability of ܴ௭ to be selected as the most RSS-adjacent RPܭ
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2.2. Previous Work on Statistical Errors of RADAR System in RLSNs 

As mentioned before, there are three types of modeling for evaluating the localization errors in the 
RSS-based RLSNs as follows:  

(1) Experimental model. This model is the simplest one for wide industrial applications and overall 
system performance evaluation. However, during the modeling, we need to experimentally discuss the 
performance of each technical parameter under different fingerprint conditions to find the best system 
architecture. Therefore, this model will consequently involve of a large amount of labor and time costs 
in the off-line phase [12,17,21] and [29]. 

(2) Node-pair model. In this model, we always assume the Wi-Fi APs are located symmetrically in 
the location area, RPs are calibrated uniformly as grids, and the logarithmic Gaussian attenuation 
channel is satisfied. The most representative work about this model can be found in [23]. Although 
there are some preliminary analytical results addressed in that paper that can be applied to 2D areas, 
the accuracy in RLSNs cannot be effectively guaranteed when the number of neighbors is larger than 1 
because this model mainly focuses on the RSS relations in each pair of RPs. Meanwhile, the 
overlapping of the RSS distributions in Gaussian model is suggested as the reason for localization 
errors. At this point, if we make an assumption there are two RPs, ܴ௦  and ܴ௧  respectively with  
RSS-mean ௦ܲ ൌ ൫ ௦ܲ,ଵ, ڮ , ௦ܲ,ேAP൯  and ௧ܲ ൌ ൫ ௧ܲ,ଵ, ڮ , ௧ܲ,ேAP൯ , and ܴ௦  is addressed as our target 
matching (or the correct matching with the smallest RSS distance to the new sensed RSS), then, the 

confidence probability of the matching equals to Probሼ| ௦ܲ െ ்ܲതതത| ൑ | ௧ܲ െ ்ܲതതത|ሽ ൌ ׬ ଵ√ଶగఙഊ ݁ି൫ഊషಔഊ൯మమ഑ഊమ dݖ଴ିஶ  ൌ 1 െ ܳ ቀെ ஜഊఙഊቁ , where, ߣ ൌ 2 ∑ ்ܲ,ఫതതതതത൫ ௧ܲ,௝ െ ௦ܲ,௝൯ேAP௝ୀଵ ൅ ∑ ൫ ௦ܲ,௝ଶ െ ௧ܲ,௝ଶ ൯ேAP௝ୀଵ ; μఒ ൌ 2 ∑ ௦ܲ,௝൫ ௧ܲ,௝ െேAP௝ୀଵ௦ܲ,௝ሻ ൅ ∑ ൫ ௦ܲ,௝ଶ െ ௧ܲ,௝ଶ ൯ேAP௝ୀଵ  and ߪఒଶ ൌ 4 ∑ ൫ ௧ܲ,௝ െ ௦ܲ,௝൯ଶߪ௦,௝ଶேAP௝ୀଵ ௦,௝ߪ ;  denotes the standard deviation of  
pre-sensed RSS from the ݆-th AP at ܴ௦. 

(3) Random model. Under this model, the RPs are assumed to be located randomly (or distributed 
by the Monte Carlo simulations), the parameter “physical distance to each AP” in logarithmic channel 
will be normally simplified to some other special measurements [31] (e.g., the log-attenuation property 
is supposed to be satisfied in every direction from each RP, not just in the direction “from AP to RP”). 

Overall, as a general and simple model of the in-building straight corridors, the analytical analysis 
on the statistical errors in linearly distributed RPs environment seems to be much more necessary and 
important than the other environments, such as the offices, washrooms and meeting rooms. Further, the 
differences with the previous work about statistical error discussions can generally be summarized as 
follows: (1) A better RADAR system in RLSNs with higher expected localization accuracy can be 
designed only with the help of the analytical relations addressed in the paper, but not involving any 
cumbersome work for the experimental evaluations. Therefore, the labor and time costs can be saved; 
(2) There are K (K > 2) neighboring RPs to be considered together in the on-line estimation phase, not 
just one pair of two RPs. Meanwhile, the linear model introduced in this paper can also be verified to 
perform much more effectively because the increase of K will also improve the localization accuracy; 
(3) Last but not least, the deployment of RPs with distance interval r is more practical and reasonable 
compared to the random models and it will also achieve lower cost for the fingerprint recording. 
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As far as we know, the RSS-based in-building localization in RLSNs has been widely favored in 
applications ranging from the military to public uses. For example, for both travelers and robots in 
unfamiliar environments, it is necessary to locate their positions in real-time and provide navigation 
services or ease the complexity of path planning. Compared to the traditional ultra-sound and LADAR 
location sensor networks in the in-building areas, the Wi-Fi fingerprint-based RLSNs will provide a 
better alternative way to locate the users in the aspects of infrastructure cost and accuracy performance. 
Currently, in lots of modern hospitals, schools and health care centers, the elderly, disabled people or 
children will always need to be located or tracked by their doctors or parents. If there is an emergency 
or someone is out of his/her permitted area, the doctors or parents will be notified in real-time and 
acknowledged with the help of the interaction between the service centers, APs and Wi-Fi RSS sensors 
attached on the people’s body. 

2.3. Notations and Parameters in RLSNs 

In the results that follow, the notations and parameters used are listed in Table 1. 

Table 1. Notations and parameters. 

Items Description RܰP Number of RPs. ܴ௜ሺ݅ ൌ 1, ڮ , RܰPሻ Physical position of the ݅-th RP. ݀௜ ൌ ሺ݅ݎ݅ ൌ 1, ڮ , RܰPሻ Physical distance between the ݅-th RP and AP (in meter). ்݀ Physical distance between the TP and AP (in meter). ݎ Interval of distance-adjacent RPs (in meter). ߜ Physical distance between the ݅-th RP and TP (in meter). ௧ܲ  Transmit power of AP (in dBm). ௜ܲሺ݅ ൌ 1, ڮ , RܰPሻ Pre-sensed RSS-mean at ܴ௜ (in dBm). ்ܲതതത Expectation of the new sensed RSS at TP in Gaussian distribution (in dBm). ߪ Standard deviation of the new sensed RSS at TP (in dBm). ܮ଴ Path loss in the first meter in logarithmic attenuation channel (in dBm). ߙ Path loss exponent in logarithmic attenuation channel. ܧ௫ሼ݂ሺݔሻሽሺݔ ൌ ݅, ݆, כKNNܥ .ݔ ሻ with respect to the variableݔሻ Expectation of the function ݂ሺߜ  Estimated position by the KNN localization algorithm. ܥWKNNכ  Estimated position by the WKNN localization algorithm. 

3. Mathematical Expressions of Expected Linear Errors in RLSNs 

3.1. General Idea of a Simple Linear Distribution Model 

As shown in Figure 2, there are RܰP  RPs uniformly calibrated in the linear location area with 
distance ݀௜ ൌ  to the AP. The pre-sensed RSS-mean at each RP and the new sensed RSS-mean at TP ݎ݅
are respectively calculated by the logarithmic channel ௜ܲ ൌ ௧ܲ െ ଴ܮ െ lg݀௜ߙ10  and ்ܲ ൌ ௧ܲ െ ଴ܮ െ10ߙlg்݀. The geometrical relations and associated RSS distributions to be discussed are also presented 
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in Figure 2. By the assumption of Gaussian RSS variations at TP, the confidence probability of iR  to 

be selected as the most RSS-adjacent neighbor is calculated by the integral ׬ ଵ√ଶగఙ ݁ି൫೥షು೅തതതതത൯మమ഑మ dݖ൫ು೔షభశು೔൯మ൫ು೔శು೔శభ൯మ . 

Figure 2. Linear distribution model in logarithmic Gaussian variation channel. 
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As shown in Figure 2, by the assumptions of logarithmic Gaussian attenuation channel and 
continuous RSS variations, the statistical error evaluations in our linear distribution model mainly 
consist of the following three steps: (1) In the linearly distributed RPs condition, the neighbor set that 
consists of the neighboring RPs with smaller RSS distance to the new sensed RSS is denoted by ൛ ௝ܴ, ڮ , ௝ܴା௄ିଵൟ. Meanwhile, the confidence probability of this set Prob௄௝ ሺ݆ ൌ 1, ڮ , RܰP െ ܭ ൅ 1ሻ 
depends significantly on the Gaussian RSS variations at TP. Further, in this paper, there are three cases 
for different values of ݆ conditions that need to be discussed; (2) From Equation (1), we will calculate  ܥKNNכ  and ܥWKNNכ  in equal and unequal-weighted RLSNs, respectively, by the KNN and WKNN 
algorithms with neighbor set ൛ ௝ܴ, ڮ , ௝ܴା௄ିଵൟ ; (3) Finally, the statistical errors in the equal and 
unequal-weighted RLSNs (ߝ௄ and ߝௐ௄) will be calculated, respectively, by the expectations of error 
functions ߝ௄ ൌ ∑ Prob௄௝ ேRPି௄ାଵ௝ୀଵכKNNܥ  and ߝௐ௄ ൌ ∑ Prob௄௝ ேRPି௄ାଵ௝ୀଵכWKNNܥ  with respect to the random 
variables ݅, ݆ and ߜ. 
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3.2. Errors in Equal-Weighted RLSNs 

In the first step, we need to discuss the following three cases in different neighbor sets conditions, 
respectively. Based on the Gaussian variations of the new sensed RSS at TP, the probability of each 
case will significantly depend on the values of ݆ (݆ ൌ 1, ݆ ൌ 2, ڮ , RܰP െ and ൌ ܭ RܰP െ ܭ ൅ 1). 

(1) Case 1: ݆ ൌ 1  with the neighbor set ሼܴଵ, ڮ , ܴ௄ሽ . In this case, because there is no RP  
between the AP and ܴଵ, the new sensed RSS at TP should fall in the range of ቂ௉಼ା௉಼శభଶ , ൅∞ቁ, as 

shown in Figure 3. The confidence probability of set ሼܴଵ, ڮ , ܴ௄ሽ is calculated by Equation (2), where, ܳሺݔሻ ൌ ׬ ଵ√ଶగ ݁ି೥మమ dݖାஶ௫  and ሺݔሻ ൅ ܳሺെݔሻ ൌ 1. 
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Figure 3. Confidence probability of case 1 in equal-weighted RLSNs. 
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(2) Case 2: ݆ ൌ 2, ڮ , RܰP െ with the neighbor set ൛ ܭ ௝ܴ, ڮ , ௝ܴା௄ିଵൟ. As shown in Figure 4, the 
confidence probability in this case equals to the cumulative probability from ௉ೕశ಼షభା௉ೕశ಼ଶ  to ௉ೕషభା௉ೕଶ  

(see Equation (3)) by the Gaussian RSS variations. 
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Figure 4. Confidence probability of case 2 in equal-weighted RLSNs. 
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(3) Case 3: ݆ ൌ RܰP െ ܭ ൅ 1 with the neighbor set ൛ܴேRPି௄ାଵ, ڮ , ܴேRPൟ. Similar to the analysis in 
case 1, the confidence probability in this case (see Equation (4)) should be calculated by the integral 
from the minus infinity to 

௉ಿRPష಼ା௉ಿRPష಼శభଶ , as shown in Figure 5. 
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Figure 5. Confidence probability of Case 3 in equal-weighted RLSNs. 
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In the second step, when the RPs ௝ܴ , ڮ , ௝ܴା௄ିଵሺ݆ ൌ 1, ڮ , RܰP െ ܭ ൅ 1ሻ are selected as neighbor 
set ൛ ௝ܴ, ڮ , ௝ܴା௄ିଵൟ, the errors between the real position of TP and ܥKNNכ ௄௝ߝ)  ) in the equal-weighted 
RLSNs are calculated by Equation (5). 
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Finally, in the last step, the linear expected errors in the equal-weighted RLSNs equals to: 



Sensors 2012, 12                            
 

 

3614

RP
RP RP

RP

RP

RP
RP RP

RP

1 11 1
1

2
1

1

1

1 11 1

2
1

RP

1

Prob Prob Prob
Prob

Prob

Prob Prob Prob
1

Prob

N K
N K N Kj j

K K K K K KN K
jj j

K i j K K i N K
j

K

N K
N K N Kj j

j
N K

i

E E E E E

N

δ δ
λ

λ

λ

λ

ε ε ε
ε ε

ε ε ε

−
− + − +

− +
=

− +
=

=

−
− + − +

=
− +

=

=

⎧ ⎫
+ +⎪ ⎪⎧ ⎫ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎪ ⎪
⎪ ⎪⎩ ⎭

⎛ ⎞
+ +⎜ ⎟

⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
∑

∑

∑

∑

RP

2 2
1

,  Prob Prob ,  .
N

K Kr r

λ λ λ λ
δ δ

ε ε
= =

= =∑

 (6) 

where, Prob௄ఒ หఋୀ௥ ଶ⁄  and ߝఒ ൌ ௄ఒหఋୀ௥ߝ ଶ⁄  respectively stand for the values of Prob௄ఒ  and ߝ௄ఒ  when ߜ ൌ ݎ 2⁄ . 

3.3. Errors in Unequal-Weighted RLSNs 

From Equation (1), the difference between the equal and unequal-weighted RLSNs is about the 
weights’ distribution in the neighbor set. The estimated position in equal-weighted RLSNs ܥKNNכ  is 
located at the geometric center of the neighbor set ൛ ௝ܴ, ڮ , ௝ܴା௄ିଵൟ because the equal weight 1 ⁄ܭ  is 
distributed to each neighbor. However, in the unequal-weighted RLSNs, the weight of each neighbor 
significantly relies on the confidence probability to be selected as the most RSS-adjacent RP probௐ௄௦  
(for RP ܴ௦). Therefore, we will also need to discuss the following three cases in different values of ݆ 
conditions: 

(1) Case 1: ݆ ൌ 1 with the neighbor set ሼܴଵ, ڮ , ܴ௄ሽ. In this case, the confidence probability of ܴ௟ሼ݈ ൌ 1, ڮ , ሽ to be selected as the most RSS-adjacent RP probௐ௄௟ܭ  can be calculated by Equation (7). 
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Therefore, the errors between the real and estimated position of TP ߝௐ௄ଵ  in this case equal to: 
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(2) Case 2: ݆ ൌ 2, ڮ , RܰP െ ܭ  with the neighbor set ൛ ௝ܴ, ڮ , ௝ܴା௄ିଵൟ. Similarly, the confidence 
probability of selecting ௝ܴା௠ሼ݉ ൌ 0, ڮ , ܭ െ 1ሽ  as the most RSS-adjacent RP probௐ௄௝ା௠  and the 
associated errors ߝௐ௄௝  are respectively calculated by Equations (9) and (10): 
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(3) Case 3: ݆ ൌ RܰP െ ܭ ൅ 1 with the neighbor set ൛ܴேRPି௄ାଵ, ڮ , ܴேRPൟ. In this case, probௐ௄௡  ݊ ൌ RܰP െ ܭ ൅ 1, ڮ , RܰP and ߝௐ௄ேRPି௄ାଵ can be obtained by Equations (11) and (12): 
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Finally, based on Equations (2–4) and Equations (7–12), the linear expected errors in the  
unequal-weighted RLSNs will be calculated by Equation (13): 
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where, ߝௐఒ ൌ ௐ௄ఒߝ หఋୀ௥ ଶ⁄  stands for the value of ߝௐ௄ఒ  when ߜ ൌ ݎ 2⁄ . 

4. Numerical and Experimental Results 

From the analytical discussions in the previous section, we can find that the linear expected errors ߝ௄ and ߝௐ௄ in equal and unequal-weighted RLSNs rely significantly on the parameters K, σ and RܰP. 
Therefore, in this section, we will firstly present some numerical results about the relations addressed 
in Section 3, and then, the real experimental evaluations will also be discussed to verify the results of 
interest through this paper. In the numerical results that follow, we let α = 2. 
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4.1. Error Performance with Variations of K 

In Figures 6 and 7, we show the linear expected errors of the equal and unequal-weighted RLSNs, 
respectively, given that the TP is actually located with the physical distance ்݀ ൌ ݎ݅ ൅  .to the AP ߜ
These are derived from Equations (6) and (13) and plotted as the functions of the number of RPs RܰP. 
Clearly, as RܰP increases, the linear expected errors will also increase. However, the errors will not 
vary a lot with the increase of K. Take equal RLSNs for example. At RܰP = 25 and σ = 3 dBm, the 
decreasing rates of errors from K = 1 to K = 3, and from K = 3 to K = 5 are 11.7% and 7.5%. 
 

Figure 6. Linear expected errors with variations of K in equal-weighted RLSNs (r = 0.5 m). 

 

Figure 7. Linear expected errors with variations of K in unequal-weighted RLSNs (r = 0.5 m). 

 
4.2. Error Performance with Variations of r and σ 

In this section, the linear expected errors in the equal and unequal-weighted RLSNs are respectively 
plotted as the functions of RܰP for various conditions with r = 0.5 m, 1 m, 2 m and σ = 1 dBm, 3 dBm 
in Figures 8 and 9. The condition of r = 2 m and σ = 3 dBm has the largest error, and there are always 
smaller errors with smaller r and σ as expected. Furthermore, based on the Figures 6–9, we can observe 
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the influence degree on the linear expected errors in the equal and unequal-weighted RLSNs should be ݎ ൐ ߪ ൐  .Therefore, in the following results (in Figures (8–10)), we fix the value of K = 3 .ܭ

Figure 8. Linear expected errors with variations of r and σ in equal-weighted RLSNs (K = 3). 

 

Figure 9. Linear expected errors with variations of r and σ in unequal-weighted RLSNs (K = 3). 

 

4.3. Error Comparisons of Equal and Unequal-Weighted RLSNs 

The error comparisons between the equal and unequal-weighted RLSNs are shown in Figure 10. It 
can be easily observed that the errors in equal-weighted RLSNs are slightly smaller the  
unequal-weighted ones, which can be suggested as another interesting observation from this paper. 
However, this result can be interpreted based on the following two reasons: 

(1) In the linearly distributed RPs with logarithmic Gaussian RSS variations, the RSS difference of 
the distance-adjacent RPs will be significantly diminished as the distance to the AP increases. Then, it 
cannot be easily guaranteed that the larger weights will be distributed to the distance closer RPs. 

(2) Because of the significant large confidence probabilities (or infinite integrals) distributed to the 
closest and farthest RPs ܴଵ  and ܴேRP , large errors will be induced in unequal-weighted RLSNs, 
especially in the small RܰP and large σ conditions. 
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Figure 10. Error comparisons of linear expected errors in equal and unequal-weighted RLSNs. 

 
4.4. Experimental Setup 

In this section, some realistic experimental results about the localization errors in Wi-Fi RLSNs will 
be carried out in a typical straight corridor environment, as shown in Figure 11. The dimensions of this 
area are 31 m × 2 m and the RPs are linearly distributed along the corridor with the same 1 m interval. 

Figure 11. Experimental setup with two APs, 64 RPs and 33 test positions. 

 

There are two line-of-sight (LOS) visible APs (Linksys WAP54G) located at the right and left ends of 
the corridor at 2 m height, respectively. At each RP (indicated with ●’s), there are 300 continuous-time 
RSS samples recorded for the construction of radio map. The variations of RSS-mean, maximum and 
minimum are shown in Figure 12. Obviously, if we record the RSS-mean and associated coordinates as 
the fingerprints, the pre-assumed logarithmic Gaussian channel can be effectively satisfied. 

For consistency to our previous mathematical model, the positions of TP (with +’s) are randomly 
selected in this straight corridor environment. As shown in Figures 13 and 14, the RSS distributions at the 
TPs (100 new recorded RSS samples per TP) are fitted well by the Gaussian models with small fitting 
errors ܧ௙ ൌ ሼሾProbሺܧ ்ܲതതതሻ െ Probሺ்ܲ തതതሻሿଶሽ, where, Probሺ ்ܲതതതሻ and Probሺ்ܲ തതതሻ denote the real recorded and 
fitted probabilities of sample ்ܲതതത. ܧ௙  is calculated by the expectation of the probability difference of Probሺ ்ܲതതതሻ and Probሺ்ܲ തതതሻ. Moreover, the RSS samples are recorded by a laptop (ASUS A8F) with our 
developed RSS sensing software “HITWLAN v1.0” [32] in Figure 15. 
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Figure 12. RSS variations in linear distribution model with two LOS visible APs. 

 

Figure 13. Optimal means and standard deviations in Gaussian fitting models at TPs. 

 

Figure 14. Gaussian fitting errors at TPs. 
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Figure 15. “HITWLAN v1.0” RSS sensing software.  

 

4.5. Experimental Evaluations in Real In-Building Environments 

In this section, we will pay significant attention to the following two observations: (1) The error 
variations with the increase of K, σ and r in the RLSNs; (2) The error comparisons of equal and 
unequal-weighted RLSNs. 

From Figures 16–21, we can conclude that: (1) Although the error variations will become irregular 
under significantly large r conditions (e.g., r = 4 m), the errors will generally decrease as K increases 
and r decreases; (2) The errors are more sensitive to the σ values compared to the values of K;  
(3) The errors in equal-weighted RLSNs are slightly smaller compared to the unequal-weighted ones, 
which is also accordance with our previous analytical and numerical results. 
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Figure 16. Localization errors in equal-weighted RLSNs with one AP (AP1). 

 

Figure 17. Localization errors in equal-weighted RLSNs with two APs (AP1 and AP2). 
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Figure 18. Localization errors in unequal-weighted RLSNs with one AP (AP1). 

 

Figure 19. Localization errors in unequal-weighted RLSNs with two APs (AP1 and AP2). 
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to the variations of σ, especially from categories ܥ௅ to ܥெ. Generally, larger localization errors will 
result as the standard deviation always increases as expected. 
 

Figure 20. Error comparisons of equal and unequal-weighted RLSNs (r = 1 m). 

 

Figure 21. Relations of errors and deviations in equal and unequal-weighted RLSNs (r = 1 m). 
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5. Conclusions and Challenges 

This paper has offered a preliminary analysis of the linear expected errors in the equal and  
unequal-weighted RLSNs with in-building Wi-Fi Gaussian linear fingerprints, and also introduced the 
mathematical relations of the linear expected errors (ߝ௄ or ߝௐ௄), number of neighbors (K), number and 
interval of calibrated RPs ( RܰP and r) and standard deviations of the new sensed RSS at TP σ. The 
objective of this paper is that the suggested relations can be employed for a better design of the high-
accurate, low-cost and real-time fingerprint-based in-building RADAR localization system in RLSNs, 
either through the judicious recording of the fingerprints, or through the optimal deployment of the 
system architectures and devices. 

From the mathematical relations, numerical and experimental results proposed in this paper, there 
three observations can be made as follows: (1) In the equal and unequal-weighted RLSNs, the degree of 
influence on the linear expected errors is ݎ ൐ ߪ ൐ ܭ  with a given value of RܰP ; (2) The error 
performance of equal-weighted RLSNs slightly outperforms the unequal-weighted ones in logarithmic 
Gaussian attenuation channels; (3) The expected error has great linear dependence on the values of RܰP. 

However, the following three challenges should form parts of our ongoing work: (1) Because the 
ideal logarithmic Gaussian attenuation channel utilized in this paper cannot be always satisfied or 
approximated in real in-building linear environments (e.g., the straight corridors), much attention will 
also be paid to some other typical models, like the Rayleigh and Rice distributions in the logarithmic 
channel with break point(s); (2) If the RPs are not calibrated on one side of the AP, the mathematical 
relations about the linear expected errors addressed in this paper will be changed because the test point 
will no longer satisfy the uniform distributions in the target location areas (e.g., the probability of the 
TP’s positions belonging to the range of ሺ0, ݀ଵሻ will be doubled); (3) If there are three or more APs to 
be considered, for the WKNN localization algorithm, the confidence probability of each neighbor to be 
selected as the most RSS-adjacent RP should be calculated by a joint probability integral. 
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