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Abstract: Low-cost MEMS-based IMUs, video cameras and portable GNSS devices are 
commercially available for automotive applications and some manufacturers have already 
integrated such facilities into their vehicle systems. GNSS provides positioning, navigation 
and timing solutions to users worldwide. However, signal attenuation, reflections or 
blockages may give rise to positioning difficulties. As opposed to GNSS, a generic IMU, 
which is independent of electromagnetic wave reception, can calculate a high-bandwidth 
navigation solution, however the output from a self-contained IMU accumulates errors 
over time. In addition, video cameras also possess great potential as alternate sensors in the 
navigation community, particularly in challenging GNSS environments and are becoming 
more common as options in vehicles. Aiming at taking advantage of these existing onboard 
technologies for ground vehicle navigation in challenging environments, this paper 
develops an integrated camera/IMU/GNSS system based on the extended Kalman filter 
(EKF). Our proposed integration architecture is examined using a live dataset collected in 
an operational traffic environment. The experimental results demonstrate that the proposed 
integrated system provides accurate estimations and potentially outperforms the tightly 
coupled GNSS/IMU integration in challenging environments with sparse GNSS observations. 
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1. Introduction 

GNSS systems have been the prominent technology to fulfill the demanding requirements for road 
navigation. However, GNSS signals are subject to attenuation, reflections, or even blockages as a 
result of driving in difficult signal reception areas, such as urban canyons, enclosed parking garages 
and underground concrete tunnels. RF interference (RFI), whether deliberate or not, can misguide the 
user towards an erroneous position solution [1]. The use of augmentation technologies is capable of 
mitigating these disadvantages of standalone GNSS solutions and providing improved availability and 
accuracy. By coupling the measurements from both GNSS and IMU sensors, integration techniques are 
commercially employed to calculate a high-bandwidth navigation solution. This effectively enables the 
calibration of the IMU sensors and the control of the error growth of inertial navigation, and also 
enables higher data output compared to a standalone GNSS solution. A number of researchers have 
presented detailed realization methods and performance analyses of the loosely/tightly coupled 
GNSS/IMU implementations [2–4]. 

Apart from the traditional navigation technologies, the progress in computer vision has motivated a 
variety of location-based applications, such as simultaneous localization and mapping (SLAM) [5], 
and provided potential capabilities for the navigation community. Visual sensors usually incorporate 
other sensors, such as GNSS, IMU and laser scanners, to achieve a system level integration.  
Soloviev [6] provided an integration of GPS carrier phase and vision-based measurements for 
navigation in GPS challenged environments. The GPS carrier phase measurements were used to 
resolve the scale ambiguity of the unknown change in position vector. The algorithm was validated via 
simulations as well as live experiments. 

In more common cases, a vision sensor is incorporated with an IMU sensor for motion estimation 
with high frequency. Corke [7] presented a tutorial overview on inertial and visual sensors and gave 
the essential principles of integrating them to obtain robust estimates of sensor motion and 3D 
reconstruction. The integration strategy is categorized into the loose and tight coupling. A detailed 
performance comparison of the loosely/tightly coupled camera/IMU integration was given by Chu [8]. 
The tightly coupled integration might yield higher accuracy, but it is prone to divergence under certain 
conditions and vice versa. 

By utilizing strapdown inertial sensors and a fisheye lens, Schlaile [9] demonstrated a navigation 
system for an indoor vertical-take-off-and-landing (VTOL) micro aerial vehicle (MAV) based on the 
Kalman filter. The inverse depth method was applied to determine the movement of the camera.  
The scale factor ambiguity was recovered by simulating the laser ranging as additional source of 
information and measuring the flight height over ground. Apart from using a monocular camera, 
Soloviev [10] proposed a multi-aperture approach integrated with IMU measurements. By observing 
the feature points over a wide range, the vision-related navigation uncertainty could be significantly 
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reduced. The unit sphere on which the feature points were mapped was presented and used to model 
the sensor fusion algorithm. 

As opposed to utilizing a forward-looking camera, Hide [11] used a camera with a ground-facing 
orientation to accomplish the camera/IMU integration for pedestrian navigation. Given the estimated 
height to the ground, the camera velocity was retrieved from the translation information. The residual 
between IMU and camera velocities then served as the Kalman filter’s measurements. With a similar 
IMU/camera mounting method, Huang [12] provided a tightly coupled integration by using the 
residual between the predicted and actual feature location as the filter’s input, which was expressed in 
the image coordinate frame. 

Nowadays, low-cost MEMS-based IMUs, video cameras and portable GNSS devices are 
commercially available for automotive applications and some manufacturers have already integrated 
such facilities into their vehicle systems. This research aims at robust ground vehicle navigation based 
on camera/IMU/GNSS integration against challenging GNSS environments where the blocked sky can 
significantly obstruct the view of low-elevation-angle satellites and hinder a user’s navigation 
performance. 

Three key contributions are addressed herein: first, the proposed camera/IMU/GNSS integration 
architecture complements each of the sensors and potentially overcomes the disadvantage of traditional 
GNSS/IMU integration. For example, the number of line-of-sight (LOS) GNSS pseudoranges remains 
between two and three for a while such as wandering through the narrow streets in a city’s downtown 
area. Although the tightly coupled GNSS/IMU integration allows the filter to obtain the user’s position 
solution with sparse measurements, the overall solution is prone to divergence over time due to the 
lack of redundant constraints. On the other hand, with the aid of more than two LOS pseudorange 
observations from high-elevation-angle satellites, the baseline magnitude of position change within an 
allocated time interval can be extracted. This GNSS-derived baseline magnitude in turn enables a 
monocular camera to resolve its scale factor ambiguity if the data rates of GNSS and camera sensors 
are synchronized. 

Second, although significant effort has been spent on developing visual odometry algorithms, the 
efficiency and performance regarding image frame rate has yet to be evaluated. The navigation 
information derived from the computer vision algorithms is, ideally, independent of frame rate, 
provided two adjacent image frames overlap each other. However, in reality the actual situation does 
not provide this independence due to the vehicle dynamics and sufficiency of the accurate image 
feature correspondences. In an effort to balance the tradeoff between practical performance and 
computational cost, we deliberately reduce the image frame rate and examine the positioning accuracy 
of our integrated scheme. 

Third, the integrated system is validated through a live dataset which was collected in an operational 
traffic environment with available centimeter-accuracy truth reference. Although there are previous 
usable datasets for SLAM-based analysis, few of them were collected in the actual environment with 
available high-accuracy truth reference [13,14]. The camera images we used were captured in an 
operational traffic environment with vehicles passing by and overtaking the host vehicle during the test 
period. The high-accuracy truth reference was generated by leveraging three RTK GPS receivers on 
the vehicle roof top, which facilitates a fair and reliable comparison between algorithms under 
assessment. The only simulation in this paper is the GNSS pseudorange measurements. 
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The remainder of the paper proceeds as follows: we first introduce the coordinate frames utilized in 
this paper. The inertial navigation and its error model are then summarized. Thirdly, the principle of 
computer vision-based motion estimation is presented. GNSS simulation and differential processing 
are discussed afterwards. Based on the above sensor description, the proposed EKF model and 
integrated architecture are established, followed by the live test validation. The paper concludes with 
the results as well as planned future work. 

2. Coordinate Frames 

Figure 1 illustrates three major coordinate frames on the Earth ellipsoid. The inertial coordinate 
frame (i frame) - i i iO X Y Z  is the fundamental reference frame for inertial navigation and an IMU 
enclosure usually measures the specific force as well as the angular rate relative to the i frame. Its 
origin is on the Earth’s center of mass O  and it is stationary relative to the fixed stars. We usually 
express the ultimate position solution, latitude ϕ , longitude λ  and height h, in the Earth frame  
(e frame) - e e eO X Y Z . Its origin is the Earth’s center of mass O , with eZ  axis forming along polar axis 
and eX  axis lying on the intersection of the equatorial plane and prime meridian plane. The eY  axis is 
also on the equatorial plane and satisfies the right-hand rule. The origin and Z-axes of the i and e 
frames are coincident, respectively. In this paper, the e frame-based position solutions are based on the 
WGS-84 ellipsoid. To describe the velocity as well as the orientation of a ground vehicle, the  
right-handed navigation frame (n frame) - n n nP X Y Z  is utilized and locally placed at the user’s position 
P . The nZ  axis is collinear with the local normal line of the reference ellipsoid pointing downwards 
while nX  and nY  axes indicate the local north and east direction, respectively. 

Figure 1. Inertial frame, earth frame and navigation frame representation on the Earth 
ellipsoid. 
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The specific force b
ibf  and angular rate b

ibω  from an IMU are usually measured relative to the i 

frame and expressed in the body frame (b frame) .The b frame has its origin at the center of the IMU 
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enclosure. If the IMU is mounted parallel to the vehicle frame, we allocate the bX  axis pointing 
forward, in view of the vehicle, and bZ  axis aligning with local gravity direction. The bY  axis satisfies 
the right-hand rule and indicates the right-side direction of the vehicle. Based on the pinhole projection 
model in our research, the image feature points are expressed in the camera frame (c frame) which is 
extended from the 2D image plane. The c frame representation is shown in Figure 2. The c frame’s 
origin is at the camera center C , and cX  as well as cY  axes point towards left and upward directions 
of the image plane, correspondingly. The cZ  axis lies along the principal axis and is orthogonal to the 
image plane. f  denotes the focal length of the camera. 

Figure 2. Representation of the camera frame with respect to the pinhole projection model. 
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In this paper, the vehicle dynamics model is established in terms of the b frame instead of other 
frames. According to Hol [15], the b frame based motion estimate has less modeling complexity and is 
prone to eliminating the influence of angular and position installation errors. 

3. Inertial Navigation and IMU Error Model 

A six-degree-of-freedom (6-DOF) strapdown IMU provides the user high-bandwidth position, 
velocity and orientation estimation with complete independence of the reception of electromagnetic 
waves as following differential equations [16]: 

( ) [( ) ( )]n n b n n n
b b ib ie en bC C Cω ω ω= ⋅ × − × + × ⋅  (1) 

[2( ) ( )] ( , )n n b n n n n
b ib ie enV C f V g hω ω ϕ= − × + × ⋅ +  (2) 

1 1(   1)
( )cos

e n

M N

P diag V
R h R h ϕ

= − ⋅
+ +  (3) 

In Equation (1), n
bC  is the direction cosine matrix representing the rotation between the b and n 

frames. The variables n
ieω  and n

enω  are the Earth’s rotation rate and body transport rate, respectively. 
The symbol ×  denotes the skew symmetric matrix of a specific angular rate term. The calculated n

bC  is 
then used to estimate the acceleration in terms of the n frame by multiplication with measured specific 
force b

ibf . As described in Equation (2), Coriolis force, body transport rate and local gravity terms are 
compensated in the estimation. Although the local gravity changes with latitude ϕ  and height h , the 
insensitivity can be ignored for a ground vehicle. In Equation (3), the position update is expressed in 
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the e frame and therefore needs MR  and NR , radii of curvatures in the meridian and prime vertical, to 
be estimated. 

Although a strapdown IMU propagates the high-frequency inertial navigation mathematically 
derived from Equations (1) to (3), the MEMS accelerometer and gyroscope sensors inevitably drift and 
give rise to quadratic and cubic accumulated mechanization errors. Researchers have developed error 
propagation models in various approaches for practical applications such as [17–19]. To describe a 
ground vehicle in low dynamics with well-calibrated a priori information, the Ψ  angle model [20] is 
introduced in this paper on account of simplicity: 

( )n n n n
enP P Vδ ω δ δ= − × +  (4) 

2[   ] [(2 ) ]

         [( ) ]

n n n n n
ie en

e e e

n b n n b
b ib b

g g gV diag P V
R R R

C f C f

δ δ ω ω δ

δ δ

= − − − + ×

+ × Ψ +
 (5) 

( )n n n n b
in bCδ ω δ δωΨ = − × Ψ −  (6) 

In the above equations, eR  is the Earth radius; nPδ , nVδ , nδΨ , bfδ  and bδω  are the perturbation 
terms of position, velocity, orientation and sensor biases, respectively. 

As noted earlier, this paper aims to efficiently integrate data from camera, IMU and GNSS sensors 
to achieve high accuracy ground vehicle navigation in challenging GNSS environments. Therefore, a 
model for reasonably calibrating the IMU sensor biases needs to be established considering the 
practical situation. A commonly cited first-order Gauss-Markov model regards the IMU errors as 3 
independent components: a random constant, a Gauss-Markov variable and a white noise term and 
therein the accelerometer/gyroscope error propagations are written as following equations [16,18]: 

        c m f c mf f f w wωδ δ δ δω δω δω= + + = + +  (7) 

The subscripts of c and m indicate the random constant and first-order Gauss-Markov terms, and 
their derivatives yield: 

0      0c cfδ δω= =  (8) 

      m m
m f m

f

ff
T T ω

ω

δ δωδ μ δω μ= − + = − +  (9) 

where the constants Tf and Tw are the correlation times; wf, ww, µf and µw are assumed uncorrelated and 
correlated white Gaussian noise (WGN) for inertial sensors. Equations (4) to (9) construct the 
fundamental linearized dynamic system of the EKF integrated system which will be further discussed 
in Section 6. 

4. Motion Estimation in Computer Vision 

The camera requires calibration prior to the computer vision routine for motion estimation. To 
effectively estimate the intrinsic camera parameters as well as distortion characteristics of the images, 
researchers have developed practical calibration methods such as [21–23] and there exist open source 
toolkits for calibration-related tasks. Normally, the camera calibration parameters do not change 
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rapidly over time, moreover, the run-to-run calibration differences are even negligible within a limited 
period of time, provided the camera is not reconfigured. In addition, as opposed to an IMU, a 
temperature-independent CMOS/CCD sensor makes the camera resistant to ambient environmental 
change. Therefore, compared to the inertial sensors, the camera exhibits different calibration mechanism 
and characteristics coupled with a diverse model for long-term stability. 

As mentioned previously, the perspective projection with a pinhole camera model is used. To 
estimate the motion in successive image frames, the computer vision module executes three main 
functions: (1) feature extraction and matching; (2) outlier removal and discrimination of the moving 
features; (3) motion estimation. 

4.1. Feature Extraction and Matching 

Feature extraction is the essential process for subsequent motion estimation. As an outdoor 
environment usually has a high-contrast texture in the image scene, image points with distinct 
structural information are selected as features. In computer vision community, the scale-invariant 
feature transform (SIFT) algorithm [24] is a well-accepted approach to describe and match the feature 
points which are usually invariant to distortion, scaling, orientation, affine transformation, and 
illumination changes. Although several faster algorithms, such as PCA [25] and SURF [26], facilitate 
reducing the computational load, the point location accuracy can be in turn degraded [27].  
We, consequently, use the SIFT algorithm to locate the feature points and create the corresponding 
scale-invariant descriptor vectors by measuring the gradient magnitude and orientation in the  
pre-defined pixel neighborhood. To provide sufficient dimensionalities in the feature space for 
favorable matching result, a 128-dimensional descriptor:  

 Ԧ݀ ൌ ሺ݀ଵ, ݀ଶ, ڮ , ݀ଵଶ଼ሻ் (10) 

is used for each pre-selected feature point. In adjacent images, the similarity of two candidate feature 
points, A and B, is given by the Euclidean distance: 

 ݈஺஻ ൌ ฮ Ԧ݀஺ െ Ԧ݀஻ฮ ൌ ට∑ ௜ଶଵଶ଼௜ୀଵ݀ߜ  (11) 

By setting the empirically examined accept-reject threshold, the feature matching process is evaluated 
using the ratio of the minimum distance to the next minimum [24]. Ideally, if an image scene contains 
a non-uniform texture, there should be a large amount of SIFT features which guarantee desirable 
redundancy for optimized motion estimation. However, there inevitably exist outliers due to the limited 
descriptor dimensionality and the imperfect matching determination criteria. Therefore, an outlier 
removal scheme is undertaken prior to the motion determination process. In order to remove the outlier 
correspondences which potentially give rise to undesirable estimation, the random sample consensus 
(RANSAC) algorithm [28] is taken into consideration in this paper. 

4.2. Outlier Removal by RANSAC 

Based on the primary principle of epipolar geometry, all corresponding image points satisfy the 
coplanarity equation: 
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 xᇱ்Fxൌ0 (12) 

where F is a 3 × 3 fundamental matrix which geometrically describes the projection between two 
corresponding points in a pair of images representing the same 3D object; x  and x′  are the 
coordinates of the points in image planes, respectively. It is supposed that RANSAC algorithm 
estimates the fundamental matrix F which optimally fits all the inliers. However, RANSAC may miss 
out a few outliers and estimate a biased F matrix due to the improper number of iteration operations 
and a relatively large number of outliers. Consequently, a multilayer RANSAC scheme [29] is 
proposed and implemented as follows: 

(1) arbitrarily selecting a subset samples from all pre-selected matching features; 
(2) reconstructing epipolar geometry constraint satisfying Equation (12) and computing the 

fundamental matrix F based on the selected samples; 
(3) using the same constraint and the calculated matrix F to determine the error from all features; 
(4) with a proper threshold, categorizing all feature correspondences as inliers or outliers by 

appraising the error statistics; 
(5) iterating the first three steps multiple times (refer to [28] for a favorable number of iterations); 
(6) finding the best-fit matrix F which yields the optimal error estimates and removing the outliers 

discriminated by this matrix F; 
(7) repeating the first six steps with a gradually shrunken inlier/outlier determination threshold. 

To test the multilayer RANSAC scheme, we use a sequence of images (2.5 Hz rate) which will be 
elaborated in Section 7. Figure 3 shows the number of originally matched features as well as that after 
implementing multilayer RANSAC. It is clearly seen that after the fourth layer of RANSAC processing, 
there are still hundreds of matched features for every moment to maintain observable redundancy for 
motion estimation. 

Figure 3. Number of matched features after implementing multilayer RANSAC. 

 

Figure 4 intuitively illustrates a demonstration of feature matching and outlier removal between two 
adjacent image frames. The upper two subfigures are the original images for analysis showing a van 
overtaking the host vehicle. The middle ones present the feature matching after SIFT processing, and 
each cyan line indicates a pair of feature correspondence. It can be noted that the false matching arises 
and the images thus require outlier removal algorithms in order to retain only the static inliers. The 
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lower subplots present the refined matching results by applying multilayer RANSAC scheme. As it has 
shown, all the remainder feature correspondences are recognized as inliers and no feature locates on 
the moving van any more. 

Figure 4. Feature matching and outlier removal between two image frames. 

 

 

 

4.3. Motion Estimation 

After the refinement of feature matching by implementing the multilayer RANSAC scheme, we 
also compute the most reasonable estimate of the matrix F. According to the primary principles of 
epipolar geometry and the properties of fundamental matrix [30], we have the following relationship 
between the motion of the camera and fundamental matrix: 

 E ൌ K்FKൌ( Ԧ݈ ൈ) · R (13) 

where Ԧ݈ ൈ  is the skew symmetric of camera translation; R is the rotation matrix; K contains the 
intrinsic calibration parameters and E is the essential matrix. By implementing the singular value 
decomposition (SVD), the camera rotation R and unit translation vector Ԧ݈ regarding two adjacent 
images can be finally retrieved and serve as the vision-based navigation parameters for integration 
purposes. It is worth noting that since the essential matrix E has only five degrees of freedom, the 3× 1 
vector Ԧ݈ is resolved up to scale and is accordingly subject to an ambiguity issue in terms of the 
translation magnitude. If the absolute magnitude of the translation between two successive images is 
extracted by other approaches, which we will elaborate in Section 5, the scale ambiguity of Ԧ݈ can be 
finally resolved. 

5. Determination of Translation Magnitude from GNSS Measurements 

In an effort to resolve the scale ambiguity issue of a monocular camera, there are several available 
approaches, such as using the wheel tick and inertial sensors [6]. Before resorting to the inertial-aided 
approach, a decorrelation solution between sensor error and inertial mechanization is desired. An 
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analogous situation applies to using a wheel tick sensor if its drift arises quickly. Conversely, as one of 
the most widely applied outdoor positioning technologies, GNSS does not yield accumulated ranging 
or positioning errors, and can provide the capability to resolve the scale ambiguity problem of a 
monocular camera by leveraging GNSS differential technique. If the acquired GNSS and image data 
are synchronized, the baseline of position change between two GNSS epochs coincides with the 
desired camera translation. The GNSS observation equation for pseudorange measurements is given by: 

                     1,...,i i i i i i
r I TP c t c T d d i kρ ε= + ⋅ − ⋅ − + + =  (14) 

where: 
iP  is the pseudorange measurement; 
iρ  is the true geometric range between the designated GNSS satellite and the vehicle; 

rt  is the receiver clock error; 
iT  is the satellite clock error; 

c  is the speed of light; 
i
Id  and i

Td  are ionospheric and tropospheric corrections, respectively, along the signal propagation 
path; 

iε  denotes the unmodeled observation errors containing the thermal noise and so forth; 

The superscript i indicates the satellite index and k represents the total tracked number of satellites. 
Resorting to the concept of differential positioning technology, Equation (14) between two epochs 

yield differential expression as follows: 

                     1,...,i i i
rP c t i kδ δρ δ δε= + ⋅ + =  (15) 

where the notation δ  depicts the differential operation for each term. Under low dynamic conditions 
with short time intervals, the differential operation adequately eliminates the ionospheric and 
tropospheric effects. For the differential term of the satellite clock error, it can be either calculated 
using the decoded ephemeris or simply ignored as the satellite clock drift can be neglected in a short 
temporal scale. 

According to van Graas [31] and Soloviev [6], the true range differential iδρ  correlates the baseline 
magnitude of position change and the relationship satisfies: 

( ) ( 1)

     dot(R ( ) R ( ), u( )) dot(R ( 1) R ( 1), u( -1))

     dot(R ( ), u( )) dot(R ( 1), u( 1)) dot( R ( ), u( )) dot(R ( 1), u( ))
1,...,

i i i

i i
r r

i i
r r

t t

t t t t t t

t t t t t t t t
i k

δρ ρ ρ

δ δ

= − −

= − − − − −

= − − − − − −
=

 (16) 

where dot(, )  defines the vector dot product; R i  and R r  denote the position vectors of the satellite and 

the receiver in the e frame; 
R Ru
R R

i
r

i
r

−=
−

 is the unit vector along the signal reception path. 

According to the commutative and distributive laws of the vector dot product, Equation (16) yields 
the baseline of position change R rδ  as well as the change of the unit vector uδ . With the satellite 
broadcast ephemeris, the satellite position vector R ( 1)i t −  and R ( )i t can be easily estimated. In 
addition, the user’s previous position vector R ( 1)r t −  has been optimally estimated by the filter of the 



Sensors 2012, 12              
 

 

3172

integrated system, and the present position vector R ( )r t  in Equation (16) can be initially determined 
by inertial navigation given a short time interval. The R ( )r t  at this stage is not for the ultimate 
position solution at the present time t  but for the upcoming R rδ  estimation. Note that after the dot 
product operation, the desired unknown becomes the scalar R rδ  instead of R rδ . 

Combining the Equations (15) and (16) with rearranged known/unknown quantities, the revised 
differential equation is expressed as: 

cos( ) R                       1,...,i i i
r r rP c t i kδ θ δ δ δε′ = − ⋅ + ⋅ + =  (17) 

where: 
iPδ ′  is the pseudorange differential term compensated by the known quantities of the dot product 

operation; 
i
rθ  represents the included angle between the vectors of R rδ  and u . 

With two or more available pseudorange observations, the unknown terms of R rδ  and rtδ  can be 
derived by implementing the least-square fit. It is worth noting that the LOS measurements play an 
important role in accurate R rδ  estimation as a contaminated measurement does not purely satisfy the 
above-mentioned satellite/user relationship and will give rise to a biased estimate of R rδ . In an effort 
to conduct multipath detection and mitigation in challenging GNSS environments, previous researchers 
have applied several approaches [32,33] by leveraging pseudorange, carrier phase or signal-to-noise 
ratio (SNR) measurements based on the test statistics. However, difficulties arise to road applications 
as a result of undesirable detection performance and required hardware upgrades [34]. Another easier 
option uses a weighting scheme by evaluating the satellite elevation angle and carrier-to-noise ratio 
(C/No) to restrain the multipath effect. With the synchronized GNSS and camera observations, the 
camera scale ambiguity can be finally resolved by the estimation of the baseline magnitude of position 
change R rδ  between two GNSS epochs. 

6. EKF Modeling and Implementation 

To optimally implement sensor integration, several forms of non-linear filtering techniques were 
previously developed and validated, such as the EKF, unscented Kalman filter (UKF) as well as 
particle filter (PF). An EKF design linearizes the system and measurement models by considering a 
first-order Taylor series expansion at the predicted state estimate. This first-order approximation 
enables the linearized models to implement standard Kalman filter processing. In a typical UKF design, 
particularly for high non-linear instances, the selected sigma points through the unscented transform 
estimate the mean and covariance of the state vector. Based on the Bayesian estimation theory, the PF 
design is supposed to achieve a better solution compared to the EKF and UKF implementations if it is 
properly established. Nevertheless, the intense computational burden of the UKF and PF processing, 
one of their prominent shortcomings, brings about severe time-lag estimation and fatally hinders  
real-time road applications. On the other hand, for low-dynamic applications such as consumer-grade 
ground vehicle navigation, a time-efficient EKF-based sensor integration scheme requires limited 
computation and can agree well with the actual situation in terms of the accuracy in statistics [35,36]. 
The EKF approach is thus adopted as the proposed filter design. 
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As described previously, Equations (4) to (9) serve as the EKF discretized continuous-time model 
which is summarized as: 

 ௗ୶ሺ௧ሻௗ௧ ൌ Fxሺݐሻ ൅ Gwሺݐሻ, wሺݐሻ~ܰሺ0, Qሺݐሻሻ (18) 

In Equation (18), F  and G  are the linearized dynamic matrix and input coefficient matrix with 
constant dimensionalities. Additive white Gaussian noise of the system is denoted as wሺݐሻ with a 
power spectral density Qሺݐሻ and given by: 

 wሺݐሻ ൌ ሾݓ௙ ଷൈଵ் ఠ ଷൈଵ்ݓ   ௙ ଷൈଵ்ߤ   ఠ ଷൈଵ்ߤ   ሿ் (19) 

where the four triads denote uncorrelated and correlated noises of the sensor biases. The 15-element 
system state vector is given by: 

 xሺݐሻ ൌ ሾߜ ଷܲൈଵ௡    ்  ߜ ଷܸൈଵ௡    ்  ߜΨଷൈଵ௡    ்  ߜ ଷ݂ൈଵ௕    ்  ߱ߜଷൈଵ௕    ்ሿ் (20) 

where the triad perturbation terms of position, velocity, orientation and sensor biases are included. 
As camera-derived navigation parameters, the rotation matrix ܴ௖ሺݐሻ and translation unit vector Ԧ݈௖ሺݐሻ 

require additional transformations to obtain the camera-based position and orientation under the e and 
n frames, correspondingly. Let ܥ௕௡ሺ0ሻ be the initial IMU orientation matrix and ܥ௖௕  be the constant 
rotation matrix between the c and b frames. Assuming the origins of the c and b frames coincide, the 
camera-based orientation ܥሚ௕௡ሺݐሻ can be expressed as: 

ሻݐሚ௕௡ሺܥ  ൌ ௕௡ሺ0ሻܥ · ௖௕ܥ · ሺܸሺݐሻሻ் · ሺܥ௖௕ሻ் (21) 

where ܸሺݐሻ is the accumulated 3 × 3 camera rotation from the first image and satisfies: 

 ܸሺݐሻ ൌ ܴ௖ሺݐሻ · ܸሺݐ െ 1ሻ, ܸሺ1ሻ ൌ ܴ௖ሺ1ሻ  (22) 

Assuming ܥሚ௕௡ሺݐሻ contains only WGN, the orientation error term ߜΨ௡ in Equation (20) correlates ܥሚ௕௡ሺݐሻ as well as IMU-based orientation ܥ௕௡ with the relationship of: 

ሻݐሚ௕௡ሺܥ  ൌ ሾܫଷൈଷ ൅ ሺߜΨ௡ሺݐሻ ൈሻሿ · ሻݐ௕௡ሺܥ ൅ Γଷൈଷሺݐሻ (23) 

where matrix Γଷൈଷ consists of the measurement noises. Rearranging Equation (23) yields: 

ሻݐΨ௡ሺߜ  ൈൌ ሺܥሚ௕௡ሺݐሻ െ ሻሻݐ௕௡ሺܥ · ሺܥ௕௡ሺݐሻሻିଵ ൅ Γଷൈଷሺݐሻ (24) 

Let ܽଷ,ଶ , ܽଵ,ଷ  and ܽଶ,ଵ  be the corresponding elements from the matrix of right-hand side 
multiplication and construct: 

 A ൌ ሾܽଷ,ଶ  ܽଵ,ଷ  ܽଶ,ଵሿ் (25) 

ߟ  ൌ ሾΓଷ,ଶ  Γଵ,ଷ  Γଶ,ଵሿ் (26) 
According to Equations (24) to (26), the linear observation equation with respect to the orientation 

is finally given by: 

 Aሺݐሻ ൌ ሻݐΨ௡ሺߜ ൅  ሻ (27)ݐሺߟ

On the other hand, a camera-derived translation unit vector Ԧ݈௖ሺݐሻ is transformed as: 

 Ԧ݈௡ሺݐሻ ൌ ݐመ௕௡ሺܥ െ 1ሻ · ௖௕ܥ · Ԧ݈௖ሺݐሻ (28) 
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which means a unit vector expressed in the n frame. Note that the orientation matrix ܥመ௕௡ does not refer 
to the present moment but the instant of previous image update and the caret ^ indicates the EKF-based 
estimation. By obtaining the translation magnitude ߜR௥ which has been resolved in Section 5 by using 
differential LOS GNSS pseudoranges over epochs, the camera-based position is expressed as: 

 ෨ܲ௘ሺݐሻ ൌ ෠ܲ௘ሺݐ െ 1ሻ ൅ ሻݐR௥ሺߜ · ݈௡ሺݐሻ (29) 

In the above equation, ෨ܲ௘ሺݐሻ  depicts the camera-based position at the present moment, and  ෠ܲ௘ሺݐ െ 1ሻ indicates the previous EKF position update, both expressed in the e frame. By subtracting 
the IMU-based position ܲ௘ሺݐሻ from ෨ܲ௘ሺݐሻ, the observation equation with respect to the position is 
established by: 

 ܲ௘ሺݐሻ െ ෨ܲ௘ሺݐሻ ൌ ሻݐ௡ሺܲߜ ൅  ሻ (30)ݐሺߞ

where ߞሺݐሻ  denotes the measurement noise. Combining Equations (27) and (30) yields the EKF 
measurement model as below: 

 Yሺݐሻ ൌ Hxሺݐሻ ൅ vሺݐሻ, vሺݐሻ~ܰሺ0, R௖௢௩ሺݐሻሻ (31) 

In Equation (31), the measurement and noise vectors are respectively given by: 

 Yሺݐሻ ൌ ሾቀܲ௘ሺݐሻ െ ෨ܲ௘ሺݐሻቁ்   Aሺݐሻ்ሿ் (32) 

 vሺݐሻ ൌ ሾߞሺݐሻ்  ߟሺݐሻ்ሿ் (33) vሺݐሻ is assumed as WGN vector with a measurement noise covariance R௖௢௩ሺݐሻ. The measurement 
model matrix H is given by: 

 H ൌ ሾ ܫଷൈଷ  0ଷൈଷ  0ଷൈଷ 0ଷൈଷ  0ଷൈଷ  ܫଷൈଷ   0ଷൈଷ   0ଷൈଷ  0ଷൈଷ0ଷൈଷሿ (34) 

Following the standard EKF procedure, the state vector as well as its covariance matrix can be 
estimated and applied to ground vehicle navigation. After each update cycle, the state vector is reset to 
zero and refreshed by the next update operation. 

Figure 5 depicts an overall flowchart for integrating the camera, IMU and GNSS sensors through 
the EKF engine. The sensor units are colored cyan while white blocks indicate the utilized algorithms 
for intermediate parameter calculation. Between camera/GNSS data update, the vehicle motion is 
estimated by strapdown IMU mechanization. Once new camera/GNSS measurement data arrive, all 
derived navigation information is transformed in order to enable the EKF engine for accurate 
navigation solution and IMU sensor calibration. In such a method, the measurement model is 
straightforward to construct as relatively small/constant size of measurement elements are included in 
the EKF. The whole processing requires a relatively low computational load since covariance matrices 
have low dimensionality. Finally, a low-pass filter before implementing the EKF can be added to 
smooth the camera-derived rotation and translation parameters. 
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Figure 5. Flowchart of the proposed EKF-based architecture. 

 

7. Experimental Description and Result Analysis 

Our proposed integrated architecture is examined through a live test which was collected by a ground 
vehicle in an operational traffic environment in Málaga, Spain and is publicly available online [13]. 
The IMU and monocular forward-looking camera sensors were rigidly fixed on the vehicle rooftop. In 
order to provide a truth reference solution, three RTK GPS receivers were installed on the vehicle to 
generate centimeter-level positioning and orientation solutions. In total six drive segments have been 
accomplished, however the corresponding truth references were vulnerable to limited signal qualities. 
The Campus_0L segment had full range availability of truth reference and contains most common 
ground vehicle dynamics, such as acceleration, deceleration, stillness, forward driving, cornering, etc., 
and it is therefore adopted in this paper to test our integrated design. Other sensors utilized during the 
drive test, such as laser scanners, are disregarded. 

Table 1 presents some basic information of the overall drive test. In attempt to keep the recorded 
data from all sensors available during the whole test, we deliberately remove the beginning of the 
dataset when the vehicle was keeping static and the sensors were being powered on sequentially. The 
timespan in Table 1 is, consequently, approximately 20 s shorter than in the actual case. 
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Table 1. Basic information of the live drive test (Reproduced with permission from [13]). 

CAMPUS-0L test details 
Data-collection time (UTC) 2008/11/09, 10:07:57 

Distance of travel 1,139 m 
Timespan 322 s 

IMU make/model Xsens MTi 
IMU output rate 100 Hz 

Camera make/model AVT Marlin F-131C 
Image frame rate 7.5 Hz 
Image resolution 1,024 × 768 
Truth output rate 100 Hz 

Table 2 lists the individual IMU sensor specification of Xsens MTi enclosure [37]. Although this 
product enables 3D axes-based magnetometer to compensate for gyroscope drift, we ignore the 
magnetic field data and just make use of the 6-DOF raw angular rate and specific force measurements. 

Table 2. Gyroscope and Accelerometer specification of Xsens MTi enclosure (Reproduced 
with permission from [37]). 

 Gyroscope Accelerometer 
Drift rate 1 deg/s 0.02 m/s2 

Noise 0.05 deg/s/√Hz 0.002 m/s2/√Hz 
Bandwidth 40 Hz 30 Hz 

Misalignment 0.1 deg 0.1 deg 
Scale factor — 0.03% 

Table 3 summarizes the major intrinsic calibration parameters from the camera. There were actually 
two cameras of the same model mounted at both sides in front of the vehicle rooftop. Without loss of 
generality, only the left camera is employed in this paper and parameters in Table 3 are, accordingly, 
derived from the left one.  

Table 3. Intrinsic camera parameters of the camera in use (Reproduced with permission 
from [13]). 

AVT Marlin F-131C camera 
fx (pixel) 923.5295 
fy (pixel) 922.2418 
cx (pixel) 507.2222 
cy (pixel) 383.5822 

k1 −0.353754 
k2 0.162014 
p1 1.643379 × 10−3 
p2 3.655471 × 10−4 

The parameters fx as well as fy denote the location of the principal point by means of pixel element 
on the image plane. The focal length is, similarly, defined in terms of pixel element in both x and y 
axes, and is hence depicted as cx and cy. The remainder of the parameters in Table 3 are radial and 
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tangential distortions, respectively. In the Campus_0L segment, the rectified image frames are utilized 
instead of the originally captured ones to avoid the image projection offset and obtain accurate motion 
estimation parameters for sensor integration. 

Although the b and c frames do not necessarily coincide with each other as in our case, the camera 
and IMU sensors are usually rigidly fixed to the vehicle and their relative translation and rotation 
parameters are, therefore, constant. The rotation calibration between the b and c frames can be 
accomplished according to Lobo [38] while the lever arm vector needs more effort to be accurately 
estimated. The difficulties of lever arm vector estimation arise due to the sensitivity of the selected 
target position and the geometric configuration [38]. Normally, in low dynamic situations with 
moderate maneuvers, particularly for ground vehicle applications, a mild lever arm has little impact 
little on the navigation solution and it does not necessarily require an accurate estimation [15,39]. 
Therefore, although both rotation and translation calibration results between the b and c frames are 
provided in the dataset, we simply disregard the lever arm effect caused by the translation and take 
only the relative rotation b

cC  into consideration. 

Figure 6. Sky plot of available GPS and GLONASS satellites with the elevation mask 
angle of 40 degree. 

 
 
As described in Section 5, the scale factor ambiguity between every two successive image frames 

can be resolved using GNSS differential techniques, capable of obtaining the distance traveled over 
ground. In an effort to acquire more available GNSS measurements in potentially challenging 
environments, we take advantage of both GPS and GLONASS constellations for the pseudorange 
simulation. In typical challenging GNSS environments like urban downtown areas, low-elevation-angle 
signals are prone to severe multipath degradation or obstruction caused by nearby buildings. We, 
therefore, filter out those low-elevation-angle satellites from subsequent integration demonstrations. 
Figure 6 shows the sky plot of GPS/GLONASS satellites when the dataset was initially collected in 
Málaga with the elevation mask angle of 40 degree. The GPS pseudo random number (PRN) is 
between 1 and 32, while GLONASS orbital slot is designated within the range 51 to 74. Although the 
elevation mask angle is significantly higher than in most other applications, both constellations 



Sensors 2012, 12              
 

 

3178

contributed 8 space vehicles for the integration processing. According to the differential operation 
described in Equation (15), most of the common error sources can be eliminated from the satellite-to-
user geometry. 

It is simulated in this paper that the LOS pseudorange measurements contain thermal noise with 
0.25 m root-mean-square error (RMSE) during the whole Campus_0L segment. Note that the two 
constellations do not share the same coordinate system as well as time reference. In order to avoid 
newly introduced unknown quantities, the transformation between their coordinate frames has been 
implemented by using the approach presented by Cook [40] and, similarly, the system time offset can 
be extracted from the ephemerides of all modernized GLONASS-M satellites [41]. 

All the camera, IMU and GNSS measurements are timestamped. Instead of using the original  
7.5 Hz frame rate, we deliberately downsample the visual measurements to 2.5 Hz to reduce the 
computational load and maintain preferable alignment with the 100 Hz IMU measurements for the 
EKF state update estimation. Since the IMU measurements were not necessarily synchronized with the 
image frames, an extrapolation process of IMU measurements is expected to establish synchronization 
consistency. According to You [42], a second-order polynomial extrapolation is utilized to balance the 
computational load and the accuracy of extrapolation. In order to demonstrate and assess how different 
sensory-integration schemes perform in challenging environments, we gradually reduce the number of 
visible GPS/GLONASS satellites with lower elevation angles over time and compare the performance 
between the tightly coupled GNSS/IMU integration and our proposed camera/IMU/GNSS scheme. 

A Google Earth visualization of 1 Hz navigation trajectories of different integration schemes is 
qualitatively given in Figure 7 with common start/end times. The drive test started at the lower left and 
ended at the upper middle with the upside indicating the north direction. The black trajectory serves as 
the truth reference which was obtained by leveraging three RTK GPS receivers. The tightly coupled 
GNSS/IMU solution is illustrated in red and the vision/IMU/GNSS integration is shown as cyan line. 
Two purple arrows directly denote the place where the number of available satellites changes. A more 
quantitative comparison of the horizontal accuracy is shown in Figure 8 to reveal how the different 
integrated architectures react in terms of reduced observability of GNSS measurements in challenging 
environments. 

Based on Figures 7 and 8, the tight coupling of GNSS and IMU measurements yields an accurate 
solution when an adequate number of satellites are available (above four). Meanwhile, the gradually 
accumulated error of proposed camera/IMU/GNSS approach reaches a maximum of 5 m before the 
number of visible satellites drops to three. The small systematic error mainly stems from erosions of 
unexpected pixel positioning error, camera calibration error, numerical instability, and remnants of the 
outliers after RANSAC processing and so forth. After the number of satellites drops to three, the 
tightly coupled GNSS/IMU integration still enables a continuous navigation solution with insufficient 
observability, however the estimation tends to sharply drift away from the truth reference over time 
and its horizontal error exceeds 20 m at the end of the test. Contrarily, compared to previous 
navigation results, the camera/IMU/GNSS integration yields a slightly better accuracy with only three 
utilizable satellites. The reasons for this phenomenon are twofold. First, based on Equation (17) which 
contains two unknown quantities, three observation equations still maintain a redundant constraint 
provided that the measurements are derived from LOS directions. More importantly, the systematic 
error of the image processing module gives rise to the reversal of the positioning error during the 
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vehicle’s U-turn operation. As seen in Figure 7, the cyan line slightly tends to the left side of truth 
reference prior to the U-turn and therefore the same directionality of the systematic error makes the 
horizontal accuracy be partially compensated after the U-turn. 

Figure 7. Google Earth visualization of the navigation trajectories (black line: truth 
trajectory, cyan line: camera/IMU/GNSS integration, red line: tightly coupled GNSS/IMU). 

 

Figure 8. Comparison of horizontal error between the tightly coupled GNSS/IMU and 
camera/IMU/GNSS integrations in terms of reduced observability of GNSS measurements. 

 

Figure 9. Horizontal positioning error statistics of the camera/IMU/GNSS integration. 
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According to the above-mentioned facts, the camera/IMU/GNSS integration brings us a potential 
advantage compared with the traditional tightly coupled GNSS/IMU technique in challenging 
environments with sparse GNSS observations. A more detailed horizontal positioning error analysis of 
the camera/IMU/GNSS integration is presented in Figure 9 with the same hypothesis.  

The left side shows the horizontal positioning error in two different zoom levels. The right side 
shows the histograms, cumulative distribution curves and other related statistics. All the subfigures and 
corresponding statistics are based on 1 Hz solution. Refer to [1,43] which define these statistics/plots 
in detail.  

Researchers sometimes refer to quaternions, rather than Euler angles, for orientation representation, 
particularly for high dynamic applications [14,15]. The quaternion expression avoids the gimbal lock 
phenomenon when the pitch angle approaches ±90 deg, and operates more efficiently compared with 
multiplications of direction cosine matrices. Whereas, since a ground vehicle is incapable of operating 
orthogonal to the ground plane, Euler angles do not suffer from the singularity problem and can 
provide an intuitive manner for the user to perceive the vehicle direction. We, therefore, choose roll, 
pitch and yaw angles for representing the vehicle’s orientation based on Tait-Bryan convention.  
Figure 10 shows the yaw angle error statistics of the camera/IMU/GNSS integration. Yaw jitters occur 
as a result of the abrupt change in the centrifugal force when the vehicle underwent the U-turn 
operation. Although the angle residual is maintained within 1 deg in a majority of the time during the 
test segment, the relatively low level of systematic error still can be observed from the zoomed-in 
subfigure due to the imperfection of the computer vision module. This further proves the reversal of 
the positioning error during the vehicle’s cornering as shown in Figure 8. It can be inferred that the 
accumulated position and orientation errors will gradually erode the navigation solution if the dataset 
is long enough without any other sources of corrections. 

Figure 10. Yaw angle error statistics of the camera/IMU/GNSS integration. 

 
 
In addition, the IMU sensor bias estimation is shown in Figure 11. Those large biases from both the 

accelerometer and gyroscope sensors inevitably cause erroneous IMU mechanization solutions in a 
matter of seconds without sensor calibration. The non-smoothly varying biases, particularly for the 
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accelerometer components, gave rise to the unpredictability of the sensor errors. Simply averaging the 
sensor biases within even a few seconds may yield an inaccurate navigation solution, particularly when 
the vehicle dynamics significantly change with velocity and cornering stiffness. As seen in Figure 11, 
during the vehicle’s cornering, the accelerometer bias on x-axis dramatically dropped by 
approximately 200 milli-g. However, the actual sensor biases may be, to a certain extent, different 
from the estimation shown in Figure 11 in terms of the fidelities of the utilized filtering models [16]. 

Figure 11. Accelerometer and gyroscope estimation based on the camera/IMU/GNSS integration. 

 

Figure 12. Horizontal positioning error comparison by using different image frame rate. 
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feature correspondences tend to degrade the reliability of camera motion estimation. The  
sawtooth-shaped curves therefore arise with worse accuracy. During the U-turn operation when the 
images partially overlap each other, SIFT/RANSAC algorithms acquire much fewer feature 
correspondences with lower frame rate, which results in abrupt change in positioning accuracy as seen 
in Figure 12, particularly for the low frame rates of 0.25 and 0.50 Hz. The worst situation may occur 
when no overlap can be found in two consecutive images. Consequently, the strategy to determine an 
image frame rate is primarily dependent on the vehicle dynamics, IMU quality and fidelity of utilized 
filtering models. In our case, 0.25 Hz frame rate reaches the lower limit as during the U-turn the gaps 
of the image overlap arise for a frame interval of approximately 4 s. It is worth noting that the  
vision-based error characteristics are relevant to the processed images and the systematic error 
therefore varies with the frame rate as seen in Figure 12, particularly for the time period after U-turn.A 
higher image frame rate tends to yield better integration accuracy at the cost of more excessive 
computational load, whereas the acceptable processing speed inevitably depends on the available 
computational capability. In Campus_0L segment, we used a 64-bit desktop computer with a 3 GHz 
processor to process the 2.5 Hz rate images with 1,024 × 768 resolution based on a MATLAB 
platform. Our implementation requires a few seconds of processing for each pair of images and tens of 
milliseconds for all other filtering routines and, consequently, has yet to achieve real-time functionality. 
Moore’s law, fortunately, has been appropriately indicating the rapid development of integrated 
circuits during the past decades and also has given us encouraging prediction on the exponentially 
growing processing capacity of semiconductor materials in the future. In addition, instead of using a 
CPU, a GPU module also facilitates speeding up the image processing task towards a real-time 
computation. 

8. Conclusions 

Aiming at taking advantage of the existing onboard technologies for ground vehicle navigation in 
challenging environments, this paper has developed an integrated camera/IMU/GNSS system based on 
the EKF design. The estimated motion parameters from successive image frames were utilized to 
compensate the drifting IMU sensor biases and maintain the accurate strapdown mechanization 
between the update of image data. For resolving the scale ambiguity problem of a monocular camera, 
GNSS differential technique provided an effective manner to extract the baseline magnitude of 
position change. Based on the EKF design, the proposed integrated system is able to provide 15-state 
high-bandwidth navigation solutions. Our implementation has been validated through a 5-minute long 
drive test which provided raw camera and IMU data as well as centimeter-accuracy truth reference.  
For a reasonable simulation of challenging GNSS environments, we gradually decreased the number of 
visible satellites with lower elevation angles over time. The experiment has provided results with high 
accuracies, a majority to the sub-degree level in the yaw angle and meter level in the horizontal plane. 
Furthermore, it was demonstrated that under the condition of sparse GNSS observations, the 
camera/IMU/GNSS integration potentially outperformed the tightly-coupled GNSS/IMU scheme 
which has yielded diverging navigation solutions. The camera/IMU/GNSS integration has also been 
tested with different image frame rates and the results revealed that the accuracy deteriorates with 
decreasing frame rates. Future work will further integrate GNSS measurements into the filtering 
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architecture for better error growth control and automatically enable the loosely/tightly coupled 
GNSS/IMU integration in case relatively favorable GNSS conditions arise. Future work also includes a 
target objective of real-time functionality with revised computer vision algorithms on the GPU platform. 
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