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Abstract: We report on a refractive index sensor using a photonic crystal fiber (PCF) 
interferometer which was realized by fusion splicing a short section of PCF (Blaze 
Photonics, LMA-10) between two standard single mode fibers. The fully collapsed air 
holes of the PCF at the spice regions allow the coupling of PCF core and cladding modes 
that makes a Mach-Zehnder interferometer. The transmission spectrum exhibits sinusoidal 
interference pattern which shifts differently when the cladding/core surface of the PCF is 
immersed with different RI of the surrounding medium. Experimental results using 
wavelength-shift interrogation for sensing different concentrations of sucrose solution 
show that a resolution of 1.62 × 10−4–8.88 × 10−4 RIU or 1.02 × 10−4–9.04 × 10−4 RIU 
(sensing length for 3.50 or 5.00 cm, respectively) was achieved for refractive indices in the 
range of 1.333 to 1.422, suggesting that the PCF interferometer are attractive for chemical, 
biological, biochemical sensing with aqueous solutions, as well as for civil engineering and 
environmental monitoring applications. 

Keywords: photonic crystal fiber (PCF); interferometer; refractive index (RI); wavelength 
shift; fringe period; fringe visibility; sensitivity 
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1. Introduction  

Optical refractometer sensors based on waveguide technology are promising and attractive for 
chemical and biotechnological applications. The advantages of this type of sensor are their relatively 
simple construction, compactness, low cost, ease of use, immunity to electromagnetic interference, and 
high sensitivity to the external refractive index (RI) [1–10]. Recently, several types of optical 
waveguide sensors or optical fiber-based refractometer have been proposed, including long-period 
fiber gratings, Fabry-Perot interferometers and Mach-Zehnder interferometers. The interferometers 
utilizing a pair of collapsed zones separated by a few centimeters are suitable for sensing applications 
for they offer many advantages such as robustness, low insertion losses and relatively simple 
fabrication. However, they suffer from a serious disadvantage: high sensitivity to the environmental 
temperature. Photonic crystal fiber (PCF) has the potential to compensate for this drawback because its 
dispersion properties are strongly dependent on the air–hole geometry [11]. This fiber is typically 
fabricated using the stack-and-draw technique [12], making it possible to produce a wide variety of 
geometries. Thus, other than external RI, the operation principle of the PCF interferometers built via 
micro-holes collapsing is based on the excitation and recombination of two modes. The first collapsing 
point induces the coupling of a fraction of the incident light propagating in the core mode to the 
cladding mode, and the second one performs the opposite function, generating the interference of light 
propagating in different optical paths. PCF-like interferometers and assembly have been used for 
measuring physical, chemical, and biochemical measurands such as strain, high temperature (up to 
1,000 °C), hydrostatic pressure, curvature, biofilm, and chemical vapor [8,10,13–20]. 

In this paper, we present a PCF interferometer made by fusion splicing a piece of PCF between two 
standard single mode fibers with a fusion splicer. We report on the investigation and analysis of this 
class of novel PCF interferometers for refractive index sensing. The ability of the PCF interferometers, 
with five different sensing lengths (1.34, 2.67, 3.50, 4.40, and 5.00 cm), as a high sensitive RI sensor 
will be exploited. The unique sensing features of these spectral filters are particularly suitable for a 
wide variety of applications in sensor systems. 

2. Device Fabrication and Experiment 

2.1. Principle of Interferometer  

According to the interference theory, the value of the fringe period ( Λ ) of the Mach-Zehnder 
interferometer at any λ  can be expressed as follows [13,14]: 

L⋅−
=Λ

)(
2

21 ββ
πλ       (1) 

where λ  is the central wavelength of the light source; 1β  and 2β  are propagation constants of the 
modes involved in the interference, and L  is the length of the interferometer. The fringe period is 
inversely proportional to propagation constant deviation 21 βββ −=Δ  and the interferometer length L . 
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2.3. Experiment 

Figure 3 illustrates the experimental setup for refractive index and temperature sensing 
measurements with the PCF interferometer. The fiber-optic sensing system used to measure the 
transmission spectrum of the sensor consists of a broadband light source (λ = 1,550 nm), a sensing 
PCF interferometer, an OSA (ANDO AQ6315A), and a computer for data recording. 

Figure 3. Schematic of the experimental setup using the PCF interferometers for  
(a) refractive index measurements; (b) temperature sensing measurements. 

  
(a)       (b) 

 
The characteristic measurements were conducted for interferometers associated with five different 

sensing lengths (i.e., the length between two collapsed zones, L  = 1.34, 2.67, 3.50, 4.40, and 5.00 cm). 
We fabricated three replicates for each length of interferometer and there are totally 15 interferometers 
in this study. The interference spectra contain the information of wavelength, transmission loss, and 
fringe period. The distance between any two consecutive peak fringes is determined as a fringe period. 
The fringe visibility was calculated for each PCF interferometer as follows [14]:  

m ax m in

m ax m in

I I %
I I

−
+

       (1) 

where Imax and Imin are the maximum and minimum intensity values of corresponding interference 
spectrum, respectively. 

The RI measurements were performed using the above 15 interferometers and the refractive indices 
were in the range of 1.333 to 1.422. The interference spectra and the relationship between wavelength 
shift and refractive index were used to characterize the PCF Mach-Zehnder interferometers. During the 
course of data measurement, the magnetic clamps and a lift platform were used to keep the PCF 
interferometers straight lines without the bending effect [see Figure 3(a)]. We have maintained the 
condition of strain, bending, and temperature quite stable in the laboratory so that they were not the 
concerns of this work. For precise measurement, we kept the experimental setup and sample materials 
at a constant ambient temperature (within 1 °C fluctuation). As mentioned in the introduction [11], we 
also conducted temperature sensing experiment to prove that the PCF interferometers have the 
potential to compensate high sensitivity to environmental temperature. For example, a 2.67-cm PCF 
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interferometer was heated from 22 °C to 150 °C using a forced air draft oven [see Figure 3(b)]. The 
transmission spectra of this PCF interferometer are shown in Figure 4(a). The relationship between 
wavelength shift and temperature was shown in Figure 4(b). The corresponding sensing slope is the 
temperature sensitivity of a PCF interferometer [temperature sensitivity = 5.55 pm/°C, see Figure 4(b)]. 
We have obtained the temperature sensitivity of all five different lengths of PCF interferometers was in 
the range of 5.55–8.29 pm/°C. As the environmental temperature change is about 50 °C, the 
corresponding wavelength shifts of PCF interferometers are less than 0.4 nm. Thus, the PCF 
interferometers have the potential to compensate high sensitivity to general environmental temperature. 

Figure 4. (a) The transmission spectra of a 2.67-cm PCF interferometers when heated 
from 22 °C to 150 °C; (b) The relationship between wavelength and temperature for this 
2.67-cm PCF interferometers (temperature sensitivity = 5.55 pm/°C). 

  
(a)       (b) 

3. Results and Discussion 

3.1. PCF Interferometer Characteristics  

The transmission spectra of a PCF interferometer with different sensing lengths are shown in  
Figure 5(a–e). High uniform interference fringes were observed over the available spectral range, and 
the average fringe periods became larger with the decreasing sensing length. The average fringe 
periods as a function of sensing length, obtained using a linear regression analysis, was determined to 
be 7403.10.366 −×=Λ L  [ 69599.02 =R , see Figure 5(f)], indicative of the effect of the Mach-Zehnder 
interferometer. The fringe visibility was calculated for the 15 PCF interferometers and they were in the 
range of 62.16－89.39%. Since we used the same type of PCF (Blaze Photonics, LMA-10) and the 
propagation constant deviation involved in the interference could be assumed the same; thus, based on 
the Figure 5(f), the fringe period of the interferometer was almost inversely proportional to the 
interferometer length (R2 = 0.996995). In addition, we compared the measured fringe period and the 
one from a sine curve fitting for each interferometer. Figure 6(a,b) shows the transmission spectra of 
measured data and sinusoidal wave using a PCF interferometer with length = 1.34 cm and 3.50 cm, 
respectively. The sinusoidal curve is given by y = Ao + A sin (ωx - φ); where y is the transmission loss, 
x represents the wavelength, and other parameters are the regression coefficients. Figure 7(a) illustrates 
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the plot of calculated fringe period from sine curve fitting versus sensing length. A correlation was 
found that the calculated fringe period based on sine curve fitting was almost inversely proportional to 
the sensing length— 0.9925559.15 −×=Λ L  ( 66399.02 =R ). The absolute difference value between average 
measured fringe period and the one from sine curve fitting is calculated as follows:  

 fringe curve sine from period fringe calculated - period fringe measured average D =   (3) 

The box plot (or whisker graph) is a statistical way of graphically depicting groups of numerical 
data through their five-number summaries: maximum, minimum, median, upper quartile, and lower 
quartile. In addition, it could be even used to explore outliers [21]. Figure 7(b) displays the box plot for 
the D value versus sensing length. The results show that the PCF interferometer has smaller D values, 
0.48 nm and 0.14 nm, when sensing lengths are 4.40 cm and 5.00 cm, respectively.  

Figure 5. (a–e) The transmission spectra of the PCF interferometers with several sensing 
lengths; (f) Plot of fringe period as a function of sensing length. 

 
(a)      (b) 
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Figure 5. Cont. 

 
(e)      (f) 

Figure 6. Plot of transmission spectra of measured data and sine curve fitting using PCF 
interferometers with (a) L = 1.34 cm and (b) L = 3.50 cm, respectively. 

 
(a)      (b) 

Figure 7. (a) Plot of calculated fringe periods from sine curve fitting versus sensing length; 
(b) Plot of D value versus sensing length. 
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3.2. Refractive Index Measurement 

The ability of the PCF interferometer to detect changes in the surrounding RI was studied. The 
control of surrounding RI was through the use of sucrose solutions with various concentrations.  
Figure 8(a) shows the plot of transmission spectra of a 1.34-cm PCF interferometer with resonance 
wavelength = 1,540.60 nm, for sensing different refractive indices of the sucrose solution  
(RI =1.333 − 1.422). Since the relationship between wavelength shift and refractive index is nonlinear; 
thus, we quantified the above relationship using three-stage refractive index area, where the three-stage 
refractive index area are as follows: first refractive index area (RI = 1.333 − 1.373); second refractive 
index area (RI = 1.373 − 1.403); and third refractive index area (RI = 1.403 − 1.422).  

Figure 8. A 1.34-cm PCF interferometer with: (a) the transmission spectra for sensing 
different refractive indices of the sucrose solution (RI = 1.333 − 1.422); (b) the relationship 
between wavelength shift and refractive index (resonance wavelength = 1,540.60 nm). 

 
(a)      (b) 

Figure 9. A 2.67-cm PCF interferometer with: (a) the transmission spectra for sensing 
different refractive indices of the sucrose solution (RI = 1.333 − 1.422); (b) the relationship 
between wavelength shift and refractive index (resonance wavelength = 1,547.26 nm). 
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Regarding Figures 8(b) to 12(b), we performed 15 linear regression analyses using the above three-
stage RI areas. Other than one regression analysis, the R2 values were greater than 0.94. Thus, the 
relationship between wavelength shift and RI for PCF interferometers was assessed as a three-stage 
linear function and the boundary of the three-stage linear regression was determined. The graph of 
wavelength shift versus refractive index and three-stage linear regression models were plotted in 
Figure 8(b). We also conducted the RI experiment for the different four lengths of PCF interferometers 
and the results were shown in Figures 9 to 12 for sensing length L = 2.67 m, 3.50 cm, 4.40 cm, and 
5.00 cm, respectively. 

Figure 10. A 3.50-cm PCF interferometer with: (a) the transmission spectra for sensing 
different refractive indices of the sucrose solution (RI =1.333 − 1.422); (b) the relationship 
between wavelength shift and refractive index (resonance wavelength = 1,541.56 nm). 

 
(a)       (b) 

Figure 11. A 4.40-cm PCF interferometer with: (a) the transmission spectra for sensing 
different refractive indices of the sucrose solution (RI =1.333 − 1.422); (b) the relationship 
between wavelength shift versus refractive index (resonance wavelength = 1,550.42 nm). 
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Figure 12. A 5.00-cm PCF interferometer with: (a) the transmission spectra for sensing 
different refractive indices of the sucrose solution (RI =1 .333 − 1.422); (b) the relationship 
between wavelength shift versus refractive index (resonance wavelength = 1,544.05 nm). 

 
(a)      (b) 

 
A red shift in the resonance wavelength was observed with the increase of RI as shown in Figures 8 

to 12. The graphs display transmission spectra versus air and RI for different concentrations of sucrose 
solution using a PCF interferometer. For example, Figure 12(b) shows a linear fit (R2 = 0.9971, 0.9891, 
and 0.9792) to the plot of the wavelength shift vs. RI of the sucrose solution. For the RI sensitivity of a 
5.00-cm PCF interferometer was determined by the slopes of three-stage linear fits and it had 309 
nm/RIU, 251 nm/RIU, and 326 nm/RIU in the RI range of 1.333–1.373, 1.373–1.403, and 1.403–1.422, 
respectively. We have collected and analyzed the data considering different sensing lengths in the PCF 
interferometer. Figure 13(a–c) shows the box plots of interferometer resolution (sensor resolution = 
3σ/m, σ = standard deviation of sensor response in measuring the blank sample, m = slope) versus the 
sensing length (1.34–5.0 cm) for three-stage RI areas. Studies presented here demonstrate that these 
PCF interferometers (sensing length = 1.34, 2.67, 3.50, 4.40, or 5.00 cm) could provide a sensor 
resolution of 3.28 × 10−3–5.20 × 10−5 RIU for refractive indices in the range of 1.333 to 1.422. For 
example, the resolution of PCF interferometer was as low as in the range of 1.62 × 10−4–8.88 × 10−4 
RIU or 1.02 × 10−4–9.04 × 10−4 RIU when sensing length is equal to 3.50 cm or 5.00 cm, respectively. 
Based on Figure 13(a–c), the five different lengths of PCF interferometers were evaluated and the 
effect of sensor length was discussed about the sensor sensitivity (nm/RIU) and sensitivity variation 
(sensitivity range). The PCF interferometers with sensing length 3.50 cm and 5.00 cm had both better 
sensor sensitivity and smaller sensitivity variation than those of other PCF interferometers. Thus, the 
3.00-cm and 5.00-cm PCF interferometers possessed comparable performance for the resolution in the 
range of 1.62 × 10−4–8.88 × 10−4 RIU and 1.02 × 10−4–9.04 × 10−4 RIU, respectively. In addition, the 
3.00-cm and 5.00-cm PCF interferometers exhibited relatively small sensitivity variation (less than 
5.71 nm/RIU and 5.05 nm/RIU, respectively). However, if the 5.00-cm PCF interferometer is used, the 
bending effect and package technique should be noticed.  
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Figure 13. Plot of the relationship between sensitivity and sensing length for PCF 
interferometer at (a) first refractive index area (RI = 1.333 − 1.370); (b) second refractive 
index area (RI = 1.373 − 1.403); and (c) third refractive index area (RI = 1.403 − 1.422). 
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4. Conclusions 
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5.00 cm, respectively) can be achieved for refractive indices in the range of 1.333 to 1.422. The  
3.00-cm and 5.00-cm PCF interferometers possessed comparable performance for the resolution in the 
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range of 1.62 × 10−4–8.88 × 10−4 RIU and 1.02 × 10−4–9.04 × 10−4 RIU, respectively. Furthermore, the 
3.00-cm and 5.00-cm PCF interferometers exhibited relatively small sensitivity variation (less than 
5.71 nm/RIU and 5.05 nm/RIU, respectively). Such a highly sensitive PCF interferometer is attractive 
for chemical, biological, biochemical sensing with aqueous solutions, as well as for civil engineering 
and environmental monitoring applications. 
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