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Abstract: A finite set statistics (FISST)-based method is proposed for multi-target  
tracking in the image plane of optical sensors. The method involves using signal amplitude 
information in probability hypothesis density (PHD) filter which is derived from FISST to 
improve multi-target tracking performance. The amplitude of signals generated by the 
optical sensor is modeled first, from which the amplitude likelihood ratio between target and 
clutter is derived. An alternative approach is adopted for the situations where the signal noise 
ratio (SNR) of target is unknown. Then the PHD recursion equations incorporated with 
signal information are derived and the Gaussian mixture (GM) implementation of this filter 
is given. Simulation results demonstrate that the proposed method achieves significantly 
better performance than the generic PHD filter. Moreover, our method has much lower 
computational complexity in the scenario with high SNR and dense clutter. 

Keywords: finite set statistics; signal amplitude information; PHD filter; multi-target 
tracking; Gaussian mixture 

 

1. Introduction 

Optical sensors have been widely applied both in important military and civil areas due to their 
properties of long detection range, high concealment ability and large coverage area. Since there is 
usually a long distance between targets and sensor which generates a low SNR and dense clutter 
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scenario, multi-target tracking in the image plane of optical sensors is a very difficult problem. In 
multi-target tracking, the aim is to estimate the number of a set of targets and the state of each target 
from a set of measurements received. However, due to the variation of targets number with time in the 
field of view of the sensors and the existence of miss detection and dense clutters, multi-target tracking 
in image plane remains a challenging problem. 

In addition to the location measurement, amplitude information has been proven to improve tracking 
performance [1–5]. One of the pioneering techniques was the approach proposed by Colegrove, Lerro 
and Bar-Shalom [1,2] where the probability data association (PDA) filter utilizing target amplitude 
was applied in the context of single-target tracking. The target amplitude has also been incorporated in 
the multiple hypothesis tracking (MHT) framework [3] and Viterbi data association scheme [4]. More 
recently, the significance of target amplitude has been explored for data association of closely spaced 
targets in [5]. Although significant progress has been made recently, the approaches mentioned above are 
based on data association technique, which requires expensive computational cost in most circumstances. 
Therefore, the traditional data association approach is not the optimal option for multi-target tracking  
in image plane of optical sensor in the scenarios with time-varying targets number, low SNR and  
dense clutters.  

A good candidate is the emerging Bayesian approach in the framework of finite set statistics 
(FISST) proposed by Mahler [6]. FISST provides a set of mathematical tools that allows direct 
application of Bayesian inferencing to multi-target problems. PHD proposed by Mahler [7] is a 
computation tractable approximation for the optimal multi-object Bayes filter based on Finite Set 
Statistics (FISST). Operating on the single-target state space, the PHD filter avoids the combinatorial 
problem that arises from data association and thus leads to superior performance in comparison with 
traditional MHT algorithm in multi-target tracking [8,9]. These features render the PHD filter 
extremely attractive to many researchers. The primary PHD applications can be found in [10–13].  
In [14], Clark et al. incorporated target amplitude into a PHD filter for the first time in multi-target 
tracking, which improves the tracking performance. However, their amplitude is modeled for radar and 
sonar application and the computational complexity analysis of their method is absent. 

In this paper, we propose a FISST based method which uses signal amplitude information in a PHD 
filter for multi-target tracking in the image plane of optical sensors. Based on analyzing the imaging 
characteristics of the optical sensor, we model the signal amplitude and incorporate it into the PHD in 
the form of amplitude likelihood ratio. In the situation where the SNR of target is unknown, we then 
present an alternative method based on this amplitude model. Simulation results demonstrate a 
significant improvement of the proposed method in tracking performance. Furthermore, the 
computational complexity of our method in the scenarios with different clutter density and SNR is  
also discussed. 

This paper is organized as follows: Section 2 models the signal amplitude generated by the optical 
sensor. Section 3 demonstrates how to incorporate the amplitude information (for known and unknown 
SNR case) into a PHD filter and then the GM implementation for this filter is given. Section 4 presents 
the simulation results that validate the proposed method. The conclusions are given in Section 5. 
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2. Amplitude Measurement Model 

2.1. Amplitude Likelihood Ratio 

In an optical multi-target tracking system, the original images taken by the sensor are usually 
processed by background suppression before being further used for target tracking. Assuming the noise 
is addictive, we define the SNR d of the residual image as [15–17]: 

 (1)

where s is the mean signal value of target, σ is the standard deviation of the residual image. Each 
measurement from the image consists of the two-dimensional position vector z in the image plane and 
the corresponding amplitude a ≥ 0, that is, a measurement vector has the form . For 
simplicity, we assume that the value of the target signal has no spreading in the image plane. We 
assume that the noise is Gaussian, then the probability densities of the amplitude of the false alarms 
and the target p0(a) and p1(a|d) can be written as [18]: 

(2)

 

(3)

This leads to the probabilities of false alarm and detection  and  with a detection 
threshold τ,  
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Table 1.  under different SNR and  combinations. 

 d 
 4 5 6 7 8 

5 × 10−5 0.5436 0.6864 0.9825 0.9991 1.0000 
1 × 10−4 0.6106 0.8999 0.9887 0.9995 1.0000 
5 × 10−4 0.7610 0.9563 0.9966 0.9999 1.0000 
1 × 10−3 0.8185 0.9719 0.9982 1.0000 1.0000 

When the target SNR d is known, we can get our amplitude likelihood functions for the false alarm 
and the target as: 

(7)

 
(8)

The amplitude likelihood ratio given a threshold τ is defined as [19]: 

 
(9)

We use the notation ca(a) and ρa(a|d) to denote the case where τ = 0, then we have: 

(10)

 
(11)

From Equations (5) and (9) we can see that the calculations of  and  rely on a 
specified known target SNR, however, this requirement cannot be satisfied in most practical tracking 
systems. We adopt an alternative approach to circumvent this issue next. 

2.2. Method for Unknown SNR 

When the SNR of target is unknown, one straightforward approach would be to estimate the 
unknown parameter d from the measurement amplitudes a. However, this approach requires a large 
number of measurements from the target to achieve an accurate estimate of d. Furthermore, due to the 
unknown association between measurements and targets in multi-target environment with clutter, the 
approaches of estimating d usually fail. Similar to the idea introduced in [14], we adopt an alternative 
approach where we do not attempt to estimate d at all. Instead we marginalize out the parameter d over 
the range of possible values and find a probability of detection for  and a likelihood ratio for  
that is not conditional on d. 

Consider that we always have some prior information about the targets being tracked, so we assume 
that p(d), defined on the possible SNR values [d1,d2], gives the expected probability distribution of 
SNR values. Since the amplitude distribution in Equations (2) and (3) are symmetric thus have no 
biases in high or low SNR targets, the reasonable choice for p(d) is the uniform distribution U[d1,d2]. 
Then we define the probability of detection and amplitude likelihood ratio where SNR is unknown as: 
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(12)

 
(13)

From Equations (5) and (12) we have: 

 
(14)

Note that the  over the marginalized region [d1, d2] can be computed with numerical integration 
offline since it does not need to be computed at each iteration. The computation of  as in 
Equation (13) can be simplified and will be presented in Section 3.2. 

3. PHD Filter with Signal Amplitude Information 

Suppose that at time k there are Nk target states , each taking values in a state space 
; and  measurements (detections) , each taking values in the observation space 
. In PHD filter, a multi-object state and a multi-object observation are represented by RFS: 

 
(15)

where F(X) and F(Z) are the finite subsets of X and Z, respectively. The state of each 
target contains the position and velocity  in the image plane, while the measurement z is 
defined in Section 2. We assume that each target follows a linear Gaussian dynamical model and the 
sensor has a linear Gaussian measurement model, i.e., 

(16)

 (17)

where  denotes a Gaussian density with mean m and covariance P, Fk-1 is the state transition 
matrix, Qk-1 is the process noise covariance, Hk is the observation matrix, and Rk is the observation 
noise covariance. 

3.2. The PHD Recursion with Amplitude Information 

We abbreviate the PHD filter incorporated with amplitude information as AI-PHD filter. Next we 
derive the prediction and update equations of AI-PHD filter based on the amplitude likelihood ratio 
given by Section 2. For simplicity, we do not consider target spawning in this paper. 

Step 1. Prediction: The prediction equation of AI-PHD filter is the same as generic PHD filter since 
their state vector and state transition matrix are the same, i.e., 

 (18)
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Step 2. Update: The update equation is changed when incorporated with amplitude information. 
Analogized to the update equation of generic PHD filter in [7], we have the update equation of our  
AI-PHD filter as 

 (19)

where  is the pseudo-likelihood function as 

 
(20)

 (21)

where λ and V are the clutter density and area of image plane of optical sensor respectively. Assuming 
the amplitude ak is independent with target state xk, we can rewrite  and  as 

(22)

 (23)

where Lz(x) is the measurement location likelihood function and c(z) is the probability density of the 
false alarm spatial distribution in the image plane. We assume that the targets are within the surveillance 
region of sensor, the probability of detection for a given threshold τ is then only dependent on d 

 (24)

Substituting Equations (5), (8) and (22–24) into Equation (20) we have the pseudo-likelihood 
function of AI-PHD as 

 
(25)

Equations (18) and (25) compose the recursion of AI-PHD filter. The probability of detection 
 and amplitude likelihood ratio  are replaced by  and  respectively for the 

unknown SNR case.  
We can simplify the computation of  by noting the fact that  is calculated combined 

with  in Equation (25). From Equations (8) and (9) we have 
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where  is the standard normal distribution function which can be computed 

easily. Consequently, our approach incorporates the amplitude information into PHD filter with only a 
minor additional computational load. 

We show the consistency of our AI-PHD filter with the generic PHD filter. If the SNR of target is 
set as d = 0, from Equations (7–9) we have . This is the condition under which our AI-PHD 
filter degenerates to the generic PHD filter. 

3.3. Gaussian Mixture Implementation 

An analytic solution to the PHD filter can be found under linear assumptions on the system and 
observation equations with Gaussian process and observation noises as described in Equations (16)  
and (17) [20]. In this case, both the prediction and update equations of PHD are represented by a 
mixture of Gaussians where the means and covariances are updated with Kalman filter and the weights 
of the Gaussian components are found using the PHD filter equations. We use Gaussian Mixture 
implementation of our filter for its simplicity in calculation and convenience of target state extraction 
comparing to the Sequential Monte Carlo (SMC) method [21]. 

We assume that the survival probability is state independent, i.e.,  and the detection 
probabilities are  and  for the known SNR and the unknown SNR case respectively. The 
intensity of the target birth RFS are Gaussian mixture of the form 

 
(28)

where , are given model parameters that determine the shape of the  
birth intensity.  

We assume a uniform location distribution of clutter in the measurement space, so that the clutter 
location likelihood is not dependent on the state or the measurement. Hence the clutter location 
distribution is constant over the measurement space and equals to the reciprocal of the area of the 
image plane of optical sensor, i.e., c(z) = 1/V. Next we give the prediction and update equations of 
Gaussian mixture implementation of our AI-PHD filter. 

Prediction: The posterior intensity at time k − 1 is a Gaussian mixture of the form 

 
(29)

where Jk-1 is the number of Gaussian terms with the weights , means  and covariances . 
Then the prediction intensity is still a Gaussian mixture as 
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Update: We rewrite the predicted intensity  as a Gaussian mixture of the form 

 
(31)

Substituting the Equations (31), (20–25) into Equation (19), we obtain the intensity of our AI-PHD 
filter updated by measurements set  as the Gaussian mixture form 

 (32)

where the updated means  and covariances  are calculated with the Kalman filter 
update. The updated weights  in Equation (32) are computed as 

 (33)

where  is the predicted measurement and  is the innovation 
covariance.  

In the PHD update equation, Equation (32), and the weight update Equation (33), we replace the 
probability of detection  and term  by  in Equation (14) and  in  
Equation (27) when the SNR is unknown. 

4. Simulation 

In this Section, by setting up multi-target tracking simulation in the image plane of optical sensor, 
we examine the performance and computational complexity of our method for known and unknown 
SNR cases and benchmark them with generic PHD filter with different combinations of probability of 
false alarm and SNR value. 

4.1. Simulation Scene and OSPA Metric 

Consider a scenario with an unknown and time varying number of targets in clutter in the image 
region [−300, 300] × [2,000, 2,600] (pixel). Up to Nk = 6 targets are generated in this region with the 
random birth and dieing time instants. Figure 1 shows the true trajectories of each target. All targets in 
each simulation had the same mean SNR (this is not necessary by the algorithm but simplifies the 
presentation of results).  

Each target has survival probability pS,k = 0.99 and follows the linear Gaussian dynamics in 
Equation (16) with: 
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Figure 1. Target trajectories in the pixel plane with start/stop position as Ο/Δ. 
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We adopt the optimal subpattern assignment (OSPA) metric [22] for the purpose of multi-target 
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where n∏  is the set of permutations on {1,···n}, d(c)(x,y) = min(c,d(x,y)), p is the order that penalizes 
error of individual element estimates, c is the cut-off parameter that penalizes error of cardinality 
estimate. We chose p = 2 and c = 30(pixel) in our simulation. Note that the chosen value of cut-off 
parameter c is significantly larger than the typical measurement noise but significantly smaller than the 
maximal distance between targets, thus maintaining a balance between the cardinality and localization 
components of the OSPA error [22]. 

4.2. Numerical Results 

4.2.1. Filtering Results for Multi-Target Tracking 

The effectiveness of our AI-PHD filter for multi-target tracking in image plane of optical sensor is 
verified through simulation. We assume a moderately cluttered scenario that the probabilities of false 
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alarm, FApτ  = 1 × 10−4, which means the clutter density, λ = 1 × 10−4 pixel−2. The SNRs of all targets are 
set as d = 6 and the probability of detection ( )Dp dτ  ≈ 0.99 (see Table 1). For the unknown SNR case, the 
SNR region is set as [2,10] and the probability of detection is replaced by Dpτ  which can be computed by 
Equation (12). Other parameters for the filter are given as in Section 4.1. The true trajectories and filter 
estimates are shown in x and y coordinates of image plane versus time for AI-PHD filter with known 
and unknown target SNRs in Figures 2 and 3 respectively (denoted as case1 and case2 accordingly). 

Figure 2. Filter estimates with known SNR. 
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(b) 

Figure 3. Filter estimates with unknown SNR. 
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Figure 3. Cont. 

 
(b) 

From the estimates of AI-PHD filter shown in Figures 2 and 3, we see both for the known and 
unknown SNR case, the filters can eliminate dense clutter in the scenario with time-varying number of 
targets. All targets are detected immediately after birth and tracked accurately, which highlights the 
track initialization, maintenance and termination capabilities of our algorithm. The results also 
demonstrate superior performance of the algorithm in targets number and target states estimation. We 
evaluate this performance by Monte Carlo simulation next. 

4.2.2. Monte Carlo Results and Analysis 

Average OSPA and computation time cost per frame are used to evaluate the performance and 
computational complexity of our AI-PHD filter. To prove the improvements of the proposed method, 
we have benchmarked the results against a generic PHD filter which does not use the amplitude 
information. To make the assessment as fair as possible, the probability of detection Dpτ  for filters 
without amplitude information was chosen to be the same as AI-PHD filter of the known SNR case, as 
in Table 1. 50 Monte Carlo runs were carried out for each combination of FApτ  and d on computer  
(Intel quad core processor 2.66 GHz, 32-bit operating system, 4 Gbytes RAM) using Matlab (R2009b). 
Average OSPA for AI-PHD filter of known SNR and unknown SNR case and generic PHD filter are 
given in Table 2 where the results are divided by ‘/’ accordingly. 

Table 2. Average OSPA (pixel) for different algorithms. 

 d 
       FApτ τ  4 5 6 7 8 

5 × 10−5 3.8906 17.42/18.88/19.00 8.17/8.230/9.65 2.93/3.71/6.08 1.57/3.53/5.78 0.97/2.69/5.27 
1 × 10−4 3.7190 17.82/16.13/19.19 7.37/6.44/11.01 2.83/3.14/7.97 1.43/3.33/8.32 1.11/3.41/7.82 
5 × 10−4 3.2905 16.41/13.53/20.21 6.65/5.91/15.71 2.79/4.14/14.89 1.38/4.18/15.15 0.95/3.99/14.43
1 × 10−3 3.0902 14.82/11.83/21.42 5.92/5.85/17.81 2.26/5.54/17.37 1.11/4.38/17.09 1.00/4.03/16.94

From Table 2 we see that for all combinations of FApτ  and d given(corresponding to different 
probabilities of detection), our AI-PHD filter both with known and unknown SNR gives better 
performance than the generic PHD filter. This improvement is enhanced as FApτ  or d increases. In the 
case of  = 1 × 10−3 and d = 8 where the method using the amplitude information works best, our  

10 20 30 40 50 60 70 80 90 100
2000

2200

2400

2600

time (s)

y 
co

or
di

na
te

 (p
ix

el
)

 

 
True tracks AI-PHD filter estimates-case2 Clutter



Sensors 2012, 12              
 

 

2931

AI-PHD filter achieves 15.94 and 12.91 lower average OSPA (pixel) for known and unknown SNR, 
respectively. This improvement in performance is mainly due to two reasons: firstly, as d increases, the 
false alarm distribution will poorly represent the target counterpart and there is a big distinction in the 
target and false alarm distributions; secondly, as FApτ  increases, having more measurements aids the 
method using the amplitude, since we discard less useful information. Table 2 also shows that the 
performance of generic PHD filter without amplitude decreases rapidly as FApτ  increases since there are 
more measurements from false alarms which by no means could be identified from those from targets. 
In contrast, we see no deterioration in the performance of AI-PHD filter in this case. For the known 
SNR case especially, the performance increases consistently as FApτ  increases, which means our 
method works even better in a scenario with dense clutters.The comparison of computational 
complexity between AI-PHD filter and generic PHD filter without amplitude information is shown in 
average computation time per frame versus target SNR for different FApτ  in Figure 4. Since we can 
achieve similar complexity for unknown SNR case with that of known SNR by computing  
Equation (27) with some fast algorithms, only the result for the known SNR case is given. 

Figure 4. Average computation time per frame for different algorithms with different 
SNRs d and probabilities of false alarm FApτ . 
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We see that for different given FApτ  and d, the results from two filters are close with the maximum 
difference being no more than 1 s. Figure 4(a) shows that in the scenario with low clutter density,  
AI-PHD filter has only a minor increase in average computation time over the generic PHD 
counterpart. Furthermore, AI-PHD filter performs an even low value in high clutter density scenario 
which is shown in Figure 4(b). In the case of  = 1 × 10−3, d = 8 where this reduction is most 
obvious, the average computation time of AI-PHD filter is reduced by 53.7% over the generic PHD 
counterpart, which means the AI-PHD filter has even lower computational complexity than the PHD 
filter without amplitude information in scenarios with dense clutter and high SNR. The primary reason 
for this trend is that in these scenarios, the computation time cost is mainly decided by the multi-target 
state extraction step given the same number of targets and measurements. Incorporated with amplitude 
information, the update for the AI-PHD filter (see Equation (33)) gives heavier weights to the 
Gaussian items updated by the measurements from targets, thus updating the PHD with comparatively 
higher intensity near the real target positions and at the same time, suppressing the intensity of PHD 
near clutter positions (see Figure 5). Therefore, the updated Gaussian items can be prune and merged 
quickly and accurately. 

Figure 5. Intensity functions for generic PHD filter (left) and AI-PHD filter (right).  
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5. Conclusions 

In this paper, we have proposed a FISST-based method using signal amplitude information in a 
PHD filter for multi-target tracking applications in the image plane of optical sensors. We extend the 
measurement model to include the signal amplitude of observations and then incorporate this 
information into a PHD recursion in the form of an amplitude likelihood ratio. Based on the 
assumption that the amplitudes of the measurements from true targets are stronger than those from 
clutter, we show our method can significantly improve the performance over the one without 
amplitude information. Furthermore, simulation results also demonstrate that our method has much 
lower computational complexity in the scenario with high SNR and dense clutter, which makes sense 
for its practical implementation. Future work will involve improving the tracking performance for the 
targets with much lower SNR.  
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