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Abstract: Studies on fault detection and diagnosis of planetary gearboxes are quite limited 

compared with those of fixed-axis gearboxes. Different from fixed-axis gearboxes, 

planetary gearboxes exhibit unique behaviors, which invalidate fault diagnosis methods 

that work well for fixed-axis gearboxes. It is a fact that for systems as complex as planetary 

gearboxes, multiple sensors mounted on different locations provide complementary 

information on the health condition of the systems. On this basis, a fault detection method 

based on multi-sensor data fusion is introduced in this paper. In this method, two features 

developed for planetary gearboxes are used to characterize the gear health conditions, and 

an adaptive neuro-fuzzy inference system (ANFIS) is utilized to fuse all features from 

different sensors. In order to demonstrate the effectiveness of the proposed method, 

experiments are carried out on a planetary gearbox test rig, on which multiple 

accelerometers are mounted for data collection. The comparisons between the proposed 

method and the methods based on individual sensors show that the former achieves much 

higher accuracies in detecting planetary gearbox faults. 
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1. Introduction 

Fault detection and diagnosis of gearboxes has been attracting considerable attention. Most 

investigations, however, focus on fixed-axis gearboxes in which all gears are designed to rotate around 

their own fixed centers [1,2]. Compared with fault diagnosis of fixed-axis gearboxes, there are not that 

many studies on fault detection and diagnosis of planetary gearboxes. The term “planetary gearbox” 

refers to a compound gear system which has a stationary or rotating ring gear, a sun gear that rotates 

around its own center, and several planet gears that not only rotate around their own centers, but also 

revolve around the center of the sun gear. Planetary gearboxes are widely used in wind turbines, 

helicopters and construction machinery due to their advantages of large transmission ratio, strong load-

bearing capacity and high transmission efficiency [3,4]. They generally operate in a tough working 

environment and are therefore subject to different modes of damage [5].  

Different from fixed-axis gearboxes, planetary gearboxes exhibit the following unique behaviors: 

(a) multiple planet gears produce similar vibrations. These vibrations with different meshing phases 

couple with each other; as a result, some of the excitations of multiple gear meshes can be cancelled or 

neutralized [6]; (b) planetary gearboxes present special spectral structures. The spectrum is typically 

asymmetric, that is, most of the vibration energy occurs at various sidebands of the gear meshing 

frequency and its harmonics [7]; (c) multiple and complex vibration transmission paths from the gear 

mesh points to the sensors mounted on the housing deteriorate or attenuate the vibration response of 

gear faults through dissipation and interference [8]. Thus, the vibration signals measured from planetary 

gearboxes and their spectra are more complex than those from fixed-axis gearboxes. Consequently, 

fault diagnosis methods working well for fixed-axis gearboxes often fail to detect and diagnose faults 

of planetary gearboxes. 

To solve the problems of fault detection and diagnosis of planetary gearboxes, a few methods have 

recently been reported in the literature. Keller and Grabill [9] proposed the sideband index (SI) and the 

sideband level factor (SLF) to detect planetary gearbox faults and found that SI and SLF were effective 

only for the test cell conditions, but invalid for the on-aircraft conditions. Patrick et al. [10] introduced 

an integrated framework for on-board fault diagnosis and remaining useful life prediction of a helicopter 

planetary gear transmission component. Blunt and Keller [6] developed two methods based on a planet 

and the carrier to detect a crack in the helicopter planetary gearbox. Bartelmus and Zimroz [11] 

proposed a feature for monitoring planetary gearboxes under time-variable operating conditions. 

Barszcz and Randall [12] applied the spectral kurtosis for detecting ring gear cracks in a planetary 

gearbox used in a wind turbine. Samuel and Pines [13] proposed a technique using the constrained 

adaptive lifting algorithm for detecting gear faults in a planetary gearbox. Gao et al. [14] presented a 

method based on redundant second generation wavelet transform to diagnose a ring gear fault of a 

planetary gearbox used in a steel plant. 

The above studies, however, only utilized the vibration information from individual sensors. It is a 

fact that for complex gear transmission systems like planetary gearboxes, multiple sensors provide 

variously sensitive or complementary characteristic information for fault detection and diagnosis. 

Thus, how to fuse information from multiple sensors to improve accuracy is a vital issue in fault 

detection and diagnosis of planetary gearboxes. 
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Aiming at solving the above problem, a method for fault detection of planetary gearboxes based on 

multi-sensor data fusion is proposed in this paper. In this method, two features are employed to 

characterize the health conditions of planetary gearboxes, and an adaptive neuro-fuzzy inference 

system (ANFIS) is used to fuse all features from different sensors. Since the two features are 

particularly developed for planetary gearboxes, and ANFIS combines the advantages of the adaptive 

capability of neural networks and the qualitative approach of fuzzy logic, the proposed method is 

expected to produce satisfactory results in detecting planetary gearboxes faults. The remainder of this 

paper is organized as follows: Section 2 introduces the method based on multi-sensor data fusion. 

Section 3 shows a planetary gearbox test rig and experiments conducted for testing the proposed 

method. Gears having four fault modes were installed in the test rig and vibration signals collected by 

multiple sensors under different loads and various motor speeds. Section 4 compares the proposed 

method with the methods based on individual sensors. The experimental results show that the proposed 

method is superior to the methods based on individual sensors in detecting faults of planetary 

gearboxes. Conclusions are given in Section 5. 

2. The Method Based on Multi-Sensor Data Fusion 

Figure 1 displays the flow chart of the proposed method based on multi-sensor data fusion. First, 

features are extracted from the signals measured by multiple sensors on different locations of a 

planetary gearbox housing. The features are the root mean square of the filtered signal (FRMS) and the 

normalized summation of the positive amplitudes of the difference spectrum between the measured 

signal and the healthy one (NSDS). Then, all features extracted from different sensors are fused using 

ANFIS. Finally, the faults occurring in the planetary gearboxes can be detected according to the  

fusion results. 

Figure 1. Flow chart of the proposed method. 

 

2.1. Two Features 

As mentioned above, two features are extracted from the vibration signals of planetary gearboxes. 

They are FRMS and NSDS, which are specially designed for fault detection of planetary gearboxes. 

2.1.1. FRMS 

It is generated by calculating the root mean square of the filtered signal instead of the original signal 

and is defined as: 
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where )(ts  ( Tt ,,1 ) is the tth data point of the filtered signal S, and T is the total number of data 

points contained in S . The filtered signal is produced by removing the regular meshing elements from 

the original vibration signal X. The regular meshing elements include the rotating frequency of the 

damaged gear and its five order harmonics, the meshing frequency and its three order harmonics, and 

the modulation sidebands of the meshing frequency and its harmonics. The modulation sidebands are 

excited when the planets pass through the sensors fixed on the gearbox housing [15,16]. 

The rationale of FRMS can be explained as follows: the vibration spectrum of a healthy planetary 

gearbox, measured by sensors mounted at a fixed location, is unlike that of a fixed-axis gearbox. The 

planet gears rotate past the sensor location causing the vibration transmission path to change in a 

periodic manner, thus modulating the amplitude of the measured vibration response. These sidebands 

are therefore the common elements in the frequency spectra of both healthy and damaged planetary 

gearboxes instead of the indications of faults. 

2.1.2. NSDS 

It is developed by normalizing the summation of the positive amplitudes of the difference spectrum 

between the signal measured on a gearbox whose health condition is unknown and the signal measured 

on a healthy gearbox. It is expressed as: 
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where )(d iy  ( Ii ,,1 ) denotes the amplitude of the ith spectrum line of the difference spectrum yd of 

ym minus yh , I is the total number of spectrum lines contained in yd, and ym and yh represent the 

frequency spectra of the unknown signal and the healthy one respectively. The use of normalization, 

that is, dividing the sum of the positive amplitudes in the difference spectra by the sum of the unknown 

signal spectra, is to attenuate or even cancel the effect of the operation conditions such as various 

rotating speeds and loads. Therefore, NSDS is a dimensionless feature. 

It is believed that the vibration response and the frequency spectra will change once faults occur in 

a planetary gearbox and the amplitudes in the spectra may increase correspondingly. NSDS aims to 

discover the increment in the frequency spectra of the faulty planetary gearbox compared to the 

healthy one. 

2.2. Review of ANFIS 

ANFIS is an integration system which uses neural networks to optimize the fuzzy inference system. 

ANFIS maps inputs through input membership functions and associated parameters, and then through 
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output membership functions to outputs. The initial membership functions and rules for the fuzzy 

inference system can be designed by employing human expertise about the target system to be 

modeled. Then ANFIS can refine the fuzzy if-then rules and membership functions to describe the 

input/output behavior of a complex system. To explain the ANFIS architecture, two fuzzy if-then rules 

based on a first order Sugeno model are considered [17–19]:  

Rule 1: If ( x  is 1A ) and ( y  is 1B ) then ( 1111 ryqxpz  ), 

Rule 2: If ( x  is 2A ) and ( y  is 2B ) then ( 2222 ryqxpz  ), 

where x  and y  are the inputs, iA  and iB  are the fuzzy sets, iz ( 2,1i ) are the outputs within the 

fuzzy region specified by the fuzzy rules, and ip , iq  and ir  are the design parameters that are 

determined during the training process. The ANFIS architecture to implement these two rules has five 

layers and is shown in Figure 2, where a square indicates an adaptive node, whereas a circle stands for 

a fixed node. 

Figure 2. Architecture of the ANFIS. 

 

Layer 1: Input membership function 
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Layer 2: Rule 

All the nodes in this layer are fixed nodes. They are labeled with M, indicating that they perform as 
simple multipliers. The outputs of this layer represent the fuzzy strengths i of each rule and can be 

expressed as: 

)()(2 yuxuo
ii BAii  , 2,1i . (6) 

Layer 3: Normalization 

All the nodes in this layer are also fixed nodes. They are labeled with N, indicating that they play  

a normalization role to the fuzzy strengths from the previous layer. The normalization factor is 

calculated as the sum of all weight functions. The outputs of this layer, the so-called normalized fuzzy 

strengths, can be represented as: 
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Layer 4: Output membership function 

In this layer, the nodes are adaptive nodes. The outputs of this layer are shown by: 

)(4
iiiiiii ryqxpzo   , 2,1i , (8) 

where ip , iq  and ir  are the parameters of the output membership functions respectively. 

Layer 5: Output 

In this layer, there is only one single fixed node labeled with S. This node performs the summation 

of all incoming signals. Hence, the overall output of the model is as follows: 
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Generally, a hybrid learning algorithm of the gradient descent approach and least-squares estimate 

is utilized to tune the parameters of the membership functions. During the forward pass, the node 

outputs advance until the output membership function layer, where the consequent parameters are 

identified by the least-squares estimate. Based on the error signals that propagate backward, the backward 

pass uses the back propagation gradient descent method to update the premise parameters [17–19]. 

3. Experimental System 

In order to test the effectiveness of the proposed method, an experimental system of a planetary 

gearbox test rig is established and experiments are carried out on the test rig. A schematic model of the 

test rig is shown in Figure 3. The test rig includes two gearboxes, a 3-hp motor for driving the 

gearboxes, and a magnetic brake for loading. The two gearboxes contain a two-stage planetary one and 

a two-stage fixed-axis one. The two-stage planetary gearbox is our concern in the present study. In 

each stage of the planetary gearbox, an inner sun gear is surrounded by three or four rotating planet 

gears, and a stationary outer ring gear. Torque is transmitted through the sun gear to the planets, which 

ride on a planetary carrier. The planetary carrier, in turn, transmits torque to the output shaft. 
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Figure 3. Schematic model of a two-stage planetary gearbox test rig. 

 

In a planetary gearbox, sun gear teeth are subject to faults because their multiple meshes with the 

planet gears increase the potential for damage [5]. Thus, a cracked tooth and a pitted tooth are created 

on the sun gear of the first stage, and a chipped tooth and a missing tooth are introduced inside the 

second stage respectively. The pictures of the damaged sun gears are given in Figure 4. Table 1 lists 

the gear parameters of the two-stage planetary gearbox. 

Figure 4. Damaged sun gears: (a) having a cracked tooth; (b) having a pitted tooth;  

(c) having a chipped tooth; and (d) having a missing tooth. 
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Table 1. Gear parameters in the two-stage planetary gearbox. 

 The first stage  The second stage 

Gear sun planet ring number of planets  sun planet ring number of planets 

Number of teeth 20 40 100 3  28 36 100 4 

Figure 5(a) presents the experimental system, which consists of the test rig, accelerometers, an NI 

data acquisition system and a laptop with the data acquisition software. Two accelerometers, as shown 

in Figure 5(b), are used to capture the vibration signals. One is a tri-axial accelerometer mounted on 

the first stage bearing end cover. The other is a unidirectional accelerometer mounted on the second 

stage bearing end cover. All vibration signals are measured with a sampling frequency of 5,120 Hz 

under four different drive motor speeds (2,100 rpm, 2,400 rpm, 2,700 rpm and 3,000 rpm) and two 

loading conditions (no load and the maximum load).  

Figure 5. (a) Experimental system and (b) locations of the two accelerometers. 

 

Five experiments are conducted under each of the five gear health conditions. The five health 

conditions involve normal, the cracked tooth on the sun gear of the first stage, the pitted tooth on the 

sun gear of the first stage, the chipped tooth on the sun gear of the second stage and the missing tooth 

on the sun gear of the second stage. In each experiment, a sun gear of different health conditions is 

installed inside of the test rig, whereas all the other gears are normal. The axial and radial vibrations of 

the first stage are measured by the tri-axial accelerometer, and the radial vibration of the second stage 

is captured by the unidirectional accelerometer. The vibration signals of three channels, (i.e., the axial 

and the vertical directions of the tri-axial accelerometer, and the vertical direction of the unidirectional 

accelerometer), are considered and used for multi-sensor data fusion in this paper. 

4. Experimental Results and Comparisons 

The vibration signals collected from the planetary gearbox test rig are divided into data samples. 

Each data sample is actually a data series containing 20,224 data points. For each identical operating 

condition (identical motor speed, load and gear health condition), thirty data samples are obtained. 

Therefore, for each of the five gear health conditions, there are 240 data samples collected under two 

loading conditions and four motor speeds. 
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4.1. Case 1: Fault Detection of the Sun Gear of the First Stage 

In this case, the proposed method is applied to detecting three health conditions of the sun gear in 

the first stage of the planetary gearbox: normal, a cracked tooth and a pitted tooth. Two hundred and 

forty (240) data samples are acquired for each health condition, and therefore the whole data set 

including the three conditions altogether contains 720 samples. Three hundred and sixty samples (360) 

are selected for training and the remaining 360 samples are used to test. This is a three-class 

classification problem. 

First, two features FRMS and NSDS are extracted from each data sample. Correspondingly, six 

features are obtained for each of data samples from the three channels (the axial and the vertical 

directions of the tri-axial accelerometer and the vertical direction of the unidirectional accelerometer). 

Then, the six features are fused via ANFIS. Finally, the health conditions of the sun gear of the first 

stage are detected. The detection accuracies, that is, the percentage of the number of the data samples 

correctly detected divided by the whole number of the data samples, are presented in Figure 6 and 

Table 2, respectively. 

Figure 6. Accuracy comparison between Methods 1~3 and the proposed method for Case 1. 

 

Table 2. Detection accuracies of Methods 1~3 and the proposed method. 

Case 
Method 1 Method 2 Method 3 Average of Methods 1~3 Proposed method 

Training Testing  Training Testing  Training Testing  Training Testing  Training Testing

1 100 99.17  100 100  88.61 90  96.20 96.39  100 100 

2 91.94 90.55  84.44 79.72  94.72 93.88  90.37 88.05  100 100 

3 82.5 78.67  84 85.5  74 70.83  80.17 78.33  99.33 98.33 

To demonstrate the performance of the proposed method based on multi-sensor data fusion, the 

method based on each individual sensor/channel is also tested using the same data. We refer to these 

methods as Method 1, Method 2 and Method 3, corresponding to the three individual sensors/channels. 

The three methods use only two features extracted from an individual sensor/channel, and also utilize 

ANFIS as the fusion technique. Their detection results are also shown in Figure 6 and Table 2.  

Since this case is relatively simple, Methods 1~3 achieve acceptable training and testing accuracies. 

They are in the range of 88.61–100% for training and 90–100% for testing. Moreover, both Method 2 
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and the proposed method obtain the highest training and testing accuracies (100%). Observing their 

classification errors plotted in Figure 7, however, we can see that the classification error of the 

proposed method is much smaller than that of Method 2. 

Figure 7. Classification errors of Method 2 and the proposed method. 

 

4.2. Case 2: Fault Detection of the Sun Gear of the Second Stage 

The difference of Case 2 from Case 1 is that in Case 2, damage is created on the sun gear of the 

second stage. Similarly, 720 data samples are divided into 360 training and 360 testing samples. They 

are used to compare the proposed method with Methods 1~3. The fault detection accuracies are given 

in Figure 8 and Table 2 respectively. 

Figure 8. Accuracy comparison between Methods 1~3 and the proposed method for Case 2. 

 

As mentioned above, faults to be detected in this case locate on the sun gear of the second stage, in 

which the sun gear operates under lower rotating speeds than the first stage. As a result, the fault 

characteristics of the damaged sun gear are not excited enough and accordingly not evident either. 

Therefore, it is more difficult to detect the sun gear faults of the second stage. The training and testing 

accuracies of Methods 1~3 for the sun gear of the second stage in Figure 8 are obviously lower than 

those for the sun gear of the first stage in Figure 7. The training accuracies of this case range from 

84.44% to 94.72% and the testing accuracies from 79.72% to 93.88%. However, the proposed method 

provides an accuracy of 100% for both training and testing. This verifies the robustness of the 

proposed method. 
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4.3. Case 3: Fault Detection of the Sun Gears of All Stages 

The purpose of using this case is to test the performance of the proposed method in detecting both 

gear health conditions and damage locations (that is, damage on different sun gears of planetary 

gearboxes). Thus, 1,200 data samples covering five gear health conditions (normal, two damage modes 

in the first stage and two damage modes in the second stage) are applied to testing the proposed 

method. The 1,200 data samples are split into two sets: 600 samples for training and 600 for testing. In 

this case, we solve the five-class classification problem. Figure 9 and Table 2 display the training and 

testing accuracies of both the proposed method and Methods 1~3. 

Figure 9. Accuracy comparison between Methods 1~3 and the proposed method for Case 3. 

 

It is observed from Figure 9 that the training accuracies of all methods decrease and range from 

74% to 99.33% because this is a five-class classification problem and relatively difficult. But the 

highest training accuracy (99.33%) is still obtained by the proposed method. The testing accuracies of 

Methods 1~3 are from 70.83% to 85.5% (average 78.33%), whereas the testing accuracy of the 

proposed method is much higher (98.33%). These imply that the method based on multi-sensor data 

fusion performs well when detecting not only various fault modes, but also different fault locations. 

To examine the effectiveness of the two proposed features FRMS and NSDS, we make another 

comparison in this case. Two features SI and SLF, presented in Reference [9], are used as the inputs of 

ANFIS to detect the planetary gearbox faults. The detection accuracies of both Methods 1~3 and the 

proposed method are also shown in Figure 9. For Methods 1~3, the accuracies of using SI and SLF are 

quite low compared with those of using FRMS and NSDS. However, the multi-sensor fusion method 

still obtains the highest accuracy, although this accuracy is not as high as the method achieves when 

using FRMS and NSDS. It means that the proposed features perform better than the existing features in 

detecting the planetary gearbox faults. 

All results of the three cases prove that it is better to fuse the data from different sensors than to 

utilize the data from individual ones. The multi-sensor fusion method obtains evident improvements of 

accuracy and robustness in fault detection of planetary gearboxes. 

5. Conclusions 

Multiple sensors mounted on different locations of planetary gearboxes can provide complementary 

information for fault detection and diagnosis. Based on this understanding, a method using multi-sensor 
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data fusion is proposed in this paper. In this method, an adaptive neuro-fuzzy inference system 

(ANFIS) is adopted as the fusion technique and two features specifically designed for planetary 

gearboxes as the inputs of ANFIS. Three cases of planetary gearbox fault detection are used to test and 

compare the proposed method and the methods using individual sensors. The experimental results 

demonstrate that the proposed method is superior to the others in terms of fault detection accuracy. 
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