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Abstract: The mean shift algorithm has achieved considerable success in target tracking
due to its simplicity and robustness. However, the lack of spatial information may result
in its failure to get high tracking precision. This might be even worse when the target
is scale variant and the sequences are gray-levels. This paper presents a novel multiple
subtemplates based tracking algorithm for the terminal guidance application. By applying
a separate tracker to each subtemplate, it can handle more complicated situations such as
rotation, scaling, and partial coverage of the target. The innovations include: (1) an optimal
subtemplates selection algorithm is designed, which ensures that the selected subtemplates
maximally represent the information of the entire template while having the least mutual
redundancy; (2) based on the serial tracking results and the spatial constraint prior to those
subtemplates, a Gaussian weighted voting method is proposed to locate the target center;
(3) the optimal scale factor is determined by maximizing the voting results among the scale
searching layers, which avoids the complicated threshold setting problem. Experiments on
some videos with static scenes show that the proposed method greatly improves the tracking
accuracy compared to the original mean shift algorithm.
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1. Introduction

Target tracking is one of the most important tasks in computer vision. It serves as the foundation
for numerous higher-level applications in many domains, including video surveillance, visual based
navigation and precision guidance, etc. In this study, we focus on the tracking problem of vision-based
terminal guidance system. After capturing the target from the first frame by the human in loop or
some other automatic target recognition (ATR) system, a robust and accurate tracking program directly
determines the final precision. However, as the imaging system of the terminal guidance is generally lack
of color information, and the target presents complicated changes such as translation, rotation ([0, 2π])
and scale (>1) while the attitudes and position of the carriers alter successively, it is a very difficult task
to achieve a robust tracking.

As introduced in [1], there exists many tracking algorithms, such as Lucas–Kanade [2], mean
shift [3,4], template matching [5]. Among the various tracking algorithms, mean shift, also known as
kernel based tracking, has attracted much attention in the computer vision community since 2000 [3,6–9].

The mean shift can be deemed as an optimal hill-climbing algorithm with adaptive step sizes. It finds
the local maxima by a similarity measure between the color histograms or kernel density estimates of the
model (template) and the target image. The most typically used similarity measure is the Bhattacharyya
coefficient. Mean shift is relatively simple and computationally efficient, and is rotational invariant
as long as the template is circular, and it can be easily extended to be scale adaptive [10], which is
achieved by increasing or decreasing the size of the candidates (corresponding to the bandwidth of kernel
function). However, the original mean shift tracking suffers from an obvious weakness due to the lack of
spatial color information of the target, which makes it often trapped in a wrong position [11], especially
in the gray-level cases. Ning et al. introduced the moment features of weight image (wi) to estimate
the scale and orientation, named by SOAMST (scale and orientation adaptive mean shift tracking). The
SOAMST performs robust when the target region are obviously different from its background in color,
however, as the tracking features are not changed, its localization ability is not improved.

Therefore, various multi-part models have been proposed to enforce the particular spatial structure of
the target. Maggio et al. propose a multi-part target representation based on the computation of seven
semi-overlapping color histograms [12]; Calfield et al. combine the background exclusion constraints
with multi-part appearance models [11]; Jia and Zhang propose a multiple kernel based target tracking
method which divides the target into blocks and extracts kernel weighted histograms of oriented gradients
for each block [13]. These methods significantly improve the spatial description ability of the original
mean shift and provide higher tracking precision, however, none of them can cope with the rotation
changes, which is critical to our application. Xu et al. propose a spatial color histogram, which divide
the target region into some circular ring-like regions, to incorporate spatial information. This method
makes the surface of Bhattacharyya coefficients more convex, and improve the tracking accuracy [14].
Yilmaz proposes an asymmetric kernel based tracking method to solve the anisotropic target problem,
which is suitable for scale and rotation changes. However, its computation is costly [15].

It is well known that feature would be more distinguished by increasing its dimension. In this paper,
we will introduce a new multi-part tracking method based on the mean shift algorithm. This method
uses multiple trackers to improve the tracking precision, and each tracker works based on a unique
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subtemplate, which is cropped from the target template. First, we optimally select a number of circular
subtemplates, and enforce them to best represent the original target template. Meantime, we take their
spatial distances to the target center as a priori knowledge. Then each subtemplate is respectively tracked
by the original mean shift algorithm, and a number of tracking results can be obtained. Next, a voting
strategy is designed to determine the real target center. At each tracking position, we define each voter
by drawing a Gaussian weighted band-ring like surface with the recorded distance prior as its radius, and
by overlapping those surfaces and finding its maximum, we can locate the target center. Each tracker is
inherently rotational invariant, so their combination is also rotational invariant. Finally, to cope with the
scale changes, a scale searching is conducted by changing the statistical radius of the candidate target
(new scale layer) and repeating the above steps (tracking and voting), and the best scale factor can be
obtained form the maximum voting result of those layers.

The remainder of this paper is organized as follows. Section 2 introduces the original mean shift
tracking theory. The proposed method, including the optimal subtemplates, target center voting and the
scale searching, is introduced in Section 3. Experimental results are presented in Section 4. Finally, in
Section 5 we draw the conclusions.

2. Original Mean Shift Tracking

Consider two images, one designated as the model image which includes the targets for tracking and
the other the target image in which we need to find the targets. The sample points in the model image
are denoted by Ix = {xi}i=1,...,N , where xi is the 2D coordinates. Given the kernel function g(x), the
probability density function (PDF) of the target in the model image, which is denoted by q = {qu}u=1...m,
can be estimated using kernel density estimation. Here, m is the feature dimension (bin’s number). For
each bin u,

qu (x0) = Ch0

N∑
i=1

g

(∥∥∥∥xi − x0h0

∥∥∥∥2
)
δ [b (xi)− u] (1)

where x0 is the target center; Ch0 is a normalization constant, which satisfies
∑m

u=1 qu = 1; h0 is the
bandwidth of g, which corresponds to the size of the model image; δ is the Kronecker function; b returns
the feature value at xi.

Similarly, given the sample points of the candidate region in the target image, which is denoted by
Iy = {yi}i=1,...,M , its PDF p = {pu}u=1...m is given by

pu (y) = Ch1

M∑
i=1

g

(∥∥∥∥yi − yh1

∥∥∥∥2
)
δ [b (yi)− u] (2)

where y is the center point of the candidate region; h1 is the new bandwidth corresponding to M , and
h1 = h0 when the target size is constant in the tracking.

The similarity of the two PDFs are measured by Bhattacharyya distance. Based on the Epanechnikov
kernel function, Comaniciu et al. derived the mean shift iterative procedure as [6]

ŷ =

∑M
i=1 yiwi∑M
i=1wi

(3)
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where

wi =
m∑

u=1

√
qu

pu (y0)
δ [b (yi)− u] (4)

is the weight for the ith pixel. The tracker is considered to be convergent if the distance between two
successive iterations is smaller than a particular threshold.

3. Proposed Method

The proposed method mainly includes three steps: (1) select N circular subtemplates according to a
certain criteria; (2) conduct tracking with those subtemplates, and determine the target center by a novel
voting strategy; (3) obtain the scale factor by searching with different patch size for each candidate.

3.1. Optimal Subtemplates Selection and Tracking

Given an MT ×NT template T , from hundreds of candidate points (supposed to be M ), we are going
to find the best N subtemplates with the same size. Let r0 be the radius of subtemplate, and {xn0}n=1,...,N

be their corresponding centers. Figure 1 shows a sketch map of the subtemplate distribution, where all
the M potential candidates are restricted within the inner region Ωr, whose boundaries are r0 away from
the template boundaries (marked in shadow).

Figure 1. The subtemplate distribution.
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The selection relies on the following three rules: 1© scattered spatial distribution: the selected
subtemplates should cover the template region as much as possible; 2© high identifiability: to improve
the tracking precision, each subtemplate should have a high identifiability, which can be evaluated by the
self-similarities to its neighbors; 3© minimum redundancy: to best represent the potential properties
of the target and to minimize their mutual redundancies, those subtemplates should maximize their
dissimilarities to each other.

Based on these rules, we design the selection process as described in Algorithm 1. First, we calculate
all the candidates’ kernel histogram by Equation (1), which is denoted by {qi}, i ∈ Ωr. Then the first
subtemplate is selected by maximizing the self-dissimilarity based on rule 2©. Here, the dissimilarity
is evaluated by the L2 norm. The rest of the subtemplates are serially selected according to rules 1©
and 3©. Their processes correspond to the iteration steps (lines 5–10) in Algorithm 1, in which lines
6–7 correspond to rule 3© and lines 8–9 correspond to rule 1©, respectively.
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Algorithm 1: Subtemplates selection.
In : T : Template; N : Subtemplate number; r: Radius.
Out: {xon, hn, dn}n=1,...,N : the centers of the selected subtemplates, kernel histograms and distances

from xno to the template center.
Calculate qi by Equation (1), i ∈ Ω1 = Ωr;1

Compare the mean dissimilarity of each qi with its neighbors (4 or 8 neighbors), which is2

represented by U i;
i1 = argmax

i
U i, xo1 = xi1, h1 = qi1 ;

3

Ω2 = Ω1 − {i1};4

for n = 2 to N do5

Compare the similarity between xon−1 and all the rest candidates, denoted by Sn−1,i, i ∈ Ωn;6

Sort Sn−1,i, delete the M/N% highest similar ones, denoted by Ωx, so Ωn = Ωn − Ωx;7

Calculate the mean distance between xi to the selected subtemplates {xoj}j=1,...,n−1, recorded8

by Di, i ∈ Ωn;
in = argmax

i
Di, xon = xin, hn = qin;

9

Ωn+1 = Ωn − {xin}10

Output xon, hn and dn = ‖xon − x0‖2, n = 1, . . . , N (x0 is the template center).11

To better understand this algorithm, an example is presented, as shown in Figure 2, the template size is
90×90 (left), r0 = 27 andN = 6. In the right figure, all the subtemplate centers and their corresponding
serial number during the iteration are marked out. Meanwhile, the (M/N)% highest similar candidates
to each selected subtemplate are marked by a unique color. It can be seen that each center point holds
a separate subregion, and all of them scatter in the full template region and in the meantime they are
located far away from each other. In this example, the centers of the 6 selected subtemplate are: (59,63),
(28,28), (28,60), (57,33), (40,44), (63,48), and their distances from the target center are: (21.4, 25.4,
22.8, 17.0, 6.3, 17.1).

Figure 2. Template (left) and the centers of the selected subtemplates (right).
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With each subtemplate, we can conduct the mean shift tracking according to the equations discussed
in Section 2, and the N tracking results, {x∗n}1,...,N , can then be obtained.

In the next section, we are going to introduce the voting based target center determining method.
For facilitating the analysis, we suppose the target is in fixed-scale mode. In other words, the kernel
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bandwidths for the histogram statistic in both model and target images are constant, which equals r0.
The variable-scale tracking problem will be discussed in Section 3.3.

3.2. Voting the Target Center

Our voting strategy is very simple and novel. In the last subsection, we have obtained the priori
distances {dn}n=1,...,N from each subtemplate to the target center, which can be treated as the geometric
constraints of the subtemplates. Obviously, the N tracking results should also satisfy these constraints
when the target is in fixed-scale mode. By this prior, suppose that we draw N circles centered at
{x∗n}1,...,N , respectively, the point with highest cross times within those rings must be the target center.
Ideally, the cross times should be 6. However, not all the tracking results are reliable. For achieving a
more robust location, each voter is modeled by a Gaussian weighed function, with x∗n as its center and
the prior distance dn as its radius.

Wn (x) =
1

2πσ2
exp

(
− (Dn (x)− dn)2

2σ2

)
(5)

where Dn = ‖x− x∗n‖2 is the distance between x and x∗n; σ is the bandwidth of the Gaussian
function, which is used for estimating the inherent error of the kernel histogram based tracking methods.
Obviously, the greater σ is, the higher error tolerance the voting will have. Generally, an error exceeding
±5 pixels is deemed as invalid tracking, we set σ = 4/3 here, and an 8-pixel-width band along each ring
(voter) will be yielded. By superimposing the N voters, the target center X∗, which is identified by the
highest peak, can be located.

X∗ = argmax
x

N∑
n=1

Wn (x) (6)

As the histogram based mean shift tracking is rotational invariant, the voted result given by
Equation (6) is also rotational invariant.

This method can be deemed as a geometric constrained clustering method. However, as it does not
need any complicated clustering parameters, our voting method is more practical in real-time application.

3.3. Scale Space Searching

In the above analysis, we have assumed that the target is in fixed-scale mode. However, in a practical
imaging system, the target image will become bigger and bigger, like the aircraft approaching the target.
Therefore, how to achieve scale invariance is of great concern in our tracking. Fortunately, as the scale
difference can be easily identified by changing the size of the kernel radius, which corresponds to the
patch size, the histogram based tracking is very convenient to achieve scale searching.

Suppose that the scale changes between two adjacent frames is within [s0, s1], we just need to change
the kernel radius from r0 ·s0 to r0 ·s1 with a proper step in the PDF statistics for each frame and to conduct
the tracking and voting processes accordingly. Then each searching layer will produce an optimal voting
result and a candidate target center. Obviously, the voting results can be used to determine the real target
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center, which corresponds to the maximal voting. Let si be the scale factor in one searching, si ∈ [s0, s1],
and {x∗i,n}n=1,...,N be the tracking results in layer si, and the new voter in this scale becomes

Wi,n (x) =
1

2πσ2
exp

(
− (Di,n (x)− dn · si)2

2σ2

)
(7)

where Di,n = ‖x− x∗i,n‖2, dn · si is the new distance from the nth subtemplate to the target center. It
should be noticed that as the target size changes, the prior distance dn must be updated correspondingly.
Meanwhile, the new form of the voting Equation (6) becomes

X∗
i = argmax

x

N∑
n=1

Wi,n (x) (8)

After searching all the si ∈ [s0, s1], the optimal scale factor can be determined by the optimal voting:

opt = argmax
i

N∑
n=1

Wi,n (X∗
i ) (9)

and the final target location is X∗
opt.

Our voting strategy directly utilizes the geometric relationship among the multiple tracking results
to locate the target center, without considering the threshold setting problem encountered by the
Bhattacharyya, NCC, EMD, and L norm etc. similarity-based tracking methods. Moreover, the threshold
setting problem may become more difficult in high dimensional searching cases [10].

For tracking the next frame, we just need to update the centers of the subtemplates and the prior
distances. The update equations are given by

xn = x∗n, dkn = dk−1
n · sopt (10)

where k is the frame number.

4. Experiments

4.1. Test Data Sets

We have applied the proposed method to some synthetic videos and some real-life videos. For lack
of space, we just post one example in each category. In the synthetic video, the scenes are rotated and
enlarged gradually to simulate the real-time imaging sequences of the terminal guidance system. The
scene image is downloaded from Google Earthr. The real-life video is captured in the laboratory by
moving the camera to the target (an envelop on the wall) closer and closer, with some rotating and
motion blur in the approaching. The data sets simulate the 3-second (normally 3 ∼ 5 s) aerial target
imaging sequences of the terminal guidance procedure.

We use the synthetic video in our test for two reasons: (1) the real terminal guidance video is hard
to get; (2) As the target parameters such as position, rotation and scale are all known in each synthetic
process, we can test the tracking precision to some further details.
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4.2. Tracking Comparisons with Synthetic Videos

In the following tests, we chose the original scale adaptive Mean Shift tracking algorithm (OMS),
SOAMST [9] and Xu’s spatial color histogram based Mean Shift (SMS) [14] for comparing with
the proposed method. As to the OMS, we set m = 26 (feature dimension) for both the OMS and
our proposed algorithm. Under the condition of not affecting the precision, the smaller m is, the
less computational cost will be, thus many researches prefer to set it to 16 for color image tracking.
However, we have found that 16 is inadequate for the grey-level sequences. The scale searching space
is 0.95 < si < 1.05, with a step of 0.05. Theoretically, the target size would not become smaller in the
terminal guidance system, but considering there may be divergence in the scale searching, we extend
the searching space to the double sides to improve its robustness. As to the SOAMST, which can be
downloaded from http://www.comp.polyu.edu.hk/ cslzhang/SOAMST.htm, we use its default settings,
where video sequences are RGBs andm = 16×3, the increased search size is 5, corrected area parameter
is 1. As to the SMS, the 2D histogram was set as m = 26 (as an improved mean shift algorithm, m = 16

is also good), n = 3 (spatial bins).
Figure 3 is the target templates for the synthetic video; Figure 4 is their corresponding tracking

results, respectively. In Figure 3, (a) is the template of OMS, SOAMST and SMS, (b) is the original
template image and the selected 6 subtemplates with their centers and region radii marked out. It can
be seen that the target template has been cropped to round for achieving the rotational invariance. In
Figure 4, (a) is the OMS tracking results, with the target center and kernel radius marked respectively;
(b) is the SOAMST tracking results where the outside ellipses indicate the tracked regions of SOAMST;
(c) is the SMS tracking tracking results, with the target center and the spatial division lines marked out
respectively; (d) is the tracking results for the #20,#30,#40,#50,#60,#70 frames of the proposed
method. In each frame, the 6 trackers and their voted target centers are marked with different colors, and
the kernel radius is also marked. We can see that in frames #50,#60,#70, as some of the 6 trackers
have drifted away, only the valid trackers which give higher vote to the target center are drawn. The
original frame size is 512×512, and for protruding the target location, we only post the center 256×256

subregion of each frame.

Figure 3. Target templates of the first video. (a) template of the OMS, SOAMST and SMS;
(b) subtemplates distribution of the proposed method.

(a) (b)
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Figure 4. Comparison of the three tracking methods on the first video. (a) tracking frames
of OMS, the circles denote the real-time kernel radius; (b) tracking frames of SOAMST;
(c) tracking frames of SMS; (d) tracking frames of #20, . . . ,#70 using our method, where
each tracker is marked by one color and their voted target center is marked by “+”, and the
circles denote the real-time kernel radius.

(a) OMS

(b) SOAMST

(c) SMS

(d) Proposed method

It can be seen that: (1) OMS and SOAMST drift away easily; (2) SMS does not drift but its precision is
not high (about 4-pixels error); (3) attributed to the multiple subtemplates strategy, the proposed method
locks the target center all the time, and its tracking precision achieves pixel level.

4.3. Scale Voting

Accurate scale evaluation plays an important role in the tracking. In this test, we are going to discuss
the determined scale factors along the tracking by comparing to the ground truth. In OMS and SMS
tracking, the scale factors are determined by maximizing the similarities from all the searching layers
(the scale factor for the ith layer corresponds to si); In SOAMST tracking, the scale factor is determined
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by calculating the square root of the optimal ellipse area proportion. In our method, it is determined by
maximizing the voting result.

Figure 5 shows the maximum voting of the 3 searching layers (0.95,1.00,1.05). Each frame is chosen
by Equation (9), corresponding to Figure 4(d), respectively. In each sub-figure, the band-ring like voters
are drawn according to Equation (5), and the brightest pixel indicates the candidate target center in the
layer. Taken the 54th frame for example, the voting comparison of the 3 layers is shown in Figure 6, and
the corresponding voting scores are 3.30, 4.72, 3.23, respectively. Obviously, the 2nd one is the optimal
scale factor, and s54opt = 1.00.

Figure 5. Voting results in the optimal scale layer. Each one corresponds to the frames
shown in Figure 4(d).

Figure 6. Voting comparison of the three layers in the 54th frame of the first video. From
left to right: si = 0.95, 1.0, 1.05, and their corresponding voting scores are: 3.30, 4.72, 3.23.

Figure 7 shows the curves of the cumulated scale variation relative to the first frame (#20). The
cumulated relative scale in the kth frame can be calculated by

scalek =
k∏

i=20

siopt, k = 20, . . . , 70 (11)

In the figure, we plot 5 lines: the blue one is the ground truth, which is obtained by the original data
in the video synthesizing; the green one is the voted results, the red one is the OMS based results, the
brown one is the SMS based results and the cyan one is the SOAMST based results.

It can be seen that: (1) both OMS and the proposed methods can get the true scale factors, however,
our method performs better than others; (2) SMS always diverges in some frames and converges rapidly;
(3) SOAMST’s result is really bad. Actually, SOAMST is especially good at the cases of target and
background with higher contrast, however, there is no salient separation from background and foreground
in our applications.
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Figure 7. The determined scale factors estimated by the 4 methods comparing to the
ground truth.
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4.4. Tracking without Subtemplates Selection

In order to prove the effectiveness of our subtemplates selection algorithm, we test the proposed
method many times by 6 randomly selected subtemplates. For lack of space, we just post one example,
as shown in Figure 8, where (a) is the 6 subtemplates whose centers are evenly distributed in a circle
with radius of 17 pixels; (b) is the tracking results of the frame #70; (c) is the scale variation curves.

Figure 8. Test results without the subtemplates selection strategy. (a) evenly distributed
subtemplates; (b) tracking results of frame #70; (c) determined scale factors comparing to
the ground truth.

(a) (b)
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It can be seen that the tracking precision is similar to Figure 4(d), however, the estimated scale factors
are not so precise as shown in Figure 7, which may affect some further processes such as estimating the
target distance based on the scale factors.

4.5. Tracking in Real-Life Scene

For further testing, we conduct the 4 methods on a real-life video, as seen in Figure 9, where the
#50,#60, . . . ,#90 frames are posted only. The original frame size is 320 × 240, and for protruding
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the target location, we only post the center 180 × 140 subregion of each frame. Figure 10 shows the
templates of the OMS/SOAMST/SMS (left) and our method (right) in the tests, respectively, with the
same size of 80× 80.

Figure 9. Tracking tests of the 4 methods on the real-life video. (a) OMS; (b) SOAMST;
(c) SMS; (d) Proposed method.

(a)

(b)

(c)

(d)

Figure 10. Target templates of the real-life video. (a) template of the OMS/SOAMST/SMS;
(b) subtemplates distribution of the proposed method.

(a) (b)
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From the tracking frames, we can see that: (1) the OMS still drifts away in the end; (2) SMS does
not drift but still has 5 ∼ 10 pixels error; (3) SOAMST and our method locks the target constantly and
precisely, and meets the demands of the terminal guidance system. However, as seen in the following
computational analysis, our method runs much faster than SOAMST.

From all the tests we can achieve the following conclusions: (1) our subtemplates selection strategy
is helpful to improve the tracking robustness; (2) our voting strategy can effectively and accurately
determine both the scale factor and the target location; (3) the proposed multiple subtemplates tracking
algorithm meets the demand of the terminal guidance system.

4.6. Computational Analysis

All the tests are implemented using the MATLABr 2011a on a PC with 2.93 GHz CPU (Intelr

I3-530), 2 GB memory. The initial template size of each tracking is 80 × 80. The computational cost
will be increased when the target enlarged gradually. As we see, the OMS/SOAMST/SMS carries on the
mean shift iterative processes with a whole template while our method does it with N , but much smaller
subtemplates, so the computational increase of our method is not high. On average, the OMS and SMS
tracks each frame with 200 ms, and our method with 300 ms. As to the SOAMST, it runs very slow as
the wrong scale estimation. When tracking on 80 × 80 regions, SOAMST runs more than 1 s for each
frame, and that will rise at an exponential rate while the region size increasing.

5. Conclusions

Inspired by the multi-part model, this paper presents a multiple subtemplates based mean shift
tracking algorithm to achieve a higher tracking precision for the terminal guidance application where
the targets are often static such as buildings or slowly moving ships. Relying on proposed rules,
an optimized subtemplates selection algorithm is designed. The selected subtemplates maximize the
information representation of the original template and minimize their redundancy from each other. A
voting strategy to accurately locate the target center by the prior spatial constrain information of those
subtemplates is also proposed. Moreover, the voting strategy can easily determine the scale factor and
avoid the threshold setting problems which need to be considered in most similarity based methods.
Experiments on some videos with static scenes show that the voting strategy can effectively find both the
scale factor and the target center, and the proposed method successfully improves the tracking precision
of the original mean shift method when rotation and scale changes. Moreover, like other multi-part based
methods, the proposed method can also cope with the partly covered target tracking problem.

This paper also provides a solving framework for the histogram based matching or tracking problems,
only if the histogram features satisfy rotational invariance, such as the Rotation-Invariant Fast Features
(RIFF) [16], which can effectively cope with the differences in light and can be used in the sequences
with less information, such as infrared, SAR. Moreover, we can also introduce Xu’s spatial color
histogram [14] to our method, which must be able to further improve the tracking precision.
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