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Abstract: This paper presents a signal processing technique to improve angular rate 
accuracy of the gyroscope by combining the outputs of an array of MEMS gyroscope. A 
mathematical model for the accuracy improvement was described and a Kalman filter (KF) 
was designed to obtain optimal rate estimates. Especially, the rate signal was modeled by a 
first-order Markov process instead of a random walk to improve overall performance. The 
accuracy of the combined rate signal and affecting factors were analyzed using a  
steady-state covariance. A system comprising a six-gyroscope array was developed to test 
the presented KF. Experimental tests proved that the presented model was effective at 
improving the gyroscope accuracy. The experimental results indicated that six identical 
gyroscopes with an ARW noise of 6.2 °/√h and a bias drift of 54.14 °/h could be combined 
into a rate signal with an ARW noise of 1.8 °/√h and a bias drift of 16.3 °/h, while the 
estimated rate signal by the random walk model has an ARW noise of 2.4 °/√h and a bias 
drift of 20.6 °/h. It revealed that both models could improve the angular rate accuracy and 
have a similar performance in static condition. In dynamic condition, the test results 
showed that the first-order Markov process model could reduce the dynamic errors 20% 
more than the random walk model. 

Keywords: MEMS gyroscope array; Kalman filter; first-order Markov process; rate 
accuracy improvement 
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1. Introduction 

Micro Electromechanical System (MEMS) gyroscopes have been used for measuring rate or angle 
of rotation in various inertial measurement fields thanks to their attractive advantages such as small 
size, low cost, possible batch fabrication and low power consumption [1,2]. However, to date the low 
accuracy of the MEMS gyroscope has limited its applications to tasks requiring high-precision rate 
signals. During the development of MEMS gyroscopes, several common methods have been explored 
to improve the accuracy, mostly focusing on the device itself, such as enhancement in materials, 
fabrication processes, structural design and interface circuits [3–7]. Other extensive research has been 
also carried out on the area of accuracy improvement. One of the fundamentally different methods is 
the virtual gyroscope technology [8], its principle is that several identical low-precision gyroscopes are 
combined together to form an array and measure the same rate. An optimal rate estimate can be 
obtained by the optimal filter to fuse these multiple measurements. This approach can further reduce 
the noise, the bias instability and improve the overall accuracy beyond the performance limitations of 
individual gyroscopes. Bayard and Ploen constructed a virtual gyroscope using a four-gyro array, the 
simulation results showed that the gyroscopes with drifts of 8.66 °/h could be combined into a virtual 
gyroscope with a drift of 0.062 °/h when the gyroscope array are assumed to have a correlation factor 
of −0.33329 [8]. In our previous work, a MEMS gyroscope array with three individual gyroscopes was 
studied [9,10], and a two-level optimal filter was designed to compensate the random noises and 
reduce the bias drift [9]. Al-Majed and Alsuwaidan presented a multi-filters adaptive estimator for the 
MEMS gyroscope array system to improve the angular rate estimates [11]. Additionally, an extended 
Kalman filter (EKF) technique for combining multiple sensors was studied in [12]. 

In recent years, the redundant MEMS inertial sensors have been utilized integrated with GPS to 
improve navigation performance. Numerous studies and researches have been undertaken on 
redundant inertial measurement unit (IMU) integration, whereby the measurements of multiple IMUs 
are fused [13–19], into what can be called a virtual IMU (VIMU). In VIMU theory, the configuration 
of multiple IMUs is one of the most important considerations. Pejsa presented a theory about how 
multiple sensors can be placed on a cone to maximize redundancy and mathematically determined the 
optimal configuration for sensor axes [19]. In [14], an approach for reducing and estimating the noises 
in the inertial sensors was investigated by using multiple inertial sensors, furthermore the INS/GPS 
integrator based on the synthetic IMU, extended IMU and geometrically constrained IMU 
mechanization were presented for integration of GPS with redundant MEMS-IMUs. In [15] the impact 
of the number of sensors and sensors’ orientation on the system performance were demonstrated, and 
the optimal configuration of the multiple IMU triads was also studied. Additionally, three mechanization 
approaches of the system and an observation model for the multiple IMUs integration were described 
in [16]. Furthermore, in [18] several fusion algorithms were developed using multiple IMUs to 
enhance performance in the pedestrian navigation. It can be seen that the technology of the virtual 
gyroscope is essentially identical with the VIMU, since both of them fuse multiple measurements to 
create a combined signal from a sensor array for improving the overall performance. However, in 
contrast with the VIMU, the virtual gyroscope usually models the rate signal directly to obtain an 
optimal rate estimate. Therefore, the objective of this paper, which based on the virtual gyroscope, is to 
study various models for modeling the rate signal to combine multiple MEMS gyroscopes. 
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The key of combining multiple gyroscopes for accuracy improvement lies in rate signal modeling 
and the optimal filter design. Therefore, how to model the rate signal is a prerequisite for constructing 
a virtual gyroscope system. Through analyzing the current approaches [8–10], it can be found that 
these approaches usually modeled the rate signal by a random walk and then evaluated performance. 
However, to model the rate signal as the random walk has some limitations, which will affect the 
system’s overall performance. The random walk process is a non-stationary process since its variance 
increases with time; however, in practice most of the rate signal energy is at low frequency. 
Furthermore, the practical dynamic characteristic of the angular rate cannot always be well represented 
and reflected by the random walk process in conditions of lacking more information about rate signal 
such as power-spectral density and bandwidth. The use of random walk models may lead to accuracy 
degradation, especially signal attenuation in a dynamic situation. To overcome such a problem, the rate 
signal should be modeled by other suitable approaches. 

Markov process modeling is a powerful and commonly used technique that has been introduced for 
modeling inertial sensors errors for several years, but it has not been used for modeling the virtual 
gyroscope before. In most applications, the maneuverability characteristics of aircrafts can be regarded 
as contained in a certain frequency bandwidth and magnitude [20]. In addition, the angular rate signal 
ωk+1 for the subsequent time point tk+1 usually can be thought as related to ωk for the former time point 
tk. Such dynamic characteristics and property can be suitably represented by a Markov process model. 
Furthermore, the Markov process is a stationary process that has an exponential Autocorrelation 
Function (ACF). The ACF of a zero-mean first-order Markov process is defined by a decaying 
exponential form [21]. 

Although the dynamic characteristics of the rate signal can be more accurately represented by using 
an Autoregressive (AR) model of orders higher than one to model the rate signal, it would result in 
estimating more system parameters and increasing the complexity of filter. On the other hand, the  
first-order Markov process satisfies the requirement for establishing the system state-space model. 
Therefore, in this paper the first-order Markov process is used to model the rate signal, and then a 
complete KF is designed for obtaining the optimal rate estimate. Furthermore, the factors that affect 
the system performance have been analyzed. Lastly, the hardware of the virtual gyroscope system is 
implemented and the performance of the virtual gyroscope with two different rate signal models are 
tested and compared. 

2. Modeling of Virtual Gyroscope System 

The structure and principle of the virtual gyroscope is shown in Figure 1. Several identical MEMS 
gyroscopes form a sensor array and the multiple measurements of the sensor array are collected by the 
data acquisition system. These measurements are used to quantify the random errors through noise 
modeling by the Allan variance. The optimal filter is designed to combine multiple measurements to 
produce a minimum variance rate estimate. Therefore, it can provide a combined signal with a higher 
accuracy than that of the single sensors. The key of the virtual gyroscope lies in the optimal filter, 
which includes the modeling of rate signal and system state-space. The optimal filter based on the  
first-order Markov process will be designed. In addition, the KF has the advantage of being a 
systematic method to ensure minimum variance rate estimation [22]. It is suitable for dealing with 
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dynamic data and has high real-time performance compared with other estimation approach, and 
widely used to improve performance of the micromechanical inertial sensors [23]. Therefore, the KF is 
used to implement the gyroscope array. 

Figure 1. Structure and principle of the virtual gyroscope. 

 

2.1. State Model for Virtual Gyroscope 

The true rate signal can be modeled directly to improve accuracy. For most applications of gyroscope, 
the rate signal is propagated according to an approximate power spectral density function in which the 
three degree-of-freedom motion is contained. In other words, this motion is expected to be within a 
certain frequency bandwidth and magnitude [20]. It can be modeled in state space form as a first-order 
system with a process time constant set according to the system’s bandwidth and the process noise 
related to the limit of the magnitude of the motion. Therefore, it is suitable to model the true rate signal 
as first-order Markov process: 

1/ nω ωω τ ω= − ⋅ +&  (1) 

where ω  is the true rate signal, ωτ  is the process time constant, nω  is the zero-mean Gaussian white 
noise with variance parameter qω  that can be set according to the dynamic characteristics of the input 

rate signal. To set the true rate signal as the system state, the state model for the virtual gyroscope 
system can be established as: 

( ) ( ) ( ) 1 / ( )X t F X t w t X t nω ωτ= ⋅ + = − ⋅ +&  (2) 

where system state ( )X t ω= , coefficient scalar 1 /F ωτ= − , system process noise ( )w t nω=  and 
[ ( ) ( )] ( )TE w t w t qωτ δ τ+ = . 

With such direct modeling of the rate signal, the rate signal can be estimated and obtained directly 
using a KF. Furthermore, the accuracy of the combined rate signal can be analyzed by the KF covariance; 
this can provide a reference for system improvement and parameters adjustment. In particular, it is 
suitable for the individual gyroscope which only includes the random noise of the white noise. 
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2.2. Measurement Model for Virtual Gyroscope 

The measurement errors of MEMS gyroscope is usually composed of the known errors and random 
errors. The known errors can be eliminated by the testing procedure, thus only the random errors are 
discussed for the gyroscope. A common model for the MEMS gyroscope is widely used in many 
application which mainly includes the white noise denoted as angular random walk (ARW) and bias 
drift due to rate random walk (RRW) [24,25]. However, for the MEMS gyroscopes with a lower 
accuracy, the ARW noise is the dominant term rather than RRW; other researchers have made the 
same observation [26]. In our experience, this is the case for consumer-grade and lower tactical-grade 
MEMS gyroscopes. Therefore, to estimate and extract the true rate signal from the noise-corrupted 
measurements and reduce the dominant ARW noise, it is reasonable to model the ARW alone to 
reduce the dimension of the KF, thus the output rate signal of such gyroscopes can be described as a 
simplified model: 

( ) ( ) ( )y t t n tω= +  (3) 

where ( )y t  is the output rate signal of the gyroscope, ( )tω  is the true rate signal, and ( )n t  is the white 
noise corrupting the gyroscope rate measurement but becoming the angular random walk at the 
gyroscope angle level. As for a gyroscope array with sensor number of N, the measurement model for 
the virtual gyroscope system can be expressed as: 

( ) ( )t tω= ⋅ +Z H v  (4) 

and: 

[ ]1 2( ) , , , T
Nt y y y=Z L , [ ] 1

1,1, ,1 T

N×
=H L , [ ]1 2( ) , , , T

Nt n n n=v L  (5) 

where ( )tv  is the measurement noise with [ ( )] 0E t =v  and [ ( ) ( )] ( )TE t t τ δ τ+ =v v R , [ ]E ⋅  is the 
mathematical expectation operator, t  is an arbitrary sampling time and τ  is the time lag between 
samples, δ(τ) is the Dirac delta function. 

The matrix R is the covariance matrix of the noises v(t), it will not be necessarily diagonal since the 
component gyroscopes may be correlated with each other. The correlation between sensor array can be 
interpreted as the outputs of the component gyroscopes satisfying a statistical relationship. This 
relationship can be characterized and indicated by a correlation factor ρ and covariance matrix R [8]. 
For a gyroscope array with positive correlation factors, the noises of the component gyroscopes will 
show an identical statistical distribution pattern; negative correlation factors indicate the opposite 
statistical distribution pattern of the noises. Concretely, correlation factor ρ = 0 indicates an 
uncorrelated gyroscope array; the gyroscope array will have maximum correlation when ρ = ±1; when 
correlation factor −1< ρ <1, the gyroscope array will have a correlation in between. Suppose that a 
constant cross-correlation exists between the identical component sensors, then the covariance matrix 
R for the noises v(t) can be expressed as: 
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where 2
nσ  is the ARW noise variance of the component gyroscopes, and ρ is the constant cross-

correlation factor. 

2.3. Optimal KF for Angular Rate Estimate 

Based on the aforementioned system state-space model of Equations (2) and (4), the continuous KF 
can be expressed as: 

ˆ ˆ ˆ( ) ( ) ( )[ ( ) ( )]X t FX t t t X t= + −K Z H&  (7) 
1( ) ( ) Tt P t −=K H R  (8) 

2 1( ) 2 ( ) ( ) TP t P t F P t qω
−= − +H R H&  (9) 

Equations (7) to (9) describe the relationship between the system state X(t), filter gain K(t) and 
estimated covariance P(t). It can be seen that the system state X(t), i.e., the true rate signal, can be 
eventually estimated through solving the problem of the differential equation (9), which is called 
matrix Riccati differential equation (RDE). Therefore, solving the RDE is crucial to KF. From analysis, 
it indicates that the KF is completely observable due to the rank of observable matrix is equal to the 
dimension of X(t), thus the KF will be stable and solution to the RDE will approach a steady-state 
value, this avoids numerical integration for the RDE and updates P(t) in each step. For this case, it can 
get ( ) 0P t =&  and Equation (9) goes over into an algebraic equation [27]: 

22 0F P D P qω∞ ∞⋅ − ⋅ + =  (10) 

where P∞  is a scalar representing the steady-state covariance of the estimated rate signal, and 
1TD −= H R H . Since 0P∞ > , solving Equation (10) and the steady-state covariance can be obtained as: 

1 2( 1/ (1/ ) )P D Dqω ω ωτ τ−
∞ = − + +  (11) 

Inserting Equation (11) into Equation (8) yields: 

1 2 1( 1/ (1/ ) ) TD Dqω ω ωτ τ− −
∞ = − + +K H R  (12) 

where ∞K  is a 1 × N row vector representing the steady-state filter gain. Using steady-state gain ∞K , 

the rate signal estimate can be propagated in the continuous state-space form: 

ˆ ˆ( ) ( ) ( ) ( )X t X t t∞ ∞= ⋅ +K H K Z&
F -  (13) 

The discrete KF can be derived by directly discretizing the continuous KF of Equation (13) using a 
zero-order hold approximation. Assume that the measurement value Z(t) is held constant over each 
sampling period, we have: 

1
1

ˆ ˆ ( 1)AT AT
k k kX e X A e−

+ ∞= + − K Z  (14) 

where (1/ )A ωτ ∞= − + K H , and T is the sampling period. Consequently, the outputs of the virtual 

gyroscope can be determined by the discrete KF of Equation (14). The implementation of a virtual 
gyroscope system makes use of a discrete KF with a structure as shown in Figure 2. 



Sensors 2012, 12 1726 
 

 

Figure 2. Virtual gyroscope implementation using a discrete KF. 

 

From the above description of state-space model and KF, Equation (2) holds for constant rate input, 
and Equation (14) can be used to obtain a rate signal with high accuracy for the case of static and 
constant condition. For dynamic conditions, i.e., for time varying rate inputs, the variance qω can be 
used to set an appropriate bandwidth to satisfy the dynamic requirement. 

2.4. Performance Analysis of KF 

The bandwidth is an important parameter for the KF, it is related to the structure and parameters of 
the KF such as variance qω, number of individual gyroscopes N and noise statistical quantities of the 
individual gyroscopes. The correlation factor doesn’t affect the bandwidth. From the continuous KF of 
Equation (13), the transfer function from the outputs of the gyroscope array to virtual gyroscope can be 
expressed in Laplace transform domain as: 

2 1ˆ( ) ( (1/ ) ) ( )s s Dq sω ωω τ −
∞= + + K Z  (15) 

Due to a input rate signal is detected by multiple gyroscopes, the outputs of the gyroscope array can 
be expressed as ( ) ( )st y t= ⋅Z H  without considering the sensors noises, where ( )sy t  is the output rate 

signal of the single gyroscope. Using Equations (12) and (15), the transfer function can be formed as: 

2 1 2( ) ( (1/ ) ) ( 1/ (1/ ) )H s s Dq Dqω ω ωω ωτ τ τ−= + + − + +  (16) 

The frequency response of the KF can be obtained as: 

( )
( )

(0)
H j

A
H

ω
ω = , (0) 1A =  (17) 

The −3 dB standard is used to define the KF bandwidth, using KF frequency response, the 
bandwidth can be expressed as: 

21 (1/ )
2

BW Dqω ωτ
π

= +  (18) 

With the same derivation and analysis, the bandwidth of KF modeled by the random walk can be 
expressed as: 

1
2rwBW Dqωπ

=  (19) 
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Given the identical system parameters, it is obvious that BW is higher than BWrw and the bandwidth 
of KF modeled by a first-order Markov is wider than that of the KF modeled by the random walk. 
Therefore, the presented KF has an improved dynamic characteristic compared to the KF modeled by 
the random walk. 

On the other hand, the performance of the KF and accuracy of the combined rate signal can be 
evaluated by the steady-state covariance. It can be seen from Equation (11) that the steady-state 
covariance is affected by three parameters including D , ωτ  and qω . It indicates that P∞  reduces while 

decreasing the value of 1D− . Substituting ωτ → ∞  into Equation (11) results in: 

/P q Dω∞ =  (20) 

It shows that P∞  will be equal to zero when 1 0D− = , for this case the KF reaches the best 

performance and the combined rate signal with the best accuracy could be obtained. The 1D−  is related 
to the number of individual gyroscopes, noise statistical quantities of gyroscopes and correlation 
factors ρ. Using of 1TD −= H R H , Equations (6) and (20), the steady-state covariance can be expressed as: 

2 1 ( 1)
n

NP q
Nω

ρσ∞
+ −=  (21) 

Therefore a minimum P∞  can be achieved through adjusting the factors in Equation (21). In 
particular, P∞  will approach zero as 1/ ( 1)Nρ → − − . Setting parameter qω = 1 in Equation (21), we 

obtain / / [1 ( 1) ]n P N Nσ ρ∞ = + − . The relation between the gyroscopes noise reduction, correlation 

factor ρ and sensor number N is shown in Figure 3. It indicates that the magnitude of noise reduction 
increases with decreasing of factor ρ, and the reduction magnitude with a negative correlation is higher 
than that of a positive one. Furthermore, the correlation factor (either positive or negative) cannot 
degrade the individual gyroscope accuracy. 

In addition, Equation (21) shows that P∞  will decrease when qω  is decreased. As for Equation (1) 
for modeling rate signal, the qω  can be chosen as it depends on the true rate signal characteristics. In a 

practical situation, the characteristics of the true rate signal cannot be accurately obtained because of 
dynamic behaviors of the input rate signal. However, from Equation (18), it can be seen that the KF 
bandwidth is related to the variance qω . Consequently, the KF bandwidth can be used to choose an 
appropriate value of qω  to implement the virtual gyroscope system, that is, the requirement of various 
dynamic applications can be satisfied by adjusting qω  to obtain different bandwidths. 

On the other hand, different values of qω  will lead to different system performances. Due to the 
actual statistical model of the rate signal is difficult to accurately obtain, and even qω  varies with 
changes of the environment, thus if the choice of qω  could accurately or closely reflect the dynamic 

characteristics of the input rate signal, the KF will reach the best performance and the virtual 
gyroscope signal with the best accuracy can be obtained; while qω  is smaller than such ‘value’, the 
performance of the KF will be degraded, it would result in a signal attenuation; while qω  is higher than 

such ‘value’, the performance of the KF will be also degraded and eventually reach the level of a 
simple averaging process with increasing of qω . 
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Figure 3. Relationship between the gyroscope noise reduction and correlation factor ρ and 
sensors number N. 

 

3. Experiments and Discussion 

3.1. Correlations between the MEMS Gyroscope Array 

The performance of the KF was analyzed in Section 2.4. It showed that the accuracy could be 
considerably improved when the gyroscope array has a negative correlation. However, in a practical 
implementation, the gyroscope array with an expected correlation factor has so far been hard to 
artificially design and fabricate. Additionally, usually the performance can be further improved 
through increasing the number N of the individual sensors in the array (Figure 3); however, one needs 
to consider the system complexity and uniformity between the gyroscopes. Therefore, in this work, six 
separate identical ADXRS300 MEMS gyroscopes are utilized to form a gyroscope array to serve as the 
virtual gyroscope system. 

The correlation matrix can be used to indicate noise correlation between the multiple gyroscopes. 
Since the individual gyroscopes are described by a simple model of Equation (3), the component 
elements of the correlation matrix, i.e., correlation factors between every pair of sensors, can be 
obtained by: 

( , )
( , )

( , ) ( , )
i j

i i j j

C g g
i j

C g g C g g
=CorrM , , 1,2, ,6i j = L  (22) 

where CorrM is a 6 × 6 correlation matrix of gyroscope array, C = cov(gi, gj) is the covariance 
between the outputs noise of the ith and jth gyroscope. The correlation matrix of the six-gyroscope 
array was analyzed with a zero rate output recorded for 1 hour at a sampling rate of 200 Hz. Through 
multiple tests, the correlation matrix illustrated in Table 1 was obtained, where it is obvious that the 
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correlations between the separate gyroscopes are relatively weak and values of correlation factor are 
close to zero, therefore, such a gyroscope array can be regarded as uncorrelated. It is reasonable to 
suppose that the main reason lies in the independent working condition for the mechanical sensing 
elements and controlling interface circuits of the individual gyroscopes [9]. 

Table 1. Correlation matrix of noises for six-gyro array. 

 Gyro1 Gyro2 Gyro3 Gyro4 Gyro5 Gyro6 
Gyro1 1.000 0.021 0.007 0.005 0.005 0.004 
Gyro2 0.021 1.000 0.038 0.016 0.007 0.009 
Gyro3 0.007 0.038 1.000 0.036 0.015 0.009 
Gyro4 0.005 0.016 0.036 1.000 0.038 0.017 
Gyro5 0.005 0.007 0.015 0.038 1.000 0.032 
Gyro6 0.004 0.009 0.009 0.017 0.032 1.000 

3.2. Hardware Implementation 

The hardware of the virtual gyroscope is mainly composed of sensor array, central processing unit, 
A/D data acquisition unit, serial communication unit and FLASH memory. Figure 4 shows the 
prototype of the virtual gyroscope system.  

Figure 4. A prototype of the virtual gyroscope system. 

 
 
Six ADXRS300 MEMS gyroscopes are utilized to form a gyroscope array. A TMS320VC5416 

DSP chip is chosen as core processor for the virtual gyroscope. The A/D data acquisition unit uses a 
16-bit ADS7807 to collect voltage signals from gyroscope array. The system operates in serial mode 
and connects with DSP directly through the 16-bit data bus. FLASH memory unit uses 4Mbit Flash 
chip AM29LV400 to provide storage space for external system program. The virtual gyroscope signal 
is exported by RS-232. The experimental results will be presented to quantify the performance of the 
virtual gyroscope. The geometry configuration of the sensors array should be considered to improve 
the estimation process. It had been shown in [16,18] that the separation between two sensors will 
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introduce an angular acceleration that relates the individual states through differential equations in 
fusing redundant IMUs. As the focus of this paper is not on the geometry layout of the gyroscope array, 
the influence of sensors geometry on the system performance will be investigated in the successive work. 

3.3. Static Performance Test 

The ARW, bias drift and noise density of the virtual gyroscope with two KF models are tested and 
compared. The performances of the virtual gyroscope are evaluated using FFT analysis and root Allan 
variance of a zero rate output recorded for 1 hour. Due to the 40 Hz bandwidth of an individual 
gyroscope, and the bandwidth of the virtual gyroscope will not be higher than 40 Hz, thus the sampling 
rate was set to 200 Hz to satisfy the Nyquist theorem. The system parameters are chosen as τω = 500 s 
and qω = 0.0772 deg2/s3. The comparisons of FFT plot and Allan variance measurement between the 
virtual gyroscope and single gyroscope are shown in Figures 5 and 6, respectively. Furthermore, the 
accuracy of the virtual gyroscope is compared with the averaging outputs of six individual gyroscopes. 
The detailed results are illustrated in Table 2. 

From the FFT plot, the noise level indicates noise floor of ~0.11°/s/√Hz  for the single gyroscope 
and 0.03°/s/√Hz for the virtual gyroscope modeled by the first-order Markov process, whereas the 
corresponding value estimated by the random walk model is 0.04°/s/√Hz . It also suggests a low-pass 
characteristic of the KF. In addition, it indicates a noise floor of ~0.05°/s/√Hz  for the rate signal 
obtained by averaging outputs of the six individual gyroscopes. 

Figure 5. FFT plot of the virtual gyroscope compared to the single gyroscope and 
averaging outputs of the gyroscope array. 
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Figure 6. Allan variance results of the virtual gyroscope compared to the single gyroscope 
and averaging outputs of the gyroscope array. 

 

Table 2. Static test results of the virtual gyroscope. 

Terms 
Single 

gyroscope 
Simple 
average 

Virtual gyroscope performance 
Random walk 1st order Markov 

Noise Density(°/s/√Hz ) 0.11 0.05 0.04 0.03 
ARW (°/√h) 6.17 2.73 2.35 1.83 
RRW (°/h/√h) 294.28 161.21 125.83 120.61 
Bias Drift (°/h) 54.11 22.72 20.64 16.32 

 
From the Allan variance plot, both the ARW noise and bias drift are reduced by fusing multiple 

measurements from gyroscope array. Table 2 reveals that the ARW noise of the single gyroscope is 
reduced from 6.17 °/√h to 1.83 °/√h and 2.35 °/√h by two different models, indicating an ARW 
reduction factor of about 3.4 by the first-order Markov model. Meanwhile, the bias drift is reduced 
from 54.11 °/h to 16.32 °/h, which is lower than that of the 20.65 °/h estimated by the random walk 
model. It is clear that the performances of two models are comparable due to the static characteristics 
of the angular rate signal. Furthermore, the Allan variance results reveal that values of the ARW noise 
and bias drift for rate signal estimated by the simple averaging are 2.73 °/√h and 22.72 °/h, 
respectively, which are greater than that of the presented KF, thus the performance of the presented KF 
is higher than that of the simple averaging process. Additionally, it can be seen that the ARW 
reduction is greater than that of the RRW and bias drift, the main reason being that the ARW is the 
dominant noise in the single gyroscope and the virtual gyroscope adopts a simple error model to 
describe the relationship of the input angular rates and gyroscope outputs. 
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3.4. Dynamic Performance Test 

The dynamic tests are carried out on a horizontal turntable (Figure 4). The standard deviation (1σ) 
of the estimated errors is used to evaluate the accuracy of the rate signal before and after KF. The 
sampling rate and parameter qω are set to 500 Hz and 1.9290 deg2/s3. 

Three kinds of dynamic condition are chosen to test the presented model. Firstly, the turntable is 
controlled to rotate in the horizontal plane with a 40 °/s constant rate, the outputs of the individual 
gyroscopes and virtual gyroscope are shown in Figure 7. Secondly, the turntable is controlled to rotate 
with a random input rate, the outputs of the individual gyroscopes and virtual gyroscope are shown in 
Figure 8. Lastly, the turntable swings with the 40° angle amplitude and 0.25 Hz frequency, thus the 
input rate signal is ω = 62.8 × sin(1.57t) °/s, the results of the virtual gyroscope are shown in Figure 9, 
here only the data of the first 30s are demonstrated to display the results more clearly. The detailed 
results are illustrated in Table 3. 

Figure 7. Constant rate test of the virtual gyroscope. (a) Outputs of the individual 
gyroscopes; (b) Outputs of the virtual gyroscope. 

(a) (b) 

Figure 8. Random rate test of the virtual gyroscope. (a) Outputs of the individual 
gyroscopes; (b) Outputs of the virtual gyroscope; (c) Estimated rate errors. 
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Figure 8. Cont. 

 
(b) 

 
(c) 

Figure 9. Sinusoidal rate test of the virtual gyroscope. (a) Outputs of the individual 
gyroscopes; (b) Outputs of the virtual gyroscope; (c) Estimated rate errors. 
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Figure 9. Cont. 

 
(c) 

Table 3. Dynamic test results of the virtual gyroscope (unit: °/s). 

Model 
Constant rate Random rate Sinusoidal rate 

Mean 1σ 1σ Amplitude 1σ 
Single gyroscope 40.15 1.45 1.61 62.64 0.79 
Random walk 40.14 0.06 0.47 60.47 1.80 
1st order Markov 40.09 0.05 0.29 62.29 0.16 

 
Table 3 shows that the gyroscopes’ 1σ errors are reduced from 1.45 °/s to 0.06 °/s and 0.05 °/s by 

two different models in the constant rate test. It can be seen that the performance improvement of two 
different models are nearly equivalent. In addition, from Figure 7, the bound on the angular position 
error caused by the ARW and RRW noisy terms can be obtained by integrating the outputs of 
gyroscopes over time [28]. 

In the random rate test, the virtual gyroscope signals could well reflect the dynamic characteristic of 
the input angular rate (Figure 8), the 1σ errors are reduced from 1.61 °/s to 0.47 °/s and 0.29 °/s, 
respectively, by both different models. It reveals that the performance of the first-order Markov 
process model is higher than that of the random walk due to the input rate signal has a more dynamic 
characteristic than constant condition. 

In the swing test, the amplitude of combined rate signal estimated by the first-order Markov model 
reaches to 62.29 °/s, which is basically in accordance with the experimental setting, meanwhile, the 1σ 
errors are reduced to 0.16 °/s that is much smaller than 1.8 °/s estimated by the random walk model. 
Furthermore, Figure 9(c) indicates amplitude attenuation by the random walk model, and the virtual 
gyroscope signal cannot accurately reproduce the dynamic characteristic of the input rate signal. 

It would be useful to verify the presented KF to expand the experiments to different axes and 
rotations sensed by several axes in addition to the experiments. However, such experiment is difficult to 
conduct because of the limitation in testing condition and all the individual gyroscopes are oriented along 
the same axis. Therefore, the verification in the paper was only implemented through such experiments. 

4. Conclusions 

In this paper, the first-order Markov process was used to model the rate signal for fusing multiple 
MEMS gyroscopes to improve the overall accuracy. It indicated that the six-gyroscope array with an 
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ARW noise of 6.17 °/√h and a bias drift of 54.11 °/h were combined into a rate signal having an ARW 
noise of 1.83 °/√h and a bias drift of 16.32 °/h. The presented KF also reduced the dynamic errors by 
over 20% compared to the KF modeled by the random walk. It proved that the first-order Markov 
process is efficient for modeling rate signal to improve the system overall performance. 

In the future fabrication of a number of integrated MEMS gyroscope arrays on a single chip would 
enhance the uniformity between the gyroscopes and the correlation between the gyroscope array still 
need to be further researched and explored. 
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