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Abstract: Sensors and multi-sensor arrays are the basis of new technologies for the  
non-label monitoring of cell activity. In this paper we show that choroid plexus cells can be 
cultured on silicon chips and that sensors register in real time changes in their activity, 
constituting an interesting experimental paradigm for cell biology and medical research.  
To validate the signals recorded (metabolism = peri-cellular acidification, oxygen 
consumption = respiration; impedance = adhesion, cell shape and motility) we performed 
experiments with compounds that act in a well-known way on cells, influencing these 
parameters. Our in vitro model demonstrates the advantages of multi-sensor arrays in 
assessment and experimental characterization of dynamic cellular events—in this case in 
choroid plexus functions, however with applicability to other cell types as well.  

Keywords: sensor arrays; peri-cellular acidosis; cell respiration; cell adhesion; impedance; 
cell cultures; electron microscopy; choroid plexus; chick embryo 

 

1. Introduction  

Electrical and electrochemical sensors have enabled the development of technologies, which are 
very useful in obtaining data on cellular activities with minimal external intervention. These 
techniques can be applied without any labeling of cells, thus avoiding the possible alteration of cells 
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under investigation. Furthermore, these techniques have paved the way for online observation, 
enabling continuous, uninterrupted execution of the experiment. These developments represent a 
considerable improvement on the more traditional so-called “end-point” techniques [1]. 

Pioneer devices were equipped with sensors detecting changes in cell adhesion, cell motility and 
cell shape, based on impedance measurements [2]. Another generation of sensors was the so-called 
light-addressed potentiometric sensors (LAPS), able to detect changes in peri-cellular acidosis, a 
phenomenon which is closely related to the state of cell metabolism [3]. Moreover, to ensure the 
function and vitality of the cells, these devices were equipped not only with a fluidic system that 
ensured the supply of culture medium, but also with systems for regulating temperature, humidity and 
gas atmosphere in the modules where the cells were incubated. A common feature of the apparatus of 
this first generation was that they were mono-parametric [4]. During the past 20 years these devices 
have found numerous applications in biology and medicine, for instance, in the study of ligand-receptor 
interactions, in the analysis of the action of chemicals and drugs on specific cell targets, in the 
assessment of the chemosensitivity of cancer cells, and many more [5–7].  

These sensors were followed by a new generation of sensors characterized by the presence on the 
silicon chip of several sensor types, the so-called multi-sensor arrays, with which many parameters can 
be measured simultaneously: impedance (adhesion, cell shape), acidification or peri-cellular acidosis 
(metabolism) and oxygen consumption (respiration) [8–10]. From the very beginning, these new systems 
were developed with a view to their possible applications in research areas such as the chemosensitivity 
of tumor cells and drug screening. More recently, examples of successful applications in toxicology, 
pharmacology, and even in the field of ecology can be found in relevant literature [11–14]. 

With the application of multi-sensor technology arose the necessity for the development of methods 
of preparation of cells and tissues suitable for the investigation of such specimens in these new 
devices. At first, the use of permanent cell lines was imperative, because they are easier to handle in 
the sensor devices. But in the meantime, considerable experience has been acquired with primary and 
organotypic cultures, as well as tissue slices [15]. 

This paper describes the preparation and management of choroid plexus epithelial cells (CPC) on 
multi-sensor arrays as an in vitro cell model and presents results of how these cells react when treated 
with compounds influencing their metabolism and transport functions. The significance of choroid 
plexus lies in the fact that it is a major source of cerebrospinal fluid, which circulates through the brain 
ventricles and the subarachnoid space [16]. Because of the complex network of interactions in the 
whole body, appropriate cellular models under axenic conditions are required to understand the 
molecular basis of specific mechanisms of the choroid plexus epithelial cells, since they are the main 
cell element of this organ. These requirements were taken into account in the experimental approach 
described here with a resulting high relevance for cell biology in general and medical research in 
particular (neurology, neurosurgery, pharmacology, etc.). 

2. Experimental Section 

2.1. Cell Cultures 

Choroid plexus of chicken embryo 14 ED embryos (20–30 embryos pro assay) were dissected and 
collected in culture medium (DMEM/F12 Gibco, supplemented with penicillin and streptomycin,  
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L-glutamine, insulin, EGF, hydrocortisone, NEA, transferrin, 10% FCS). After dissection, the choroid 
plexus were dissociated with trypsin + EDTA (Gibco) in a Petri dish and using a magnetic stirrer at  
37 °C in a CO2 incubator (Heraeus). Subsequently, the cell suspension was passed through a cell strainer 
(BD) and rinsed with medium with 10% FCS (to inactivate trypsin). The resulting cell suspension was 
centrifuged at 2,400 rpm for 4 min (cyto-centrifuge Sartorius), the supernatant discarded and the pellet 
re-suspended in fresh medium and the cells counted with Trypan Blue (Sigma-Aldrich). Subsequently, 
the chips were inoculated with 1.5 or 3 × 105 cells each. Parallel to this, well plates with Thermanox 
slides (Nunc) were also seeded with a similar cell suspension (2 × 106 pro well). 

Although the chips are made of silicon, a material suitable for cell cultures, we coated their surfaces 
with collagen I, which considerably improves attachment conditions for the choroid plexus cells [17]. 
A solution of collagen I (20 µg/mL in 0.02 N acetic acid) was applied to the surfaces of the chips, 
which were then incubated at 37 °C for 1 h. Subsequently, they were washed with culture medium and 
used immediately or refrigerator-stored. Thermanox slides were coated following same protocol. 

The cells were first cultured without cys-arabinoside (Sigma-Aldrich) on both chips and Thermanox 
slides. After 24 h the medium was replaced by fresh medium containing cys-arabinoside, a substance 
able to suppress the growth of fibroblasts and endothelial cells, but which does not affect the epithelial 
cells of the choroid plexus. After a culture period of 24 h or longer (until 70–80% of the chip surface 
was covered with choroid plexus cells) the chips were transferred to the sensor device. The 
measurements in the sensor device were conducted with a medium (low buffering capacity), which did 
not contain cys-arabinoside. The measurement times in the sensor unit ranged from 24 to 72 h, or even 
longer according to experiment requirements. The growth of cells on Thermanox plates was regularly 
monitored using an inverted microscope (Olympus) with phase contrast. As, in this case, the chips 
were opaque, the examination was performed by reflected light with a stereomicroscope (Wild, 
Heerbrugg, Switzerland). 

2.2. Sensor Device 

The Bionas 2500® analyzing system (Bionas GmbH, Rostock, Germany) was used in these studies. 
A detailed description of this system has been published previously [13]. Briefly, the device is 
composed of six modules, which are connected with a pump and control units. The culture media, with 
or without drugs, first flow to and then through each module containing the sensor chips and are then 
directed to a waste collector. The reference electrode is placed in the fluidic pathway behind the sensor 
modules. The sensor chip (metabolic chip Bionas Discovery™ SC1000) used here, contains a sensor 
array composed of: (a) two Clark-type sensors, (b) five ISFETs (ionic-sensitive field-effect transistors) 
and (c) one IDES (inter-digitized electrode sensors). Such sensors allow simultaneous determination of 
cellular oxygen consumption (a), peri-cellular acidification (b) and cell impedance (c) in on-line 
regime and without any labeling. 

Before the sensor analyzer is used, the tubes of the fluidic system have to be disinfected by 
perfusing them with 70% ethanol, followed by PBS and a final washing with culture medium, in our 
case DMEM/F12 (see above). The sensor chips should also be disinfected according to a similar 
protocol as above. The sensor chips with CPC cells (see above) were placed into the modules and 
maintained in the Bionas device at 37 °C. 
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The following operational parameters of the Bionas Analyzing System 2500® were selected. The 
flow rate was 56 µL/min with an alternate cycle of “go” and “stop” phases of 4 min each. During the 
“go” phase choroid plexus cells attached to the chip received fresh medium with or without 
compounds (see below). During the “stop” phase oxygen consumption and extracellular acidification 
were continuously measured in the supernatant. Changes in the rates of these parameters were detected 
for each single stop phase, representing the metabolic activity of the cells at that time and are given as 
single data points in the diagrams. 

The presence of cells in contact with IDES was detected and expressed in terms of cell impedance. 
These measurements provided information on the extent of cell adhesion to the substrate precisely at 
the IDES areas and were independent of pump activity. However, in consideration of the influence of 
interferences, the data point values during the “stop” phase were averaged. All data obtained have been 
presented normalized and were processed with Origin 8.0. 

2.3. Compounds 

To induce interpretable changes in metabolism and behavior of choroid plexus cells the following 
compounds were selected:  

(a) Sodium fluoride (NaF, Merck) that dose-dependently inhibits glycolysis and anaerobic 
metabolism; in addition, direct effects of NaF on mitochondria have been described (see below)  

(b) Potassium cyanide (KCN, Riedel-de-Haen) that inhibits cellular respiratory processes, 
especially at the level of mitochondria,  

(c) Forskolin (generously provided by Prof. Dr. M. Diener, University of Giessen, Germany), an 
agonist of adenylate cyclase, an enzyme that stimulates and regulates the synthesis of cAMP,  

(d) Acetazolamide (Sigma-Aldrich) that inhibits carbonic anhydrase, a key enzyme in water 
transport processes in the choroid plexus. 

These compounds were implemented in the following concentrations: NaF 20 mM, KCN 5 mM and 
10 mM, forskolin 5, 10 and 25 µM, acetazolamide 10 µM, 100 µM, 1 mM and 2 mM. The compounds 
were applied during periods of time ranging from 1 to 24 h, followed by a variable period, during 
which the cells received culture medium containing no compound, with the aim of detecting possible 
late effects and estimating the degree of cell recovery after a certain treatment. 

At the end of each experiment, the chips were examined and photographed under a stereoscopic 
microscope, and then fixed chemically for electron microscopy. The Bionas device has six modules 
that were distributed as follows: two modules were destined for the controls, two for compound 1 and 
the remaining two for compound 2. This procedure facilitates comparative analysis. At least four chips 
per compound and concentration were measured and evaluated. Chips which created disturbances 
during experiments were excluded. The experiments were performed (per compound and 
concentration) on at least two different days. 

2.4. Electron Microscopy 

Chips and Thermanox slides were fixed in 3% glutaraldehyde (Polysciences Inc.) in PBS. For 
scanning electron microscopy in a FEI 30XL ESEMTM at 10 kV, specimens were post-fixed with 
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osmium tetroxide, dehydrated in a series of alcohols, critical point dried and sputtered with  
platinum [18,19]. Transmission electron microscopy followed a protocol described elsewhere [20,21]. 
Briefly, fixation was performed with 3% glutaraldehyde in PBS, post-fixation with osmium tetroxide, 
dehydration in a series of alcohols and embedding in Embed 812 (Electron Microscopy Sciences, 
USA). Epoxy resin mixture was poured on the cells and polymerized at 60 °C. The polymerized resin 
layer with the cells can be easily removed from the silicon chip. Ultrathin sections (80 nm thick) were 
stained with uranyl acetate (Merck) and lead citrate (EMS, USA) and examined in a FEI TecnaiTM 
Biotwin 120 transmission electron microscope at 60 kV. 

3. Results and Discussion 

3.1. Cultures of Choroid Plexus Epithelial Cells (CPC) 

The preparation of the choroid plexus of the chick embryo was performed—with slight 
modifications—according to a protocol already described [22]. Following this protocol, we have 
achieved the formation of cell monolayers composed almost exclusively of choroid plexus epithelial 
cell (Figure 1). This was made possible by the addition of cys-arabinoside, an inhibitor of DNA 
synthesis, to the culture medium, [22]. The CPCs have a nucleotide transport system unable to uptake 
cys-arabinoside; therefore growth and morphology of these cells remain unchanged. In contrast, the 
other cells of plexus (fibroblasts, endothelia) take up the cytostatic, which prevents their proliferation 
and growth. The result is pure cultures of CPC. 

Figure 1. Phase contrast of choroid plexus cells grown on Thermanox for 4 days. The cells 
form a monolayer displaying a polygonal shape. The culture was previously treated with 
cys-arabinoside to eliminate cell contamination. 20X objective. 

 

When the cell suspension was applied to either chips or Thermanox slides, the cells attached at an 
early stage during the first 24 h, showing a variable shape, consistent with the process of attachment to 
substrate. After 2 days cultivation the cells began to aggregate with their congeners, constituting the 
monolayer 2 days later (Figure 1). Comparative studies with other coatings (laminin, fibronectin and 
collagen IV) have shown that CPCs attach faster on collagen I-coated surfaces, a circumstance 
beneficial to our studies with the sensors, as we can start the measurements earlier. 



Sensors 2012, 12              
 

 

1388

Electron microscopy revealed the surface ultrastructure of these monolayers and confirmed their 
specific cell composition (Figure 2). The cell borders were marked by numerous thin microvilli, giving 
the image a mosaic-like appearance. In the center of the cells, apical pole microvilli and cilia, typical 
attributes of these cells lost during enzymatic dissociation, reappeared. Transmission electron 
microscopy confirmed these diagnoses, and also enabled determination of the participation of 
cytoskeleton and cell membrane, forming intercellular contacts and anchorages to substrate (not 
shown). Cells grown on silicon chips or Thermanox displayed exactly the same patterns. 

Figure 2. Scanning electron microscopy of CPCs growing on the sensor chip. The cells 
have numerous microvilli at the apical pole and show a marked relief in the central part 
that corresponds to the nucleus. 

 

Before the silicon chips with the cells were placed into the sensor device, every chip was examined 
under a stereomicroscope to estimate the quality of the monolayers and their topographic relationship 
with the sensors (Figure 3). 

Figure 3. Scanning electron microscope image shows groups of cells arranged in monolayer 
growing on the chip. The CPCs can be seen as a grey veil covering the major part of the 
visible chip surface. 
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applied, then removed and replaced by acetazolamide, the impedance dropped more rapidly than when 
it was replaced by medium alone (Figure 12). In contrast, in the sequence acetazolamide-forskolin no 
effects of forskolin on impedance were observed. Although this response was repeatedly observed, 
additional assays are required for a functional interpretation. The two other parameters, metabolism 
and respiration, did not change (not shown). Under the influence of forskolin metabolism behaves as in 
the controls. When, after forskolin, fresh medium was applied, the cells did not alter their activity. 
Respiration under forskolin did not show significant changes.  

The changes described are consistent with the well-known properties of the diterpene forskolin. 
Forskolin activates adenylate cyclase, increasing intracellular cAMP [37]. It has been reported that an 
increase in intracellular cAMP levels increases cell adhesion and strongly inhibits motility [38]. These 
observations agree well with our findings on CPC, also an epithelial cell type. 

However, interpretation of the activity patterns of metabolism and respiration are somewhat more 
complicated. On the one hand, forskolin appeared to stimulate the utilization of lactate in diverse cells 
and tissues [39]. But, on the other hand, forskolin significantly reduced the rate of glucose utilization 
(about 50 to 60%), apparently competing with the glucose transporter [39]. This could explain our 
measurements, in which no significant changes of metabolism were detected. Forskolin did not seem 
to affect the consumption of oxygen and this agrees with our observations [40]. 

However, in long-term experiments, forskolin is able to affect the biogenesis of mitochondria, 
increasing their number in adipocytes in vitro [41]. Whether these effects of forskolin are also relevant 
for CPC cultures has not been considered as yet in our studies.  

4. Conclusions and Final Comments 

This study demonstrates that is possible to produce hybrids of choroid plexus cells and silicon chips 
with sensors, which enable real-time measurement of dynamic events of a cell population in vitro. The 
dynamics of the cells are reflected in the selected parameters: acidification, oxygen consumption, and 
adhesion. The sensor device has proved to be very reliable and robust in both short- and long-term 
experiments. 

Our studies revealed new aspects in the response of CPC to the compounds used. NaF acts on 
several cell targets and the simultaneous registration of cell responses allows correlations between the 
different parameters examined. 

In the case of cyanide (KCN) it is noteworthy that, not only is cell respiration inhibited, a  
well-known effect of this compound, but at the same time, activation of glycolysis occurs. ATP 
produced by glycolysis can compensate KCN respiratory deficits and the cells survive. Acetazolamide 
is a drug that inhibits essential enzymes in the processes of water transport in the choroid plexus. Thus, 
the decrease of metabolism was predictable, whereas the changes observed in cell adhesion are rather 
novel. Whether the reduction of adhesion is related to attachment to substrate and cell-to-cell contact 
deserves additional investigation. These results correlated to data from the literature available, which 
demonstrate the presence of an isoform of CA located at the cell membrane. Forskolin was applied as a 
positive stimulus to the activity of the CPCs, the increase in adhesion confirming these expectations. 

Finally, we would like to highlight properties of the sensor device used. It proved to be very 
flexible, offering a diverse menu of settings for the application of compounds, for example the 
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possibility of sequential application of the same substance at different doses or different substances at 
different intervals (synergies or incompatibilities). These strategies are important in order to obtain a 
comprehensive and precise picture of the dynamic responses of a determined cell population or tissue 
in vitro. The use of sensor platforms in experimental medicine could have advantages, which should 
not be underestimated. Furthermore, it is a possible contribution towards the reduction of the number 
of studies with animals, particularly in diagnosis and drug development. 
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