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Abstract: There is no literature mentioning the electromechanical behavior of micro 

structures driven by traveling electrostatic forces. This article is thus the first to present the 

dynamics and stabilities of a micro-ring subjected to a traveling electrostatic force. The 

traveling electrostatic force may be induced by sequentially actuated electrodes which are 

arranged around the flexible micro-ring. The analysis is based on a linearized distributed 

model considering the electromechanical coupling effects between electrostatic force and 

structure. The micro-ring will resonate when the traveling speeds of the electrostatic force 

approach some critical speeds. The critical speeds are equal to the ratio of the natural 

frequencies to the wave number of the correlative natural mode of the ring. Apart from 

resonance, the ring may be unstable at some unstable traveling speeds. The unstable 

regions appear not only near the critical speeds, but also near some fractions of some 

critical speeds differences. Furthermore the unstable regions expand with increasing 

driving voltage. This article may lead to a new research branch on electrostatic-driven 

micro devices. 
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1. Introduction 

The principles of electrostatic forces are very commonly used in micro actuating/sensing devices 

because of the advantages rapid response, low power consumption, compatibility with the fabrication 

process of integrated circuits (ICs), and being integrable with ICs. The electrostatic driving principle 

consists of the coupling of two energy domains, namely the electrical and mechanical energy domains. 

It is very challenging to accurately model electrostatic microstructures because of their nonlinear 

electromechanical coupling behavior. Furthermore effects such as non-ideal boundary conditions, 

fringing fields, the pre-deformation induced by initial stresses, and non-homogeneous structures 

further complicate the modeling. A review paper [11] presented an overview of the existing techniques 

applied to the MEMS electrostatic actuation modeling before 2005 and the dynamic behavior of the 

electromechanical system. Another review paper [2] provided an overview of the fundamental research 

before 2008 on nonlinear behaviors of electrostatic-driven microresonators, including direct and 

parametric resonances, parametric amplification, impacts, self-excited oscillations, and collective 

behaviors, such as localization and synchronization, which arise in coupled resonator arrays. Other 

review papers [3,4] present an overview of the existing analytical models before 2007 for 

electrostatically actuated microdevices. The author Hu had published a review paper [5] which 

introduced the techniques before 2010 for the physical model of pull-in voltage, dynamic characteristic 

analysis, air damping effect, reliability, numerical modeling method, and application of electrostatic-

driven MEMS devices. Furthermore the effects of non-ideal boundary conditions, fringing fields, the 

pre-deformation induced by initial stresses, and non-homogeneous structures were also detailed in that 

review paper. The dynamic instability of a microstructure driven by alternative electrostatic forces was 

published by the author Hu [6] for the first time in 2004. After that more and more literature about the 

dynamic instability of a microstructure driven by electrostatic forces was published. After surveying 

the large number of correlative literatures mentioned in the aforesaid literatures, we find that there is 

no literature investigating the electromechanical behavior of a microstructure driven by traveling 

electrostatic forces. Therefore this paper presents for the first time the study of the dynamics and 

stabilities of microstructures driven by traveling electrostatic forces. 

We develop a theoretical model of a micro-ring driven by a radial electrostatic force which travels 

around the circumference of the micro-ring. The micro-ring model is based on the theory of vibrations 

of a circular ring [7]. The traveling electrostatic force is modeled as a concentrated electrostatic force 

in the radial direction which travels around the circumference of the micro-ring. The magnitude of the 

traveling electrostatic force is proportional to the square of the driving voltage and inversely 

proportional to the square of the gap between the micro-ring and the driving electrodes [6]. The 

moving feature of the traveling concentrated electrostatic force is modeled based on the author Hu’s 

published work [8], namely as a Dirac delta function whose location varies with the traveling speed. 

First of all, a linearized dimensionless governing equation is derived based on the aforesaid 

assumptions, which is a linear partial differential equation with periodically time-varying coefficient. 

For the geometrical periodicity of the circular ring, we make an inspired guess of the deflection 

function to discretize the governing equation, which results in a set of linear ordinary differential 

equations with periodically time-varying coefficients. Then we solve the discretized governing 

equation by the Runge-Kutta numerical integration method, which is available in the commercial 
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software MATLAB. The dynamics and stabilities of the micro-ring are both studied in this article. The 

Floquet theory [9,10] is used to determine whether the micro-ring is stable or not. 

2. Theoretical Modeling 

2.1. Linearized Non-Dimensional Governing Equation 

Figure 1 shows a flexible micro-ring of radius a surrounded by a circle of fixed-electrodes between 

them a gap of g. A bias voltage V̂  applied sequentially on the fixed-electrodes sets up an electrostatic 

force F̂  ( 22 )ˆ(2ˆ ugVb   ) per unit length traveling at an angular speed of ̂  around the 

circumference of the micro-ring in the radial direction. The micro-ring, when subjected to the traveling 

electrostatic force, will oscillate with respect to its neutral axis at the deflection of )ˆ,(ˆ tu  . Based on 

the assumptions that the micro-ring is thin with respect to its radius and that deflection is reasonably 

small, and if there is no circumferential forcing and if its circumferential inertia term can be  

negligible [6–8], then its equation of motion in a polar coordinate system is: 

 
2

2

2

2

4

4

42

2

)ˆ(2

ˆ
ˆˆˆ

ˆ
2

ˆ

ˆ

ˆ

ug

Vb
tu

uu

a

EI

t

u
A

























 



  (1)  

where A, b, E, I, ε, and ρ are the cross-sectional area, width, Young’s modulus, inertia moment of the 

cross-sectional area, permittivity of free-space, and density of the micro-ring, respectively, while t̂  is 

the time. If the fixed electrodes and their gaps are very small compared to the length of the micro-ring, 

one can simulate the sequentially-actuated electrostatic force as a continuously traveling electrostatic 

force like the term on the right-hand side of Equation (1) where )ˆˆ( t  is the Dirac delta function. 

Figure 1. The schematic diagram of a flexible micro-ring driven by a traveling electrostatic force. 

 

Here we introduce the following dimensionless variables:  

2242 ˆ,ˆ,ˆ,ˆ EIgVbaVTTttguu    (2)  

where T is a time-scale defined as EIAaT 4 . Rewrite the equation of motion in dimensionless 

variables: 
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Expanding the nonlinear term of the electrostatic force by Taylor’s series about the initial 

equilibrium position of the micro-ring, say u = 0: 




32

2
4321

)1(

1
uuu

u
 (4)  

and neglecting the second- and higher-order terms based on the assumption of small deflection because 

the second- and higher-order terms are much smaller than the first-order term, this results in a linear 

periodically time-varying system: 
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Let us inspect Equation (5); the terms in the first bracket are attributed to the mechanical 

characteristics of the micro-ring, while the second term, 2)(2 Vt  , is attributed to the 

electrostatic force, which shows that the dynamical characteristics of the micro-ring will be altered by 

the driving voltage V as well as the traveling speed  .  

2.2. Discretized Governing Equation 

For the geometrical periodicity of a circular ring, one can make an inspired guess of the deflection 

function: 
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where )(tk  and )(tk , the modal participation factors, are unknowns and have to be determined 

while the trigonometric functions refer to the natural modes of the ring. In a mathematical sense, the 

natural modes represent orthogonal vectors that satisfy the boundary conditions of the ring. In cases of 

finite-degree-of-freedom systems, the vector space is of finite dimension and the number of vectors or 

natural modes is equal to the number of degrees of freedom. For continuous systems, such as ring, the 

number of degrees of freedom is infinite. This means that the general solution will be an infinite series. 

Substituting Equation (6) in Equation (5) gives: 
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Since the sine and cosine functions are orthogonal, we may proceed as in a Fourier analysis.  

We multiply the equation on both sides by mcos  and msin , where m, in general, is either equal to 

k or not: 
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(8)  
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Integrating Equations (8) and (9) over the ring circumference gives: 
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Using the following orthogonality conditions of trigonometric functions and the characteristics of 

the Dirac delta function: 
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we are able to simplify Equations (10) and (11) in the matrix form: 
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Since Equation (16) is of the form of a n degree of freedom oscillator equation, it has become 

customary to view this equation  in terms of modal mass, stiffness, and forcing, where  I  is an identity 

modal mass matrix of order 2n,  s
K  is the structural modal stiffness matrix of order n,  1e

K ,  2e
K , 

and  3e
K  are  the n-th order electrical modal stiffness matrices attributed to the traveling electrostatic 



Sensors 2012, 12                            

 

 

1175 

forces,  X  is the general coordinates,  Q  is the generalized forcing function. Their elements are 

given as the following: 

   )()()()()()( 2121 tttttt nn

T
 X

 
(17)  

   tntttnttV
T

 sin2sinsincos2coscos2 Q

 

(18)  










.for,0

.for,12

ji

jii
K s

ij

 
(19)  

2

)cos()cos(
coscos 221 tjitji

VtjtiVK e

ij




 
(20)  

2

)sin()sin(
sincos 222 tjitji

VtjtiVK e

ij




 
(21)  

2

)cos()cos(
sinsin 223 tjitji

VtjtiVK e

ij




 
(22)  

Equation (16) reveals that the total stiffness matrix is the difference of the structural stiffness matrix 

and the electrical stiffnes matrix, i.e., 
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From the Equations (19) to (23), we know that [K
1
] and [K

3
] are symmetrical while [K

2
] is not. The 

total stiffness matrix is a periodically time-varying function whose oscillation is proportional to V
2
 and 

frequencies are (i – j) and (i + j) times the traveling speed Ω. 

3. Free Vibration of the Ring Structure 

Consider the free vibration of the ring, namely the homogeneous part of Equation (3): 
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For the case of free vibration, Equation (15) is simplified to: 
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where k = 1 ~ n. For no external force, substituting: 
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gives: 
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Since, in general, k  and k  are both nonzero, it must be that the determinant is zero, namely the 

eigenvalues and the correlative eigenvectors are the natural modes of the ring. Thus, for each vale of k 

which also refers to the wave number, we encounter a dimensionless natural frequency: 
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 222 1 kk

 
(28)  

and the correlative mode shape function, namely the natural mode, Uk(θ): 

 kkUk sincos)( 

 
(29)  

Figure 2 shows the first four natural modes (k = 1 ~ 4) which are obtained from Equation (29).  

The first natural mode is a rigid-body mode whose natural frequency is zero and the others are  

flexible modes. 

Figure 2. The first four natural modes (mode shape functions) of ring: The first mode is a 

rigid-body mode while the others are flexible modes. 

 

4. Dynamic Response 

4.1. The Dynamic Response of a Traveling Constant Force 

First of all, let us consider the case of a ring driven by a constant force traveling around its 

circumference. Then Equation (3) is simplified to: 
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where F is a dimensionless force, and Equation (16) is simplified to: 
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(31)  

where k = 1 ~ n. The solution of Equation (31) is: 
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Substituting Equation (32) into Equation (6), we get the response of the ring:  

 
 




n

k kk

tkF
tu

1
222 )(1

)(cos
),(






 
(33)  

The response at the position of the traveling constant force is: 

 
 


n

k kk

F
ttu

1
222 )(1

),(


 
(34)  

When the traveling speeds approach the values which make the denominators in Equation (34) 

equal to zero, the ring is resonant and that speed is called the critical speed Ωcr. By equating the 

denominators in Equation (34) to zero, we can obtain the critical speeds corresponding to each mode: 

 
kk

k
kk k

kcrcr







1
0)(1

2

,

222

 
(35)  

where ωk = k
2
 − 1 is the dimensionless natural frequency of the k

th
 mode of the ring. Equation (35) 

reveals that the ring will resonate when the traveling speeds approach to the one-k
th

 of the natural 

frequency of the k
th

 mode. 

4.2. The Dynamic Response of a Traveling Electrostatic Force 

To obtain the dynamic response of Equation (16), we have to use numerical integration because it is 

a periodically time-varying system. To solve by numerical integration, one has to transform  

Equation (16) into state space. We define the state vector as: 

      TTT

n XXY 14

 
(36)  

and then transform Equation (16) the into state space as: 

          1444144414   nnnnnnn FBYAY

 
(37)  

where: 
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Consequently we can obtain the solution by numerical integration: 

        


t
tt deet

0

)()( )()0()( 
FBYY

AA

 (41)  

We adopt the first four modes expansion (n = 1 ~ 4) and the commercial software MATLAB for 

numerical integration. Figure 3 shows the response spectrum of the ring at the location of traveling 

electrostatic force. Apparently there are four critical speeds, Ωcr,k = ωk/k, corresponding to the first four 
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natural modes of the ring. However some peaks other than the natural modes of the ring appear. 

Therefore, apart from resonance, the ring may be unstable at some unstable traveling speeds. 

Figure 3. The frequency response of the ring at the location of traveling electrostatic force. 

 

5. Stability Analysis 

According to the results of dynamic response, the ring driven by a traveling electrostatic force may 

be unstable or resonant at the critical speeds of the electrostatic force. Therefore, we have to consider 

the dynamic instability. Let us consider the homogeneous part of Equation (37), namely: 

      144414   nnnn YAY

 
(42)  

where [A] is with the period of T. Set 4n linear independent initial conditions: 
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(43)  

By the Runge-Kutta numerical integration method, we obtain 4n linear independent homogeneous 

solutions of Equation (42) in one period T, namely {Y(T)}1, {Y(T)}2, …, {Y(T)}4n. The linear 

independent homogeneous solutions construct the monodromy matrix [C], also known as state 

transition matrix, i.e., 

        
nnn TTT

42144 )()()( YYYC 

 
(44)  

The stability can be determined by the nature of the eigenvalues (λ) of the monodromy matrix  

[C] [9,10]. The system is stable if all the eigenvalues have magnitudes less than unity, i.e., 1 , 

unstable if at least one eigenvalue greater than unity, i.e., 1 , and marginally stable if at least one 

eigenvalue with unit magnitude and multiplicity less than unity. Figure 4 shows the numerical results 

V = 1.5,      V = 0.5,      V = 0.1
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of stability analysis in the first three flexible modes region. The instable regions appear not only near  

Ωcr,k = ωk/k but also near some fractions of critical speeds differences, say 2/)( 2,3, crcr  , 

3/)( 2,4, crcr  , …etc. Furthermore the instable regions expand with increasing driving voltage. 

Figure 4. The instability of a micro ring driven by a traveling electrostatic force with the 

traveling speed of Ω and the driving voltage of V. 

 

6. Conclusions 

This paper presents a simplified analytical model for a micro-ring driven by a concentrated 

electrostatic force which is traveling around its circumference in a radial direction based on the small 

deflection assumption. We study the dynamics and stabilities of the micro-ring based on the present 

analytical model and find some interesting phenomena. The micro-ring will resonate when the 

traveling speeds approach some critical values which are exactly equal to the ratio of the natural 

frequency to the wave number of each natural mode of the micro-ring. Besides, it will be unstable 

when the combination of the traveling speed and driving voltage approaches some values. The unstable 

regions appear not only near the critical speeds, but also near some fractions of critical speed 

differences. Furthermore, the unstable regions expand with increasing driving voltage.  
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