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Abstract: More and more terrestrial observational networks are being established to 
monitor climatic, hydrological and land-use changes in different regions of the World. In 
these networks, time series of states and fluxes are recorded in an automated manner, often 
with a high temporal resolution. These data are important for the understanding of water, 
energy, and/or matter fluxes, as well as their biological and physical drivers and 
interactions with and within the terrestrial system. Similarly, the number and accuracy of 
variables, which can be observed by spaceborne sensors, are increasing. Data assimilation 
(DA) methods utilize these observations in terrestrial models in order to increase process 
knowledge as well as to improve forecasts for the system being studied. The widely 
implemented automation in observing environmental states and fluxes makes an 
operational computation more and more feasible, and it opens the perspective of short-time 
forecasts of the state of terrestrial systems. In this paper, we review the state of the art with 
respect to DA focusing on the joint assimilation of observational data precedents from 
different spatial scales and different data types. An introduction is given to different DA 
methods, such as the Ensemble Kalman Filter (EnKF), Particle Filter (PF) and variational 
methods (3/4D-VAR). In this review, we distinguish between four major DA approaches: 
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(1) univariate single-scale DA (UVSS), which is the approach used in the majority of 
published DA applications, (2) univariate multiscale DA (UVMS) referring to a 
methodology which acknowledges that at least some of the assimilated data are measured 
at a different scale than the computational grid scale, (3) multivariate single-scale DA 
(MVSS) dealing with the assimilation of at least two different data types, and (4) combined 
multivariate multiscale DA (MVMS). Finally, we conclude with a discussion on the 
advantages and disadvantages of the assimilation of multiple data types in a simulation 
model. Existing approaches can be used to simultaneously update several model states and 
model parameters if applicable. In other words, the basic principles for multivariate data 
assimilation are already available. We argue that a better understanding of the measurement 
errors for different observation types, improved estimates of observation bias and improved 
multiscale assimilation methods for data which scale nonlinearly is important to properly 
weight them in multiscale multivariate data assimilation. In this context, improved  
cross-validation of different data types, and increased ground truth verification of remote 
sensing products are required. 

Keywords: data assimilation; multiscale; multivariate; modeling; Ensemble Kalman Filter; 
Particle Filter; variational methods 

 

1. Introduction 

The basic idea behind data assimilation (DA) is to combine complementary information from 
measurements and models of the Earth system and thus optimally estimate geophysical fields of 
interest [1]. It allows model simulations to be updated with observation data, for example in the carbon 
cycle [2], plant phenology [3] or hydrologic remote sensing [4]. The theory of DA in the Earth 
sciences rests on the mathematical framework of estimation theory [1,5]. More advanced DA methods 
also provide a framework for incorporating model errors and for quantifying prediction uncertainties [6] 
or updating model parameters [7]. 

In the context of climate change and land-use change, more and more terrestrial observational 
networks are being established to monitor states and fluxes in an effort to understand water, energy, or 
matter fluxes, as well as their biological and physical drivers and interactions with and within the 
terrestrial system. Examples of these networks include the global FLUXNET [8], the US Soil Climate 
Analysis Network (SCAN) [9], the US Snowpack Telemetry Network (SNOTEL) [10], the European 
Integrated Carbon Observation System (ICOS), and the German Terrestrial Environmental 
Observatories (TERENO) [11]. Within these networks, a huge amount of data from different sensors is 
recorded on different temporal and spatial scales. Moreover, a large number of Earth observation 
satellites have been launched, and products are being delivered for use in terrestrial models. Examples 
are the leaf area index (LAI), the fraction of absorbed photosynthetic active radiation (FPAR) and the 
land surface temperature (LST) retrieved by the Moderate Resolution Imaging Spectroradiometer 
(MODIS) [12,13], the soil moisture retrieved by the Soil Moisture and Ocean Salinity (SMOS) 
Mission [14], and the snow water equivalent as retrieved by the Advanced Microwave Scanning 
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Radiometer-EOS (AMSR-E) [15]. These global satellite products are generated in an operational 
manner, i.e., consistent time series of the variables mentioned are available.  

The potential of these multiple data sets as well as their combination is often not fully exploited. 
DA, which is defined as the updating of modeled state variables (and possibly also other model 
components like parameters and forcings) using externally obtained data sets, has been applied in the 
Earth sciences for decades. DA techniques, such as the Ensemble Kalman Filter [16], the Particle  
Filter [17,18] or variational methods like 4D-VAR [19], integrate observations into terrestrial models 
for an enhanced description of real environmental conditions. Numerous applications of single-state 
assimilation have already been published, e.g., in the context of the hydrological cycle [20–30], the 
energy balance [31], plant physiology [32–34], the carbon cycle [35,36], nutrient cycles [37] and 
zoology [38]. However, the additional information contained in data from multiple-state variables 
compared to single-state variables may significantly improve the description of the full system by 
assimilation. In this context, existing DA techniques can be modified accordingly or new approaches 
can be developed to improve performance.  

The objective of this paper is to review the state of the art of multivariate and multiscale DA 
techniques in terrestrial systems, to detect current limitations for the use of multivariate and multiscale 
DA and to provide guidance for further methodological developments and potential areas of application. 

2. Data Assimilation Theory 

In this section, we present a brief introduction to three prominent DA techniques, namely the 
Ensemble Kalman Filter (EnKF), the Particle Filter (PF) and variational methods (VAR). EnKF and 
PF are Bayesian-based approaches, whereas VAR uses the minimization of a cost function [in 
principle, EnKF can also be derived from a cost function minimization under the hypotheses of a linear 
model and Gaussian probability density functions (pdfs)]. The algorithms, or their derivatives, are 
widely used in environmental modeling. The general principle of operation will be clarified, which is 
important for the understanding of multivariate and multiscale DA techniques. The methods discussed 
here are well suited for parallel computation, since they make use of ensemble members. This is also 
true for VAR methods when applied in an ensemble approach [39]. Each of the ensemble members 
corresponds to a model run for which a separate CPU processor can be used. Figure 1 presents a 
schematic overview of ensemble-based DA methods. Measurements are integrated into a DA 
framework by an observation operator for comparison with ensemble states for state update, and in 
some cases for parameter update. The results are enhanced state and parameter estimates which include 
their uncertainties. 

DA algorithms based on recursive Bayesian estimation techniques first emerged with the Kalman 
filter [40]. Based on this theory, the Extended Kalman Filter (EKF) was then derived for the 
optimization of nonlinear systems and Hoeben and Troch [41] provided an overview of this 
methodology. The major drawback in the application of the EKF is the need to linearize the model 
equations. In order to overcome this problem, the EnKF was developed [16]. The Ensemble Kalman 
Filter (EnKF), a Monte Carlo implementation of Bayesian updating, proposed by Evensen [16] and 
clarified by Burgers et al. [42], is widely used in environmental applications. It reduces the 
computational demand relative to the EKF by integrating an ensemble of states from which the 
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covariances are obtained at each update. It thereby avoids the need to linearize the model equations for 
the propagation of the error covariance [43,44]. Similar to the Kalman filter, the EnKF relies on a 
Gaussian assumption of model and observation errors, which may not be valid in environmental 
modeling [45–47]. In addition, linear updating of model states using this method reduces its 
applicability for highly nonlinear systems [7]. Another albeit more CPU-intensive alternative is the use 
of sequential Monte Carlo methods in the form of PF [18,48]. The PF differs from classical Kalman 
Filtering methods as it can handle the propagation of non-Gaussian distributions through nonlinear 
models. Both PF and EnKF are Monte Carlo techniques which use samples (i.e., ensemble members or 
particles) to estimate the underlying pdf of model states and parameters. Comparative studies of  
both EnKF and PF can be found, e.g., in Weerts et al. [49], Han and Li [45], Jardak et al. [50],  
Pasetto et al. [51], Leisenring and Moradkhani [52], and DeChant and Moradkhani [53]. 

Figure 1. Ensemble-based DA system. Measurements are integrated into a DA framework 
by an observation operator for comparison with ensemble states for state (and parameter) 
updates. The scheme is presented for one time step only, the sequential character of DA is 
generated by new model forcings and new measurements initiating a new ensemble of 
forward models for the next time step. 

 

Variational DA (VAR) is a very successful technique for operational numerical weather prediction 
because it can be efficiently used in realistic, complex systems. It was introduced in a three-dimensional 
form (3D-VAR) by Parrish and Derber [54], and then applied in a four-dimensional form (4D-VAR) 
using an adjoint model to include the time dimension [55]. However, the variational method itself does 
not provide any estimate of predictive uncertainty. The adjoint method calculates exact gradient 
information of the objective function that is to be optimized. Moreover, compared with EnKF, the 
advantage of 3/4D-VAR is the fact that nonlinear dependencies between observations and state 
variables can be taken into account without any approximation. 

2.1. Ensemble Kalman Filter (EnKF) 

In the application of the EnKF, the system state at time step k 1 x  is propagated to time step k as follows: x f , x , w  (1)
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f , .  is a nonlinear operator representing the model in state space, including the model 
parameters and the meteorological forcings. w  is the process noise. This is a white-noise term with 
zero mean and covariance matrix Q , and it summarizes all the uncertainties caused by the model 
formulation, the forcing data, and the model parameters. The system is observed as follows: y h x , v  (2)h .  is a nonlinear function, relating the state variables to the observations. v  is the observation 
noise, which is a white-noise term with zero mean and covariance matrix R .  It should be noted that 
for all time steps w  and v   are independent. 

Instead of propagating one single model realization, the EnKF propagates an ensemble of model 
realizations. The spread in the ensemble at each time step is an estimate of the uncertainty in the model 
results. The a priori (before the update) state variables of a single ensemble member i are stored in the 
vector x . The superscript . indicates an a priori estimate. This vector is obtained by propagating each 
ensemble member i: x f , x , w  (3)

The apex . ̂indicates the ensemble mean and the superscript .  indicates an a posteriori estimate 
(after the update). w  is a realization of the model error, obtained by a perturbation of the model 
parameters and meteorological forcings. The background error covariance P  is then calculated to 
estimate the forecast uncertainty: P 1N 1 D DTD x x , … , xN x  x 1N x ,N  (4)

N is the number of ensemble members and the superscript .T indicates the transpose operator. The 
Kalman gain KK is then calculated as: K P HT H P HT H  (5)

where H  is the Jacobian of the observation system [Equation (2)]. If a proxy of the modeled state 
variables is used to update the system (for example, if radar backscatter values are used to update the 
modeled soil moisture profile), the observation system thus needs to be linearized in order to calculate H . In order to bypass the need to linearize the observation system, P HT  can be calculated as the 
covariance between the state and the measurement predictions, and H P HT  as the covariance of the 
measurement predictions [in a similar way to Equation (4)]. Pauwels and De Lannoy [56] have proven 
that the use of the ensemble results outperforms the linearization of the observing system and the use 
of H  for the calculation of the Kalman gain. If N is larger than the number of observations, the rank of 
the matrix that needs to be inverted is always the same as the number of observations that are used to 
update the system. Using the Kalman gain, the states of the individual ensemble members are  
then updated: x x K y h x , v  (6)
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where x   is the a posteriori vector (after the update), and v   is a realization of the observation error. x  can then be propagated to the next time step. 
The EnKF is a sophisticated sequential DA method [57], which can be easily operationally 

implemented in forecast models to make use of new observations from different kinds of measurement 
systems. In contrast to the classical Kalman filter, the EnKF uses the sample covariance instead of the 
theoretical covariance matrix. Several realizations of model predictions with perturbed initial 
conditions, forcings and/or parameters are calculated until new observations become available. Only 
the states at the current time step are updated in the traditional formulation of EnKF. The updating of 
the states is based on the prediction with the (often nonlinear) simulation model, a measurement model 
and an updating scheme based on the recursive application of Bayes’ rule. The EnKF assumes that all 
probability density functions involved in the updating step are Gaussian. The original formulation of 
the EnKF by Evensen [16] was modified slightly for randomly perturbing measurements in order to 
take measurement error into account [42,58]. 

A variant of the Ensemble Kalman Filter is the Ensemble Kalman Smoother (EnKS) [59]. For 
EnKS, Equation (4) is modified so that the background error covariance matrix not only includes 
covariances among states for time step k, but also covariances between states at time step k and former 
time steps k − 1, k − 2, … . As a consequence, the Kalman gain [Equation (5)] is also modified, and 
spreads updates related to deviations between model predictions and measurements [Equation (6)] not 
only to the rest of the model states at time step k, but also to the model states of former time steps  
k − 1, k − 2, … .The EnKS is often applied to update the model states of a limited time window before 
time step k, and not the complete model history. Updating the complete model history demands large 
amounts of RAM on computers, and is less important if the correlation between a certain time step in 
the past and the current time step k is very weak. Both EnKF and EnKS can be extended to update both 
states and parameters, using for example an augmented state-vector approach. In this case, parameter 
values are sequentially improved profiting from correlations between states and parameters. In theory, 
EnKF and EnKS should give the same parameter estimates and the same state estimates for the last 
time step k. However, it is expected that EnKS will provide better state estimates for past time steps  
k − 1, k − 2, … [57]. 

A further variant related to EnKF and EnKS is the Ensemble Smoother (ES) [60]. In this case, all 
observations are assimilated simultaneously, over a given model simulation period. The deviations 
between the ensemble model simulations and measurements at the different time steps are used to 
update all past model states and parameters. In this case, the background error covariance matrix 
contains covariances between all model states for all time steps, and between the model states (at all 
time steps) and parameters. This method is in fact an inverse modeling method, and normally focuses 
on parameter estimation. EnKF was shown to outperform ES according to previous studies [60,61]. 

EnKF became popular in several fields of research for updating model states with aid of the 
sequential assimilation of measurements. Examples of remote sensing DA include the updating of soil 
moisture contents [43,62–64], snow water equivalent [65], runoff [66], groundwater storage [67] and 
vegetation characteristics in agroecosystems [68]. In situ measurements were assimilated in order to 
update, e.g., streamflow [69] or reservoir characteristics [70]. In DA with EnKF, seismic data has also 
been used by Skjervheim et al. [71] and synthetic electrical resistivity data were used to update 
groundwater states and parameters by Camporese et al. [72]. Recently, EnKF has been used to update 
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both states and parameters [7,73–75], which is of special interest if parameters are time-dependent like 
riverbed hydraulic conductivities [76]. The EnKF does not ensure the consistency of the updated states 
or model parameters with physical constraints, e.g., the mass balance. In order to solve this problem, 
Wen and Chen [77,78] introduced a confirmation step to ensure consistency. This approach was 
extended by Gu and Oliver [79] with an iterative EnKF, where the iterations check the validity of 
physical constraints. The EnKS has been applied less frequently to update model states. An example is 
updating current and past soil moisture contents with remote sensing information [80,81]. Bateni and 
Entekhabi [82] also estimated model parameters with EnKS (evaporative fraction and a bulk scalar 
transfer coefficient), combining a land surface model and remotely sensed land surface temperature. 

2.2. Particle Filter (PF) 

Particle filters [18] are the sequential or online analogue of Markov Chain Monte Carlo (MCMC) 
batch methods. With sufficient samples, the so-called particles approach the Bayesian optimal 
estimate. Particle filters share the same forecast step as EnKF. The EnKF is characterized as a special 
case of the PF, where the Bayesian update step is approximated with a linear update step in the EnKF 
using only the two first moments of the predicted probability density function (pdf) [73]. A PF does 
not have this limitation during the update step and manages the propagation of non-Gaussian 
distribution more flexibly through nonlinear models [48].  

The PF uses the same system description as the EnKF (Equation (1) and Equation (2)), and has 
been introduced in hydrology by Moradkhani et al. [48]. Plaza et al. [83] provided a detailed 
explanation of the algorithm. Only a short description will be provided here. In recursive Bayesian 
filtering, the solution to the estimation problem consists of two steps: the prediction and correction 
steps. These steps are formulated as follows: p x |y : p x |x p x |y : dx  (7)p x |y : p y |x p x |y :p y |x p x |y : dx  (8)

In the prediction step [Equation (7)], the posterior pdf p x |y :  is obtained based on the fact 
that the transition pdf p x |x   and the prior pdf at time step k 1 are known, whereas in the 
correction step [Equation (8)], the prior pdf is corrected using the information from the likelihood pdf p y |x ,  and the posterior pdf p x |y :  is derived. The analytical solution to Equations (7) and (8) 
is difficult to determine since the evaluation of the integrals might be intractable. Particle filters are a 
set of algorithms which approximate the posterior pdf by a group of random samples. In more detail, 
the integrals are mapped to discrete sums: 

p x |y : p x |y : 1N δ x xN
 (9)

where N is the number of particles. The particles x ; i 1 … N  should be sampled from the posterior 
pdf and δ is the Dirac measure. The Dirac measure is given by: δ X 0 if x X,1 if x X. (10)
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where x is a possible element of set X. At this point, drawing particles is unfeasible since the posterior 
pdf is unknown. Nevertheless, it is viable to draw particles from a known proposal pdf (also called 
importance pdf). This is the basis of the importance sampling principle. Sequential Importance 
Sampling (SIS) is the recursive version of the importance sampling MC method and the particle filters 
are based on the SIS approach. This approach approximates the posterior pdf by a set of weighted 
particles as follows: 

p x |y : w δ x xN
 (11)

where w  are the normalized importance weights associated with the particles which are drawn from 
the proposal pdf. Considering that the system state evolves according to a Markov process, and 
applying recursion to the filtering problem, the recursive expression for the importance weights is 
given by: w w p y x p x xq x x : , y :  (12)

The selection of the proposal pdf q . x : , y :  is extremely important in the design stage of the 
SIS filter. The filter performance mainly depends on how well the proposal pdf approximates the 
posterior pdf. In Doucet et al. [84], an optimal choice for the importance density function is proposed: q x x : , y : p x x : , y :  (13)

This pdf is optimal in the sense that it minimizes the variance of the importance weights. However, 
the application of Equation (13) is complex from the implementation point of view. A common choice 
of the proposal is the transition prior function [18,85]: q x x : , y : p x x :  (14)

A drawback of this approach is the lack of information regarding the model errors in the 
computation of the importance weights. This limitation can affect the performance of the particle filter. 
The choice of the transition prior to the proposal simplifies Equation (12) resulting in an expression 
where the importance weights depend on their past values and also on the likelihood pdf. The 
normalized weights are given by: w w∑ wN  (15)

The denominator in Equation (15) normalizes the weights. After several updates, a few particles 
may remain with high weights and a large fraction may have a weight of zero. To avoid this 
degeneracy of particles, a resampling step is performed. Particles with low weights are more likely to 
be substituted by replicates of particles with high weights, where the probability of a selection is equal 
to the individual weight. After resampling, the particles are equally weighted. This method is also 
presented in Figure 2 modified according to van Leeuwen [86]. Finally, the best estimate of the states 
consists of the weighted means for these states for the particle set x , w . The SIS filter poses the 
problem of particle depletion, this problem is caused by increased variance over time as stated in Kong 
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et al. [87] and Doucet et al. [84]. Methods to overcome this problem are Sequential Resampling [18] 
and Residual Resampling [88]. 

As shown in Figure 2, the particle replicates have the same values as the particle that was 
duplicated, which is ineffective as it might give the same model predictions (if model forcings are 
deterministic). Therefore, if parameters are stochastic and are a dominant source of uncertainty, 
Moradkhani et al. [48] recommend a minor parameter particle perturbation after each assimilation step 
in order to avoid sample impoverishment.  

Figure 2. The importance resampling particle filter with 12 particles (modified according 
to van Leeuwen [86]). The model variable runs along the vertical axis, the weight of each 
particle corresponds to the size of the circles on this axis. t = 0, t = 10 and t = 20 denotes 
time, with observations at a time interval of 10 time units. All particles have equal weight 
at time zero. At time 10, the particles are weighted according to likelihood and resampled 
to obtain an equal-weight ensemble. Some studies perform a perturbation of states and/or 
parameters after resampling in order to avoid sample impoverishment. 

 

The resampling step is an essential part of the PF methodology and is necessary to improve the 
efficiency of PF. Often the Sampling Importance Resampling PF is used (SIR-PF) [18]. Alternative 
methods are Residual Sampling [88] and Stochastic Universal Resampling [85]. The latter have the 
advantage that they reduce sampling noise, and it has been shown that stochastic universal sampling 
has the lowest sampling noise [85]. Resampling slows down the degeneration of the weights, but it 
does not solve the problem. Resampling using Markov Chain Monte Carlo (MCMC) techniques is an 
interesting alternative, which needs to be exploited further because it could avoid the degeneration of 
weights. However, such resampling would require additional iterations, which are likely to cost a lot of 
additional CPU time [89]. More detailed discussions of the particle filter with different resampling 
strategies can be found, e.g., in [1,4,45,48,86]. 

PF has been applied for parameter estimation in rainfall-runoff modeling [48], to estimate 
groundwater recharge [90], to improve land surface states as well as water and energy fluxes [91], to 

t=0 t=10

weighting weightingresampling perturbing

t=10 t=10 t=20
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improve surface soil moisture and model parameters [92], and to improve infiltration in a full-scale 
model of a dyke [29].  

In the examples mentioned above, the models used had a limited number of states and only a few 
parameters were estimated. This is the main limitation of the PF. A very large number of particles is 
needed for adequate sampling of a high-dimensional state space. Resampling only partially alleviates 
this fundamental problem, and it is unclear whether the introduction of MCMC in the context of the PF 
could be CPU-efficient in the future. Neither improved estimates of the proposal distribution with 
Gaussian approximations nor the use of future measurement data yielded a breakthrough in this 
respect. Therefore, although the PF is one of the important alternatives to the EnKF, it currently needs 
an excessive amount of CPU time and its implementation in combination with large simulation models 
is not feasible. Application in high-performance computing and on parallelized architectures may help 
to overcome this problem. Whereas drawing samples in the state space and computing proper 
importance weights of each sample can be performed in parallel using a separate node for each particle, 
standard resampling techniques require strong interaction between nodes. However, resampling 
techniques specifically designed for parallel computation have recently been proposed [93]. 

2.3. Variational Assimilation (VAR) 

In variational DA, the state vector x  is calculated, which minimizes a cost function. This cost 
function is calculated from time step k n through k. n is the number of time steps in the assimilation 
window and is chosen by the user. In the cost function, all observations between time steps k n and 
n are taken into account. Contrary to the Kalman filter, variational assimilation does not directly 
provide an estimate of the error in the state estimate. We consider the following nonlinear system: x g , x  (16)g ,  is a nonlinear function relating the state at time step k to the state at time step k 1. The 
system is observed as follows: y h x v  (17)h  is a nonlinear function relating the state at time step k to the observations at time step k. Note 
that variational DA considers not only measurements at time step k but also those at former time steps 
(until k n). The cost function J x  over the interval of n time steps is the following: J x  12 x x T P x x 12 y h x T R y h x  (18)

P  is the background error covariance. A close inspection of the first term in the cost function 
shows that in effect one value indicating the error in the initial conditions is minimized. However, this 
formulation could be extended to include several terms, accounting for parameter calibration, or 
forcing terms, for example. If  P   is equal to the identity matrix, this term is also equal to the Root 
Mean Square Error (RMSE) between the true state at time step k n and the estimate of this state. If it 
is different to the unity matrix, the matrix P   can be considered as a weight factor. The second term 
in the cost function is again one value, indicating the mismatch between the observations and the 



Sensors 2012, 12 16301 
 

 

simulations thereof. R  is the uncertainty in the observations. If this is the identity matrix, this term is 
equal to the RMSE between the observations and the model simulations. If R  is not equal to the 
identity matrix, it can again be considered a weight factor. The first term in the cost function is called 
the background error J , and the second term is the observation error J . 

The objective of variational assimilation is the retrieval of the state xk − n which minimizes this cost 
function. This can be achieved through optimization methods such as the Newton-Rapson method or 
the adjoint method. In the latter, the difference between y  and h x  for all time steps i  between k  
and k n is back-propagated in order to find the gradient in the cost function, which is then used to 
find the value for x  for which the cost function is minimal. 

Both model predictions and observations provide actual and important information on 
environmental state variables. Similar to EnKF and PF, VAR methods combine both information 
sources. They do not explicitly evaluate the large error covariance matrices which are propagated by 
Kalman Filters, but they simultaneously process the data within a given time period and implicitly take 
dynamic error information into account by propagating an adjoint variable [94]. By this procedure, 
VAR generates state estimates which consider uncertainties in the model, initial conditions and 
measurements. A Bayesian performance function is minimized by adjusting these uncertain elements 
with the goal of maximizing the accuracy. It can be implemented in an iterative procedure, which tends 
to converge for well-posed problems to vanishing mismatch between observed and simulated  
states [95]. In practice, it is stopped when some finite converge criterion is achieved. Another option 
involves stochastic methods [96,97]. VAR has already been applied in meteorological [98] and 
oceanographic [99] simulations for long periods. In terrestrial sciences, it has been used much less, but 
in groundwater hydrology, the inverse problem is often solved using a formulation which is in fact a 
VAR approach (e.g., Carrera and Neumann [100]). The main differences with the VAR approach in 
atmospheric sciences are that parameters are updated instead of initial conditions, and that the method 
is applied in batch (and not sequential) mode focusing on reproducing a historical time series. Terrestrial 
VAR implementations have also been introduced in other study areas of terrestrial sciences, e.g., in 
hydrology [101,102], geology [103], sediment transport estimation [104], crop modeling [105] and energy 
balance simulations [106]. Very prominent applications are soil moisture assimilation [101,107–111], 
flood prediction [112] and crop production [105]. 

3. Data Assimilation across States and Scales 

An analysis of the literature on DA showed that four major approaches exist based on the number of 
states that are being assimilated and their corresponding scales: (1) univariate single-scale DA 
(UVSS), (2) univariate multiscale DA (UVMS), (3) multivariate single-scale DA (MVSS), and (4) 
multivariate multiscale DA (MVMS). In the subsequent section, we will briefly present and define 
these approaches giving specific examples for each of them. In addition, the special case of 
multisource DA will be defined. 

3.1. Univariate Single-Scale Data Assimilation (UVSS) 

Most publications about DA applications deal with the assimilation of a single data type 
(“univariate”), for which it is assumed that the scale at which it is measured coincides with the 
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computational grid scale (“single-scale”). We define these approaches as univariate single-scale DA 
(UVSS). It is important to realize that although the measurement scale generally does not coincide 
with the computational grid scale, the scale mismatch is often not very large and is therefore neglected 
in DA study. Typically, support scales of observed environmental states are relatively small (e.g., a 
few cm3 to dm3) and are often several factors smaller than the model grid scale. If these observations 
are assimilated into a model with a grid size of tens of meters, the difference in the spatial scale is 
significant. In typical UVSS DA schemes, the observations are assumed to represent the average value 
of the observed values of the state within the model pixel without using an appropriate data scaling 
technique. For example, in a small catchment, a soil moisture sensor network has been installed with 
several sensors in vertical and horizontal directions. Usually, the soil volume measured by a sensor is 
just a few cm3. These observations are then assimilated into a 3D hydrological model with a spatial 
grid of 1 m3 in order to update the modeled soil moisture. Here, the spatial heterogeneity within one 
model grid element is neglected and it is assumed that the observation at the level of a few cm−3 is 
valid for the whole grid element of 1 m3. As the scale discrepancy was neglected and no scaling 
technique was applied, this example refers to UVSS DA. UVSS DA is not further discussed in this 
paper. However, reviews can be found, e.g., in Evensen [61], Moradkhani [4], Han and Li [45], 
McLaughlin [113] and Bocquet et al. [89]. 

3.2. Multivariate Single-Scale Data Assimilation (MVSS) 

MVSS DA refers to the simultaneous assimilation of observation data for multiple model state 
variables into a simulation model. In these studies, the measurement data are either of the same scale 
as the computational grid, or, more commonly, scale disparities are neglected. The availability of 
simultaneous multiobservation pairs is an important characteristic. For example, leaf area index (LAI) 
and surface temperature can be obtained on the same spatial scale at the same moment by the MODIS 
satellite. Both data types can be assimilated in a multivariate and single-scale manner. The assimilation 
of remotely-sensed soil moisture and soil temperature is another example of MVSS DA. However, 
although the same assimilation moment is not mandatory for MVSS DA, it is important that the 
assimilation takes place in a certain time window. Assimilating soil moisture data from a microwave 
satellite, which overpasses an area under investigation at 06:00, and soil temperature data from a 
multispectral/thermal sensor, which overpasses at 10:00, into an hourly hydrological model would still 
require multivariate DA. This problem is usually solved by an augmented state vector, which is an 
important characteristic of MVSS DA. This updates only that part of the augmented state vector for 
which a corresponding observation is available. In contrast, calibrating a model by soil moisture DA in 
the first year and updating soil temperature by DA in the second year would not necessarily be 
characterized as multivariate DA, as we have defined it if the basic state vector is used. 

If the DA framework can update both states and parameters, time series measurements of model 
parameters can also be assimilated. Therefore, our definition of MVSS DA is: (i) the assimilation of 
measurements for at least two model state variables, or (ii) at least one state variable in combination 
with at least one model parameter, or (iii) at least two different model parameters, at least one of which 
has the form of time series. For example, in several hydrologic models, LAI is a model parameter and 
soil moisture is a state variable. Both are time series products made available by satellite remote 
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sensing. In a state-parameter estimation framework, where LAI is a parameter to be estimated, 
multivariate DA can be performed by updating both the soil moisture state and the LAI parameter. 

3.3. Univariate Multiscale Data Assimilation (UVMS) 

UVMS DA refers to the assimilation of external data obtained at a significantly different resolution 
than the model resolution and the application of a scaling technique. In multiscale DA, a technique is 
required to consider statistical parameters on all scales, such as observation and model error noise 
variances. Examples are the assimilation of coarse-scale soil moisture contents or snow water 
equivalents (which are disaggregated to the fine scale) into a fine spatial scale hydrologic model. The 
application of a scaling technique is mandatory to distinguish between the multiscale and single-scale 
DA applications described above. 

Multiscale definitions given in other publications, which are not in line with the UVMS DA 
characteristics presented in this review, should however also be taken into account. We define UVMS 
DA as (i) the assimilation of a certain data type measured at a scale that is different to the 
computational grid scale, where DA explicitly takes into account this scale mismatch, or (ii) the 
assimilation of a certain data type measured at two or more different spatial scales, where DA 
explicitly takes into account that measurements were made at different scales. In the literature, other 
definitions can be found. For example, Lu et al. [114] define a process that assimilates both parameters 
and state variables as multiscale assimilation. However, this is not necessarily multiscale DA, as 
parameters and states could be measured at the same spatial scale. This definition therefore does  
not imply that DA solves the scale mismatch [48]. Another definition is given by Montaldo and 
Albertson [115]. They perform a multiscale DA by updating the root zone moisture to provide a 
temporal trajectory of the near surface moisture that follows the trajectory of the observed surface soil 
moisture, whereas the hydraulic conductivity is adjusted on the basis of the time-averaged corrections 
applied to the root zone water content. We argue that this is not multiscale DA, but an updating 
procedure that is nowadays inherent to modern DA techniques. Several definitions exist which flexibly 
consider the multiscale issue in the temporal or spatial domain. For example, the scale denotes the 
temporal resolution when measurements associated with different temporal resolutions are used, as 
published in Lu et al. [116] and Montaldo and Albertson [115]. This is an additional interesting aspect, 
but not the focus of this paper. Most measurements are point measurements in time and therefore we 
believe that the multiscale issue in the temporal domain is not as important an issue for most 
hydrological DA studies as the multiscale issue in the spatial domain [117].  

3.4. Multivariate Multiscale Data Assimilation (MVMS) 

MVMS DA refers to the complex combination of multivariate and multiscale DA techniques as 
defined above. 

3.5. Multisource DA 

In principle, in MVSS and MVMS DA, the state variables are updated by data sets from different 
sensors. Moreover, in most cases the multiscale issue in UVMS and MVMS is addressed by different 
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sensors. However, a special case is imaginable, where one state variable is updated at a single scale by 
two different data sets obtained from different means of observation. In such a case, we recommend 
introducing an explicitly multisource UVSS DA. Multisource UVSS DA involves the assimilation of 
equal-scale soil moisture products from specific radar on two different satellites, or two different radar 
types on one single satellite. The advantage of such a multisource UVSS DA application is that 
different observation errors can be overcome, i.e., one sensor performs better in one region, whereas 
the other sensor performs better in another region. 

An example would be the assimilation of soil moisture products from the ERS 1 and ERS 2 
satellites during their tandem phase. Two soil moisture products recorded at roughly the same time and 
at the same spatial resolution are provided. Such a simultaneous assimilation would not involve the 
DA procedures defined previously, i.e., MVSS, UVMS, MVMS. In this case, it would involve 
multisource UVSS DA. 

4. Univariate Multiscale Data Assimilation (UVMS) 

The multiscale problem has been addressed by several different approaches because a wide range of 
natural processes have multiscale properties in space and/or time [118,119]. In this section, we will 
focus on the assimilation of one state variable (or in certain cases, one parameter) obtained by  
(i) observation systems operating at two or more spatial scales into terrestrial models or (ii) the 
combination of one or more observation systems and a modeling grid at different spatial resolutions. 

4.1. Methodology 

Both the PF and the EnKF are excellent algorithms that assimilate data obtained at a certain spatial 
resolution into models that operate at a different resolution. This can be performed in two ways. The 
first approach is to use the observation operator [Equation (2)]. The second approach is to rescale the 
observations to the model scale prior to assimilation. In the following, both methods are briefly explained. 

4.1.1. Use of the Observation Operator 

Figure 3 shows a schematic of how the observation operator can be used to assimilate coarse-scale 
data into a 2D fine-resolution model. In this methodology, the observation operator hk(.) [Equation (2)] 
uses the modeled state variables to simulate the large-scale observation. A typical example is the 
assimilation of coarse-scale Soil Moisture and Ocean Salinity (SMOS) data into a fine-resolution 
hydrologic model. It is straightforward to prove that the antenna configuration causes locations close to 
the center of an SMOS grid to contribute more to the observed signal than locations further away from 
the center [120]. In the simulation of the SMOS signal (using the fine-scale hydrologic model results), 
the pixels in the center of the SMOS grid should thus receive a higher weight. The simulated  
large-scale signal (one single value) is then used to update the soil moisture contents of all hydrologic 
model pixels inside the SMOS grid. 

If the EnKF is used, the impact of the different weights can be assessed by examining the update 
equations. Let us assume that the hydrologic model is column-based, which means that the model 
results of all modeled pixels are independent of each other. This is a common feature of many 
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hydrologic models, such as the widely used Community Land Model [121]. Let us also assume that the 
uncertainties are identical in the model results for the different pixels. 

Figure 3. Schematic of the use of the observation operator for the assimilation of  
coarse-scale data into a fine-resolution 2D model. w ,   stands for the weight of the model 
result in row i and column j in the calculation of the grid-averaged model result. Darker 
colors represent higher weights. θ stands for the model results, and darker values represent 
higher values. For simplicity, the .  is omitted from the y and θ variables, and the time 
index k is omitted from all variables. 

 

Under these conditions P   is the identity matrix multiplied by the variance in the modeled results 
calculated over the ensemble. In this case h .  is a linear function (a linearly weighted average is 
obtained in order to simulate the large-scale observation), and can be written as the H  vector (the 
vector containing all the weights). The denominator in the Kalman gain equation is a single variable. 
Since P   is a uniform diagonal matrix, the magnitude of the Kalman gain for each state variable will 
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be determined by the value of its entry in H , the weight matrix. In other words, pixels with a higher 
weight will receive a larger update than pixels with a lower weight. A limiting case may occur when 
the weight of a certain pixel is zero, which implies that its value does not contribute to the large-scale 
signal. In this case, the requirement of observability of the system is violated and the pixel should be 
left out of the analysis.  

The impact of the averaging weight is fundamentally different when a PF is applied. The large-scale 
observation is simulated in exactly the same way as for the EnKF. However, in this case, one single 
particle contains the states (and possibly parameters) at all the modeled pixels, and is one of the 
ensemble members of the model realizations. Each particle possesses its own weight. The adaption of 
the weight depends on the deviation of the simulation of the large-scale observation from the actual 
observation. The particles could then be resampled. However, in this case, the modeled state variables 
for a certain particle are simply duplicated. In other words, there is no differential update in contrast to 
the EnKF. 

VAR deals with this problem in another way. An initial state vector is eventually retrieved that 
minimizes the cost function. Since the pixels located near the center of the large-scale grid have the 
highest weight, their state estimate will match the truth better than the pixels further away from the 
center. The difference compared to the EnKF is that these results are not obtained through an update, 
but through a minimization of a cost function. The same reasoning can be applied when an entire 
profile needs to be updated instead of one single layer. The difference is that the matrix H  will contain 
zeros for all state variables that are not in the uppermost layer of the profile. 

4.1.2. Prior Downscaling 

A different approach involves downscaling the observations to the spatial resolution of the model 
before the observations are assimilated. Figure 4 shows a schematic of this approach for a model with 
one model layer. In this case, the dimension of the observation vector y  is the same as the number of 
pixels inside the large-scale grid. H  is the identity matrix. The downscaled model results can then 
directly be assimilated into the fine-scale model. In some applications, only one layer might be 
observed (e.g., from remote sensing), but multilayer systems need to be updated. In such cases, H  
again contains zero values for all model variables that are not located in the uppermost layer. 

A drawback of this methodology is the need for a downscaling algorithm and the quantification of 
the measurement uncertainty on the fine scale. On the other hand, the advantage is the straightforward 
application of the DA algorithms, especially when multiple data sets at different spatial resolutions 
need to be assimilated. 

This is also true for the assimilation of one state variable obtained on two or more spatial scales into 
terrestrial models. An example would be the assimilation of fused top-soil-moisture products obtained 
by active (relatively higher spatial resolution) and passive (relatively lower spatial resolution) 
microwave methods. In addition to the prior individual downscaling of both data sets to the model 
resolution, prior data fusion could also be feasible. A huge range of methods have been published in 
relation to satellite image fusion [122,123]. However, if the physical information of the data set is to be 
conserved, well-established techniques, such as Intensity-Hue-Saturation (IHS) transformation [124], 
Brovey Fusion [125], and Principal Component Fusion (PCA) [126], cannot be used for DA. Here, the 
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coarse-scale data set is transferred into a new data system (e.g., IHS or PCA) with several components, 
one component is substituted by the fine resolution data set, and the transfer procedure is inverted. 
This results in a combined fine-resolution data set, but the absolute values are heavily altered.  
In contrast, the wavelet theory provides several options for an application in multiscale terrestrial  
DA [127–129]. In principle, the method published by Das et al. [130] for the multiscale fusion of 
active and passive microwave data obtained by the SMAP mission [131] is a wavelet-based approach. 

Figure 4. Schematic of the use of prior downscaling for the assimilation of coarse-scale 
data into a fine-resolution model for a model with only one model layer. The symbols are 
identical to those in Figure 3. As in Figure 3, the .  is omitted from the y and θ variables, 
and the time index k is omitted from all variables. DA refers to data assimilation. 
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4.2. Applications 

4.2.1. Univariate Dual-Scale Data Assimilation 

Several studies have been published assimilating one state variable at a specific spatial resolution to 
a model on another spatial resolution. As a simple method of transfering the spatial differences in soil 
moisture observations from ASCAT (~25 km) and AMSR-E (~38 km) to the model grid of 25 km, 
Draper et al. [132] used a simple nearest neighbor interpolation. Here, the scale difference is not large 
which could justify the approximation made. McLaughlin [133] addressed the interpolation problem in 
hydrological DA using a multiplicative cascade model for statistical downscaling prior to assimilation. 
Reichle et al. [101] used 4D-VAR to constrain a physically based soil-vegetation-atmosphere (SVAT) 
model with surface soil moisture and L-band brightness temperature measurements. One goal was to 
derive soil moisture estimates on a finer scale based on coarse-scale satellite observations. The 
downscaling procedure made use of a simple arithmetic average to reflect the transfer of information 
from observation pixels (at larger scales) to nested estimation pixels (at smaller scales). Li et al. [134] 
coupled the EnKF with a statistical upscaling in order to introduce fine-scale hydraulic conductivity 
data into a coarse-scale groundwater flow and mass transport model. Merlin et al. [135] assimilated 
simulated SMOS observations to a distributed SVAT model with the EnKF. In principle, two data sets 
are used for the assimilation of one state variable. Prior downscaling was performed with fine-scale 
soil skin temperature observations from thermal/optical sensors describing the spatial variability of 
surface soil moisture within the simulated SMOS pixel. The disaggregated soil moisture is calculated 
by inserting the fine-scale skin temperature residuals into the coarse-scale SMOS soil moisture 
product. Using this observation operator, the observation and the model have similar spatial scales. 

Parada and Liang [136] used the multiscale Kalman filtering (MKF) technique based on the data 
fusion method by Chou et al. [137] for the assimilation of near-surface soil moisture fields derived 
from an electronically scanned thinned array radiometer (ESTAR) into the three-layer variable 
infiltration capacity (VIC-3L) land surface model [138]. VIC-3L was calculated at a resolution of 
1/32° (approx. 3.2 km), whereas the ESTAR retrievals were recorded at a resolution of 800 m. To fully 
describe the spatial dependence of near-surface soil moisture with the MKF-based DA approach, both 
the land surface model predictions for near-surface soil moisture and the remotely sensed imagery are 
treated as observation sources with individual observation noise terms. This accounts for the fact that 
the degree of uncertainty in the predictions from both land surface models and observations vary over 
time. The MKF captures the persistent spatial dependence of soil moisture over large distances and it 
further and better constrains the optimal state estimates. Future studies may exploit this concept by 
integrating additional multiscale data sources of the same state variable into the system. Moreover,  
the ability to account for the presence of bias in the model as well as the observations may support  
the use of this method for the multiscale assimilation of soil moisture. An Expectation Maximization 
Algorithm [139] can be used to obtain time-varying statistical parameters to describe how the 
uncertainty in the observed and the modeled soil moisture may change over time. As radiometer-based 
soil moisture estimates refer to the top few centimeters of soil only [14,140], model predictions and no 
observations exist for the deeper soil layers. Without additional observations, however, we can say that 
the soil layers 2 and 3 of VIC-3L are single-scale hidden states. In order to additionally update these 
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single-scale states, a conditioning function can be specified based on the underlying physics describing 
soil moisture dynamics in the VIC-3L land surface model. An important aspect of this approach is the 
ability to retain mass conservation at all scales, so that the mean near-surface and deeper layer soil 
moisture content is preserved from scale to scale. 

Frakt and Willsky [141] introduced the multiscale autoregressive (MAR) framework. The advantage 
of MAR is the replacement of a high-dimensional filtering problem with low-dimensional localized 
filtering problems defined across scales. The method was later established by Zhou et al. [142] in an 
ensemble form, i.e., the ensemble multiscale filter (EnMSF). Pan et al. [118] introduced the EnMSF to 
hydrological land surface-driven applications, accounting for the horizontal coupling in surface 
hydrology, and the subsequent horizontal error correlations in measurements and state variables. 
Horizontal coupling allows the filter to update one pixel based on measurements of other pixels. More 
research on UVMS DA is needed to adequately address the horizontal coupling issue and to extend it 
to spatial error correlations. Pan and Wood [143] further analyzed the impacts of accuracy, spatial 
availability and assimilation frequency (i.e., satellite re-visit time) on this assimilation framework. A 
multiscale tree topology of states is generated by dividing a root node into different clusters of child 
nodes, which are again divided into different clusters. Once a coarse observation is available, it is 
recursively clustered to the finer computing grid using the tree topology. With a synthetic experiment, 
Burke et al. [144] presented an approach to assimilate coarse-scale brightness temperature to a coupled 
soil-water-evaporation and transpiration (SWEAT) and microwave emission (MICRO) model on a 
finer scale. They calculated the brightness temperature using Mesonet data and generated coarse-scale 
simulated observations by area averaging. They then reduced the precipitation by 40% and re-calculated 
the brightness temperature on a finer resolution. The latter was updated by the simulated observations 
by comparing the area average. This technique does not alter the relative differences between the 
model grid squares of the finer scale, but the result is de-biased. Here, brightness temperature 
observations from satellites without any bias are mandatory. So far, this is not the case for SMOS for 
specific regions [145–147].  

Another synthetic experiment was performed by Hill et al. [148]. They used the Monte Carlo 
Metropolis-Hastings Sequential Particle Filter as proposed by Dowd [149] to assimilate Normalized 
Difference Vegetation Index (NDVI) using a model operator translated to LAI. The net ecosystem 
exchange of carbon was calculated from respiration and gross primary production estimates. The 
coarse resolution observations were combined with an estimate of their subpixel probability 
distribution function and fine-resolution model states. The resulting fine-resolution disaggregated 
observations were then assimilated with standard procedures. 

4.2.2. Univariate Multiscale Data Assimilation with Prior Fusion or Downscaling 

In order to meet the problem of assimilating two or more observation data sets at dissimilar spatial 
scales, these observations are often fused prior to the assimilation. For example, in a synthetic study in 
the Arkansas-Red River Basin, Dunne et al. [80] generated “true” soil moisture states at a resolution of 
1 km with the topographically based land-atmosphere transfer scheme (TOPLATS) model [150]. 
Simulated active and passive microwave observations were generated using the Microwave Emission 
and Backscatter Model. These synthetic observations were aggregated to meet the mission concept of 
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the Soil Moisture Active and Passive (SMAP) Mission [131], i.e., 36 km for brightness temperatures 
and 3 km for backscatter data. The Noah Land Surface Model was used for assimilation at a spatial 
resolution of 6 km. Hence, three spatial scales are present in the DA system (3 km, 6 km, and 36 km). 
A transformation matrix is created to relate the predicted measurements on the Noah model scale to the 
observations of brightness temperature and backscatter at their respective resolutions. The brightness 
temperatures predicted at 6 km were linearly averaged within each 36 km radiometer grid cell for 
comparison with the observed brightness temperatures. Each 6 km predicted backscatter measurement 
was transformed into four collocated 3 km predicted backscatter values for comparison with the radar 
observations [80]. This information was then assimilated into the Noah model by an Ensemble Kalman 
Smoother (EnKS). 

Wang et al. [117] further developed the multiscale Kalman Smoother-based framework by Parada 
and Liang [136] in order to fuse precipitation data from different data sets. The intention was to 
consider the individual noise characteristics and biases of each data set. The study focused on 
combining data sets with different spatial resolutions. It combined precipitation as recorded by in situ 
rain gauges, ground-based US Next-Generation Radar (NEXRAD) network and the PERSIANN 
system, which already combines the Tropical Rainfall Measuring Mission (TRMM), the Microwave 
Imager (TMI) and the Geosynchronous Satellite Longwave Infrared Imagery (GOES-IR). The 
multiscale Kalman Smoother (MKS) algorithm can be used flexibly in a time or space domain. In 
order to achieve the same estimated mean of the fused precipitation at all scales, a bias compensator 
was introduced. This bias compensator minimizes the impacts of inconsistencies (e.g., biases) between 
measurements at different scales on the fused precipitation. The method makes use of an upward 
sweep followed by a downward sweep, where information in multiscale measurements collectively 
propagate to all the nodes of the multiscale tree, as expressed by the root on the coarse scale and the 
leaves on the fine scale. Via the upward sweep, the finer-resolution data add their influences to the 
estimates of the hidden states at coarser resolutions. Via the downward sweep, the coarser-resolution 
data add their influences to the estimates of the hidden states at finer resolutions. During this 
downward sweep, the estimates of the hidden states are further refined using a scale-recursive Kalman 
smoothing step.  

5. Multivariate Single-Scale Data Assimilation (MVSS) 

5.1. Methodology 

The EnKF, and variants of it, were used more often than PF and variational methods for 
multivariate DA in hydrology. For EnKF, the different observation types are all grouped together in 
the vector y . Therefore, compared to the univariate case, the vector y  is “extended” to include 
different types of measurements. The state vector x  also includes different types of state variables, 
and possibly parameters as well. These different variables and parameters are included in the state 
vector in the form of blocks: a first block for the first state variable, then additional blocks for 
additional state variables, and finally blocks for the different parameters. The covariance matrix is 
therefore also extended and includes cross-covariances between different state variables, or cross-
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covariances between a state variable and a parameter. The update equation for EnKF, which is valid 
both for univariate and multivariate DA, is: x x P HT H P HT R y H x  (19)

We will now look at the example of two state variables, which were modeled and observed. 
Moreover, two distributed parameter fields were calibrated, and observations were available for one of 
the parameters. The augmented state vector, observation vector and covariance matrix are now 
composed of the following blocks: 

x xxxx ; y yyy ; P P PP P P PP PP PP P P PP P  (20)

where  corresponds to the first state variable,  to the second state variable, to the first parameter 
and  to the second parameter. It should be noted that the dimensions of the blocks normally differ 
between the augmented state vector and the observation vector, as not each modeled state is observed. 
The Kalman gain [see also Equation (5)] then determines the relative weights for each of the different 
measurements to update each of the state variables and the two parameter values at each grid cell. DA 
methods related to EnKF, such as the extended Kalman filter (EKF), the ensemble Kalman smoother 
or the ensemble smoother, can perform multivariate DA in a similar way. In practice, the complete 
covariance matrix is not calculated; instead, only the cross-covariances between observed grid cells 
and other model states and parameters are calculated. 

Variational methods have also been used in several cases for multivariate DA in hydrology. 
Multivariate DA with variational methods is performed by evaluating the second term on the  
right-hand side of Equation (18) for all observations. However, a key role is played by matrix R  in this 
expression. This matrix contains the estimated measurement error variances for each of the 
observations. The different types of observations are associated with different uncertainties and the 
diagonal elements of  will therefore have different values. The matrix R  weights the influence of the 
different observations to update the simulated model values with the observations. The correcting 
influence of the observations also depends on the values in R  compared to the covariance matrix for 
the background errors, P . The inclusion of additional observations, and the comparison of the 
measured values with the simulated ones, according to Equation (18), makes the calculation of the 
gradient of the objective function more cumbersome. For example, if observations for additional state 
variables are included, the gradient of the objective function with respect to those state variables 
should also be calculated.  

The PF has not yet been used frequently for multivariate DA in hydrology. Different data sources 
can be relatively easily included as conditioning information in the particle filter, which can be 
understood by inspecting the likelihood function. The likelihood for the multivariate case is obtained 
by comparing the different measurement data with their simulated equivalents, and weighting each of 
the residuals with the measurement variance. For the univariate case, the probability of the 
observations in the modeled state was given by Moradkhani et al. [48] as: 
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p y x y x∑ y x  (21)

where  is the number of particles and | x  is the likelihood of the observations given the modeled 
states for a particle: y x 12 R exp 12R y H x  (22)

For the definition of R  and H , see Section 2.1 on EnKF. In these expressions, it was assumed that 
all observations have the same measurement error variance. For the multivariate case, the expression 
for the likelihood of the observation modifies to: y x 12 |R | exp 12 y H x TR y H x  (23)

We see in this expression that the measurement error variances are in matrix notation, which 
acknowledges that different measurement types will be associated with different uncertainties. 
Measurement errors for different observations can also be correlated in space, as could be the case for 
remote sensing data. The uncertainty of the different (types of) observations affects the weighting of 
the particles. 

5.2. Applications 

Although multivariate DA seems like a relatively straightforward extension of univariate DA, most 
studies in terrestrial systems assimilate only one data type. The complication of MVSS DA is not so 
much of an algorithmic nature, but is related to the specification of the measurement uncertainty for all 
data types involved. If different data types are assimilated, the correct weighting of the different pieces 
of information becomes very important for the efficiency of the procedure. The following discussion of 
the papers that deal with MVSS DA is organized according to the application area, focusing on 
developments during the last decade and on EnKF, PF and VAR. 

5.2.1. Groundwater 

In groundwater hydrology, sequential DA focused from the outset on jointly updating states and 
parameters by assimilating piezometric head data using an augmented state vector approach. The work 
of Chen and Zhang was among the first in this area [74]. Initial work on multivariate DA considered 
the joint assimilation of time series of piezometric heads and conditioning to hydraulic conductivity 
data. In such publications, information on hydraulic conductivity was assimilated in the first step and 
later preserved in the DA [151–153]. The joint assimilation of measurements for more than one state 
variable is less frequently reported in the literature. Liu et al. [154] and Nowak [151] assimilated both 
piezometric head and concentration data, but they provided few details about the assimilation of the 
concentration data and the (expected) non-Gaussian concentration distribution. Li et al. [155] provided 
a more detailed analysis of the value of additional concentration data, and found that the joint 
assimilation of head and concentration data gave much better results than the assimilation of head data 
only. They used the classic EnKF and a very large ensemble size (1,000 realizations). In addition to 
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head and concentration data, Li et al. [155] also assimilated hydraulic conductivity and porosity data, 
which are both model parameters. Schöniger et al. [156] pointed out that when concentration data is 
assimilated, EnKF is expected to perform suboptimally because local pdfs of concentration tend to be 
non-Gaussian, and simple univariate normal score transformations cannot be expected to render 
bivariate pdfs Gaussian. 

5.2.2. Integrated Surface-Subsurface Hydrology 

There has been a recent increase in papers concerned with DA for partial differential equation-based 
coupled surface-subsurface models. Crow and van Loon [47] suggested that the joint assimilation of 
soil moisture and stream discharge data is one strategy of detecting erroneous assumptions about the 
magnitude of model errors. Camporese et al. [157] assimilated pressured head and streamflow data in 
CATHY [158–161] using EnKF. They concluded from the synthetic experiment that pressure head 
data are helpful for improving both the characterization of subsurface states and river discharge, 
whereas river discharge data do not improve the characterization of subsurface states. Pasetto et al. [51] 
further studied the joint assimilation of discharge and pressure head data in the CATHY model, this 
time using PF, but (again) without updating model parameters. They proposed a modification of  
SIR-PF for more efficient assimilation, and otherwise their conclusions were similar to those from 
Camporese et al. [157]; discharge data contributed little to improving the characterization of 
subsurface states. Bailey and Baù [162] had a slightly different focus and updated not only model 
states, but also hydraulic conductivities. They assimilated piezometric head measurements, 
groundwater return flow volume data and hydraulic conductivity data to estimate the spatially variable 
hydraulic conductivity field and they showed that the best results are obtained when all data are jointly 
assimilated. In their synthetic experiment, they used an Ensemble Smoother for assimilation, which 
considers current and past time steps together in the conditioning approach. In a later publication, 
Bailey and Baù [163] used the ensemble smoother in combination with CATHY to assimilate pressure 
head and water level data. They found that water level data are much more helpful for conditioning 
than streamflow discharge data. In their study, information on surface flow also contributed to an 
improved characterization of subsurface hydraulic conductivities. An additional feature of their 
synthetic study was that geostatistical parameters of the subsurface were also made uncertain.  

5.2.3. Rainfall Runoff 

Some authors used more conceptual hydrological models for assimilation focusing on the 
reproduction of river discharge. In an early publication, Seo et al. [164] used the Sacramento  
model [165,166] and VAR to assimilate discharge data, precipitation and potential ET. However, 
precipitation and potential ET were not assimilated in the classical sense, but were incorporated as 
observed model forcings. Lee et al. [167] used SACRAMENTO to assimilate discharge and soil 
moisture data with VAR. Their conclusions were very similar to the ones drawn by Camporese et al. [157] 
and Pasetto et al. [51], but they found that river discharge data also improved the characterization of 
subsurface states in the synthetic case to some degree. Interestingly, this was not the case for the  
real-world case study of the Eldon catchment (Oklahoma and Arkansas, USA). The authors assumed 
perfectly known forcings and no measurement errors in both the synthetic and real-world cases, which 
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is unrealistic for the real-world case. Xie and Zhang [168] used SWAT [169–171] to assimilate runoff, 
soil moisture and evapotranspiration data with EnKF and they updated various model parameters. This 
was also a synthetic study, and it was assumed that soil moisture and evapotranspiration was known 
for complete sub-catchments. In this very optimistic setting, best results were again obtained when all 
data were jointly used for assimilation, but evapotranspiration data contributed less than the other types 
of measurements. 

5.2.4. Vadose Zone 

The applications of DA in vadose zone hydrology are traditionally concerned with the assimilation 
of remote sensing data. In these applications, normally only states are updated, while for soil hydraulic 
parameter calibration, inverse methods are used. DA for vadose zone hydrology has a strong link with 
land surface hydrology and we distinguish here between assimilation experiments for single soil 
columns (vadose zone hydrology) and studies for larger areas with distributed land surface models 
(land surface hydrology). Although Walker et al. [172] already carried out synthetic experiments for 
the assimilation of soil moisture and surface temperature data from satellite into vadose zone models, 
the joint assimilation of these data was not considered in this publication or in the years that followed. 
Visser et al. [173] assimilated both measured groundwater level and soil moisture data (De Bilt, The 
Netherlands) in a model for flow in the unsaturated zone and drainage. They used a simplified form of 
Newtonian nudging in their experiments. In Newtonian nudging, deviations between model prediction 
and measurements are included as additional sink and source terms in the equation. They showed that 
DA can reduce the errors for soil moisture prediction, and that best results were obtained when soil 
hydraulic parameters were also calibrated. They found that the model error had the greatest influence 
on the prediction error.  

5.2.5. Large-Scale Land Surface 

One option for improving the prediction quality of larger-scale land surface models is the joint 
assimilation of soil moisture and surface temperature data. Barrett and Renzullo [174] developed 
nonlinear measurement operators for the assimilation of satellite-measured brightness temperature and 
land surface temperature. They then investigated the conditions under which the joint assimilation of 
these data could be useful. Brightness temperature always puts a strong constraint on soil moisture 
content, but surface temperature data can only put additional constraints on soil moisture content 
estimates if: (i) the measurement error is not too big (around 1 K), (ii) the background error on soil 
moisture contents is relatively large (e.g., 5 vol%), and (iii) the sensitivity of surface temperature with 
respect to soil moisture is increased (which is the case for larger LAI). Han et al. [175] tested the joint 
assimilation of brightness temperature and surface temperature in a synthetic study and their 
conclusions agree well with those of Barrett and Renzullo [174]. The joint assimilation only improved 
the results marginally compared to the assimilation of one data type only. Another way of improving 
the prediction quality of larger-scale land surface models is the joint assimilation of soil moisture data 
and LAI. Pauwels et al. [176] used the land surface model TOPLATS [177] coupled with the crop 
growth module of WOFOST [178] to assimilate these data with EnKF. They found in a synthetic study 
that soil moisture data help to improve the estimates of LAI during the growth season, whereas LAI 
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hardly improved soil moisture characterization. The best results were again obtained when both 
observation types were jointly assimilated, and for LAI it was important that data were assimilated in a 
biweekly interval. Sabater et al. [179] reached similar conclusions when applying a land surface model 
simulating crop growth to data from a field site close to Toulouse in France. They used a 1D VAR 
approach to jointly assimilate LAI and soil moisture data. Albergel et al. [180] studied the joint 
assimilation of soil moisture and LAI at the same site in the ISBA land surface model [181–184] using 
the EKF. The joint assimilation resulted in improved estimates of water, energy and carbon fluxes. 
Draper et al. [185] analyzed the assimilation of remotely sensed soil moisture from AMSR-E as well 
as temperature and relative humidity measured at 2 m in the land surface model ISBA using the EKF. 
Both data products resulted in very different updates of soil moisture and the joint assimilation was not 
very different from the assimilation of temperature and relative humidity alone. It was concluded that 
AMSR-E could not constrain the soil moisture estimates very much. 

DA might violate the mass balance because at each assimilation time step, mass might be removed 
or injected into the system. Pan and Wood [186] proposed the Constrained Ensemble Kalman Filter 
(CEnKF) to put additional constraints on the mass balance and to avoid large mass imbalances. This 
method is especially interesting in combination with different kinds of observations that allow the 
mass balance to be constrained. Pan and Wood [186] assimilated soil moisture data, latent heat 
estimates and stream flow into the VIC land surface model [138,187,188]. The authors also 
demonstrated that soil moisture data can be used to constrain precipitation measurements with this 
methodology. Although this involved a multivariate DA, Pan and Wood [186] did not focus on the 
value of the different pieces of information in this paper. 

5.2.6. Snow Hydrology 

In the area of snow hydrology, multivariate DA has also been explored as a method of improving 
the characterization of snow pack and runoff estimates during snow melt. Durand and Margulis [189] 
investigated the potential of remotely sensed snow observations and combined the Special Sensor 
Microwave Imager (SSM/I), 12 channels of the Advanced Microwave Scanning Radiometer-Earth 
Observing System (AMSR-E) and broadband albedo observations to improve the estimation of snow 
water equivalent (SWE) using EnKF as a DA technique. They found a strong improvement in the 
characterization of SWE, with a RMSE as low as 3 cm (for a total maximum SWE of 80 cm). 
Pullianen [15] also assimilated SWE from AMSR-E and SSM/I in combination with in situ snow depth 
measurements and used a Bayesian approach. The approach was tested for areas in Finland, Russia and 
Canada. It was found that a combination of different data sources gave the best results. Pullianen [15] 
introduced a forward modeling approach for the brightness temperature. Kolberg et al. [190] 
assimilated a remotely sensed snow-covered area (from Landsat 7 ETM+ images) and related this via a 
simple model to SWE. The combined assimilation of remotely sensed snow-covered area and river 
discharge gave the best results. The time of assimilating the Landsat 7 ETM+ images had an important 
impact on the results, and the best results were generated when the assimilation was performed shortly 
before the main flood peak.  
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6. Multivariate Multiscale Data Assimilation (MVMS) 

Studies presenting a complex combination of multiscale (Section 4) and multivariate (Section 5) 
DA techniques are discussed in the following. Most of the MVMS DA studies deal with the assimilation 
of snow data and the assimilation of soil moisture and surface temperature. Durand et al. [191] 
assimilated synthetic 25 km snow water equivalent (SWE) and 1 km snow grain size data to a land 
surface model with a resolution of 1 km using adaptive EnKF. They examined the impacts of different 
uncertainties on the efficiency of the snowpack characterization in DA. The results showed that the 
SWE and grain size estimation efficiency were both influenced by the snow grain size and 
precipitation accuracy and were related to the coefficient of variation and correlation length for both 
the precipitation and grain size. De Lannoy et al. [192] used the snow water equivalent (SWE) from  
25 km resolution AMSR-E products and a snow cover fraction (SCF) from 500 m resolution MODIS 
products to improve the snow water equivalent estimation in the Noah model (resolution 0.01 degree) 
with a multiscale EnKF framework. The coarse SWE data were assimilated with the aggregated model 
simulation, and the high-resolution SCF data were aggregated to the model resolution and were 
transformed to SWE using the snow depletion curve as the observation operator. A rule-based update 
of SWE was used for SCF. The results showed that the joint assimilation of SWE and SCF improved 
the model estimation significantly for areas with shallow snow packs. For the deep snow areas, the 
results were not improved significantly because of the bias in the coarse SWE products and the 
assimilation of SCF only had a marginal impact. Su et al. [193] studied the impact of assimilating  
the GRACE terrestrial water storage (TWS) and MODIS snow cover fraction (SCF) data into the 
Community Land Model. The ensemble Kalman filter and smoother were used and the joint 
assimilation yielded better estimates of SWE and snow depth than the MODIS-only approach.  

Balsamo et al. [194] used an observation system simulation experiment (OSSE) to study the 
impacts of microwave L-band and C-band, infrared surface temperature, screen-level temperature and 
relative humidity MVMS DA on the daily soil moisture and temperature analysis in a land DA system 
with a simplified VAR. In general, OSSE is designed to enable the modeler to examine the 
performance of data assimilation procedures and even to obtain the sensitivity of the procedure to 
different models with different parameterizations, observation operators and physical representations. 
The spatial coverage, temporal availability, and nominal or expected errors were considered using the 
present satellite observation information. The results showed that the observable with the largest 
dynamical response to perturbations of the model states contributed significantly to the analysis.  
Barbu et al. [195] studied the joint assimilation of the soil wetness index (SWI) and LAI through a 
simplified extend Kalman filter in the ISBA-A-gs land surface model. The results showed that the 
assimilation of surface-measured SWI could improve the root zone soil moisture significantly, and that 
LAI could correct a number of deficiencies in the model. The root mean square errors of CO2 fluxes 
were also reduced by about 5% with this joint scheme. 

7. Advantages and Disadvantages of Multivariate and Multiscale Data Assimilation 

Compared to UVSS DA techniques, multivariate and multiscale assimilation (MVSS, UVMS, 
MVMS) allow additional data containing information about the states to be updated and quantities of 
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interest (e.g., fluxes) to be modeled. Advantages have been outlined in several studies [30,143]. 
However, multivariate and multiscale assimilation raises questions about the information content of 
these data. 

7.1. Univariate Multiscale Data Assimilation (UVMS) 

UVMS DA allows observations with different “support” scales to be integrated into mathematical 
models. However, this necessitates the availability of upscaling and downscaling approaches. One 
problem associated with UVMS DA is the assimilation of data measured at a certain scale into a model 
with a different grid resolution. It has been shown that assimilation is straightforward. For methods 
like EnKF, it can be handled by the observation operator, while PF can assimilate directly. Simulated 
values can be compared with measured values in a relatively straightforward manner: if for example 
the measurement comprises multiple computation grid cells, the observation operator can handle an 
equal weighting of all the measurement grid cells, while also taking account of an unequal weighting 
of the grid cells (as was the case in the SMOS example in Section 4.1). However, the problem is more 
complicated if a property scales nonlinearly. This is the case for example for brightness temperature 
measured by microwave sensors, which is nonlinearly related to soil moisture. When the relation 
between brightness temperature and soil moisture is applied to the larger-scale grid, we expect the soil 
moisture value to be different to the value we would receive if the brightness temperature was 
available for all smaller computational grid cells and if the conversion from brightness temperature to 
soil moisture was calculated for each of these grid cells. For properties that scale linearly, we expect 
the direct application of the observation operator (in the case of EnKF) to give the best results. For 
properties that scale nonlinearly, alternative strategies such as prior downscaling are promising. A 
systematic comparison of methods solving assimilation problems for properties that scale nonlinearly 
is still lacking. Here, more insight is needed, which could be obtained using synthetic studies 
mimicking real-world conditions as closely as possible or using real-world studies with sound 
verification. A second multiscale DA problem is when measurements are available at multiple scales. 
More experience is required with the assimilation of measurements at different scales. In theory, this is 
easy for problems that scale linearly, but in practice the data could conflict. Studies should not focus 
solely on the optimal fusion of data, as the bias correction of the observation data is also important [145]. 
It is also important that the different measurement data be weighted correctly. Expected measurement 
errors are therefore needed. These are often not well known and require increased ground truth 
verification. However, the measurement errors of the scaled data sets must be derived from the 
measurement errors at the original observation scale considering the applied scaling method. If data on 
two or more spatial scales are to be assimilated, a hierarchical approach constrained by the mass 
balance or further conditions may outperform a prior fusion. Here, assimilation results may be 
sensitive to the relative weights attributed to these different data sets, especially when they are 
observed at different spatial resolutions. 

The relative weights are not relevant, if an observation operator is used. Its scaling performance 
depends on the complexity of the observation operator. Let us take the example outlined in  
Section 4.1.1, where the antenna weighting of SMOS was used to calculate the magnitude of the 
update for different pixels. This approach considers additional information about the measurement 
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system. Compared to a statistical scaling, such as calculating the average state of fine-scale data on the 
coarse scale, it is a more sophisticated approach. A more complex scaling observation operator with 
respect to the example given is the method published by Merlin et al. [196]. In short, SMOS soil 
moisture on the coarse scale (~40 km) is downscaled using MODIS soil skin temperature and MODIS 
NDVI (both fixed to 10 km) amongst others. The MODIS data contain completely new information 
that is not related to the SMOS soil moisture measurement itself. The method makes use of the finding, 
that soil evaporative efficiency (estimated based on soil temperature) is directly related to soil 
moisture.  

If the additional data is also a state variable of the main model, they can be assimilated into the 
model (i.e., multivariate DA) and used in the scaling algorithm as well. As discussed in Section 4.2.1, 
Merlin et al. [135] assimilated this disaggregated soil moisture into a SVAT model. Here, the 
additional MODIS soil skin temperature can also be predicted by the SVAT model. Therefore, one 
integrated approach may use the MODIS temperature product to update the simulated soil skin 
temperature, which can then be used for the observation operator. This may be performed in two steps, 
first by assimilating coarse-scale soil moisture and fine-scale soil temperature, and then by assimilating 
downscaled soil moisture in a second step. Another approach may directly insert the fine-scale soil 
temperature into the disaggregation and assimilate both the fine-scale soil moisture and soil 
temperature into the SVAT model. The extension of this framework mentioned above refers to MVMS 
DA, as discussed in Section 6. 

7.2. Multivariate Single-Scale Data Assimilation (MVSS) 

Although many different data types are available to constrain hydrological model parameterization 
and prediction, relatively few DA papers deal with MVSS DA. In groundwater hydrology, vadose zone 
hydrology and rainfall-runoff modeling sequential DA is a relatively novel approach with an 
increasing number of papers only in the last five years. Very few papers are therefore concerned with 
MVSS DA. The situation is different for land surface hydrology, where sequential DA was first used 
more than a decade ago. This is also the area with a larger number of papers on multivariate DA. 
However, it also lacks papers dealing with the assimilation of many different data types. In land 
surface hydrology, the main topic has been the assimilation of soil moisture data from satellites. This 
involves serious complications: biased data (e.g., vegetation, interferences), limited vertical penetration 
depth, nonlinear observation operators and scale mismatch. In addition, land surface hydrological 
models often use strongly simplified concepts of vegetation and the hydrological cycle, where the 
assimilation of LAI or FPAR data is not possible (they are a parameter in such models) and  
the assimilation of river discharge data or groundwater data is difficult because of strong  
model simplifications.  

On the other hand, synthetic experiments have shown that multivariate DA is generally superior to 
univariate DA. Considering the evolution in the last years, we expect that an increasing number of 
applications will further investigate the benefits of multivariate DA. We also expect that it will be 
more successful in real-world applications in the area of land surface hydrology if it is combined with 
better models (e.g., models that allow lateral flows in the subsurface) and coupled models (e.g., in 
combination with a crop growth model to assimilate vegetation data). Improving our understanding of 
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remotely sensed data, such as indirect estimates of soil moisture is also essential for increasing the use 
of MVSS DA (especially in land surface models). In Section 5.1, we showed that a key element in 
MVSS DA is the relative weighting of the different data types. Therefore, the uncertainty of the 
measured data must be better understood, and increased ground truth verification is required under 
different conditions. The equations in Section 5.1 also showed that the impact of the data is greater if 
measurement errors are smaller. Again, especially for remotely sensed data, a better understanding of 
the relation between what is measured (e.g., brightness temperature) and what we want to know (i.e., 
soil moisture) is essential. To conclude, the implementation of MVSS DA schemes and more synthetic 
test studies are not enough to improve the predictive capacities of terrestrial models. MVSS DA should 
be combined with improved model structures, an increased understanding of what is being measured 
and the specification of the relative uncertainty of different measurement data under different 
environmental conditions. 

7.3. Multivariate Multiscale Data Assimilation (MVMS) 

Multivariate multiscale DA is the most complicated form of DA. For this type of assimilation, both 
aspects mentioned for multiscale DA (UVMS) and multivariate DA (MVSS) also hold here. 
Uncertainty assessment and bias correction of measurement data and appropriate multiscale methods 
to handle nonlinear scaling states and/or parameters are all important aspects. Although the 
combination of complications makes MVMS DA more problematic, we do not believe that it involves 
additional theoretical complications compared to MVSS or UVMS DA alone. 

To date, only simple aggregation or disaggregation methods have been used to match the  
spatial resolution between observations and model states. More advanced downscaling methods, such 
as the downscaling of coarse passive soil moisture products with high-resolution remote sensing  
data [197,198], have not yet been used in MVMS DA. These methods would be expected to improve 
the DA performance further. Several publications were concerned with snow DA. The remote sensing 
products of soil moisture and surface temperature are also diverse in scale and source, and more work 
is necessary to study the impacts of MVMS assimilation of soil moisture and surface temperature at 
different spatial resolutions.  

7.4. Other Aspects 

A complication of multivariate and/or multiscale DA where parameters are also updated is that the 
parameter estimates cannot be directly verified in the field. Therefore, only indirect verification of 
calibrated parameter values is possible. This can be done by comparing uncalibrated and calibrated 
parameter values in independent model prediction experiments. If errors are significantly smaller for 
runs with calibrated parameter values (compared to uncalibrated values), then this would indicate that 
parameter estimation helped to improve model parameterization. Nevertheless, it is also possible that 
improved predictions with calibrated parameters are related to the fact that the updated parameter 
values compensate for another model structural error.  

Running high-resolution models with many unknown states (and parameters) in an ensemble mode 
is very CPU-intensive and large amounts of stored data need to be managed. Small ensemble sizes give 
suboptimal results and therefore a certain minimum ensemble size is needed. High-performance 
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computing is therefore an essential part of the DA methodology, and this is even more so the case for 
MVMS DA. For some very CPU-intensive applications, such as land surface modeling, this may have 
prohibited to some extent a more widespread use of these techniques until now. 

8. Conclusions 

In the context of climate change, several activities have been established for the long-term 
monitoring of environmental conditions. In general, in situ sensors used work in an automated way, 
and the data is collected in databases, which are often available to the general public with online 
access. Additionally, the initiation of various national and international space and science programs 
has ensured a further operationalization of the space infrastructure to provide information on important 
environmental variables. Available time series of environmental data (also in near-real time) are not 
fully utilized in terrestrial models. DA is the ideal technique to combine model simulations with 
observations because it considers the individual uncertainties. Several examples have already been 
published, e.g., for model calibration, model enhancement, and parameter estimation. The rising 
complexity of models, observation operators, and measurement systems favors the assimilation of data 
on different spatial scales as well as different state variables. 

In this paper, we reviewed the state of the art of DA utilizing observational data from different 
spatial scales and different sources. We summarized three prominent DA methods: the ensemble 
Kalman filter (EnKF), the particle filter (PF) and variational methods (VAR). We identified four major 
classes of assimilation studies:  

• Univariate single-scale DA (UVSS, not discussed here as review papers exist in the various 
fields of research). 

• Univariate multiscale DA (UVMS). This refers to the assimilation of external data obtained at a 
different resolution than the model resolution. Examples are the assimilation of coarse-scale soil 
moisture contents or snow water equivalents into a hydrologic model, which is applied at a fine 
spatial scale. 

• Multivariate single-scale DA (MVSS). This refers to the assimilation of data for multiple 
variables (for example, surface temperature and soil moisture contents) into a simulation model. 

• Multivariate multiscale DA (MVMS). This refers to a complex combination of UVMS  
and MVSS. 

We discussed several studies aiming to assimilate observations into models at dissimilar spatial 
scales. Some applications used the observation operator to align the spatial reference, others used prior 
downscaling before assimilation. If more than one observation of the same variable was used with a 
different spatial resolution, the majority of studies fused these data first. In a second step, one 
combined data set was usually assimilated. This approach may lead to underrepresentation of the 
variability as well as the accuracy of the state variable.  

MVSS DA can be handled by EnKF, PF, VAR and other DA techniques. A crucial role is played by 
the appropriate determination of the measurement error variances for the different information. MVSS 
DA has been applied in several studies, but there are still few applications using real-world data or 
several (more than two) types of data. Most studies concluded that the results obtained when different 



Sensors 2012, 12 16321 
 

 

types of data are assimilated are better than UVSS DA. Examples of this include the joint assimilation 
of soil moisture and LAI, the joint assimilation of river discharge and soil moisture, or the joint 
assimilation of surface temperature and brightness temperature. We argued that model deficiencies and 
an incomplete understanding of the relation between the measurement and the variable of interest has 
hampered a more extensive use of multivariate DA in the past. In order to ensure the successful 
application of multivariate DA in the future, these points and an increased understanding of the 
magnitude of measurement errors under different environmental conditions are important.  

In conclusion, methods already exist for the simultaneous assimilation of various data types on 
different spatial scales. In atmospheric science, multivariate and multiscale DA is well established. In 
terrestrial systems, they are not yet generally established, and published studies are often synthetic. 
Further activities are needed to fully exploit the availability of environmental data, which could 
improve our knowledge of terrestrial processes as well as their interdependencies and teleconnections 
with the climate system. 
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