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Abstract: We present an effective portable e-nose system that pesfavall even in
noisy environments. Considering the characteristics efetnose data, we use an image
covariance matrix-based method for extracting discrimif@atures for vapor classification.
To construct composite vectors, primitive variables of diaéa measured by a sensor array
are rearranged. Then, composite features are extractedlizyng the information about
the statistical dependency among multiple primitive Jalea, and a classifier for vapor
classification is designed with these composite featuregeimental results with different
volatile organic compounds data show that the proposecmsysias better classification
performance than other methods in a noisy environment.
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1. Introduction

An electronic nose (e-nose) is a device intended to detettdéstriminate odorants in the vapor
phase 1-6]. While human olfaction sense tends to be easily fatiguedeaose has advantages
in consistently detecting vapors, including those harmduthe human body. In an early electronic
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nose, calorimetric sensors were used to perform measutenoanvapors, and the measurements
were usually expressed in arrays of colord [ Such an e-nose system, which was used only in a
laboratory environment, utilized complicated analytioggdures, including precise equipment such as
gas chromatography (GC) systems or mass spectrometersodi®)ined with sophisticated machine
intelligence B,9]. With recent advances in electrochemical sensors andatligichnologies, an e-nose
system can support a more portable and intelligent platftomthe collection and processing of
gas compoundslp).

E-nose systems are used for various purposes, such asiinldabbratories for line quality control or
production departments, environmental protectidl,[the food industry 12], the detection of explosive
substances1f3], and medical diagnosis in the identification of infectidhsough the examination of
odors in breath or tissued4,15]. Breath analysis has several potential applications gpiratory
medicine L6-22]. Also, electronic noses are potentially useful for cl§gsg and subphenotyping of
patients with different respiratory diseas28][

Most e-nose systems consist of a nonspecific sensor arragy emiputing systenff]. Each sensor
in a sensor array reacts to volatile compounds on conta&.a@lsorption of volatile compounds on the
sensor surface causes a physical change of the sensor. iicspEsponse is recorded by the electronic
interface transforming the signal into the numerical dateector form. In a computing system, various
pattern recognition techniques, such as feature extractideature selection methods, can be used to
classify the data into a suitable class. Some methods ¢#teadiscriminant features for classification by
using LDA (Linear Discriminant AnalysisPpb] or combine Fisher discriminant analysis with modified
Sammon mapping2l]. In work [27,28], a vector machine such as the support vector machine or
relevance vector machine was used to classify vapors. Ik |46}, after refining the e-nose data through
the feature feedback proces29d], vapor classification was performed by using LDA and a rn€are
neighbor classifier.

Various feature extraction methods have different charatics depending on the problems to be
solved. For example, PCA (Principal Component Analys3§] floes not utilize the class information
of the data but finds the projection vectors from the data $athat minimize the mean square error of
approximating the data. Thus, PCA is more appropriate foata cepresentation problem rather than
a classification problem. On the other hand, LC#{][finds a linear transformation that maximizes
the ratio of the between-class scatter matfix ) and the within-class scatter matri%(). Since LDA
assumes that the samples in each class are normally disttibtperforms well for data that satisfies this
assumption. In the case of detection problems such as ass-classification problems, BDA (Biased
Discriminant Analysis) 32] performs well using the scatter matrix of the positive-] and negative
(Sn) samples. Thus, it is important to determine an appropnmegthod depending on the properties of
the data, which has a great effect on the final classificagsults.

In this paper, we present an e-nose system robust to noigypements by using composite features
for vapor classification. The e-nose sensor used measupEssvavith a speed of 10 Hz, which
corresponds to a sampling rate of 2,000 points per 200 se¢dh&ince a sensor array has 16 channels,
each measured data sample contains 32,000 primitive Wesiabhich is likely to result in computational
burden. Figurd shows one of the typical time responses of a 16-channel sarrsy with respect to the
inflow of acetone vaporl[0]. As can be seen in Figurk there is a strong correlation between adjacent
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time responses in a sample. This makes it plausible to us¢teohthat is suitable for high-dimensional
data and utilizes information on statistical dependencgragrmultiple primitive variables.

Figure 1. Typical time-responses of 16 channel sensor array withetgp inflow of acetone

vapor at 5,000 ppmi[0].
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There are several methods such as 2DFLD (Two-DimensiorsdieFiLinear Discriminant)33],
MatFLDA (Matrixized Fisher Linear Discriminant Analysig34] and C-LDA (Composite LDA) 85|,
in which image covariance matrices were used instead ofr@mee matrices. Each element of an
image covariance matrix is defined as the inner product ofdamposite vectors, each of which is
obtained from a predefined window in a data sam@@&.[ 2DLDA and MatFLDA can be viewed
as a particular type of C-LDA because C-LDA becomes ideht@hese forms when the composite
vector is defined as a row or column vect87]. The composite features, which are used to construct
a classifier, are obtained by linear combinations of the amsit@ vectors. Kimet al. [36] showed
that composite features are effective for data that hagye keorrelation between primitive variables or
high-dimensional data such as face images. Therefore, wecexhat classification using composite
features performs very effectively for e-nose data. Moegpthe size of an image covariance matrix
can be controlled by changing the window size or by overlagphe windows. This is another great
advantage in the classification of high-dimensional dath s1$ e-nose data, because manipulation of a
large covariance matrix can be avoided and consequenty3ise(Small Sample Size) probleB8[ can
be solved. By designing a classifier for vapor classificatuith composite features, we obtained very
good results even in a noisy environment. Experimentaltesbow that our system is very effective in
vapor classification in terms of not only classification sdtet also robustness to noise.

The rest of this paper is organized as follows. Secfantroduces an image covariance matrix
and presents the derivation of C-LDA. SectiBrexplains how e-nose data that are measured by a
sensor array are represented using composite vectors ancbingposite features are extracted for vapor
classification. Sectiod describes the experimental results and the conclusioowislin Sectiorb.
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2. Composite Feature Extraction Based on Image Covariance Btrix

In pattern recognition, data is generally stored in vectavBose elements are called primitive
variables B6]. Conventional feature extraction methods such as PCA, L&ABDA use the covariance
of primitive variables. In each method, the features areaektd by solving the particular objective
function, which is defined using various types of covarianwdrices. However, when dealing with
high-dimensional data, a huge number of combinations shHmeitomputed for obtaining the covariance
matrix. Since there are high correlations between neighbgrimitive variables, it is redundant to
use all of these combinations. Moreover, it is likely to emuer the SSS problem in the process of
eigenvalue analysis of the covariance matrix.

In the feature extraction methods based on image covariamatex, the covariance is calculated
from two sets of primitive variables instead of two priméivariables. Each sets of primitive variables
is called a “composite vector”. Ldf denote a set of primitive variables{u, us,..,u,}. Then, a
composite vectox; € R¢ consists of/(< n) primitive variables that are come from a predefined window
in a data sample (Figur®). If shifting a window as much ag, the number of composite vectorss
L”Tjdj + 1, where| -] is the floor operator that gives the largest integer valuereatgr than the value
inside the operator. Depending on the length of the wind@md the step size of shift the dimension
and number of composite vectors are determined.

Figure 2. Example of constructing composite vectais< 4 andp = 1).
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Let X (k) = [x,(k)xa2(k)..x,(k)]T € R**? be a set of composite vectors obtained from#ké data
sample. In Figur@, d andp are setto 4 and 1, respectively. Each element of an imageianga matrix
c;; can be obtained from the inner product of two composite yecind is defined as

¢ = Bl(x; = %) (x; —%;)], 4,5=1,2,..,v (1)

whereX; andX; are the mean vectors of andx;, respectively. Since;; corresponds to the sum
of the covariances between the corresponding primitiveakes, it contains information on statistical
dependency among multiple primitive variables. Moreowvénen using image covariances obtained
from composite vectors, the size of the image covarianceixnzn be reduced greatly, which enables
us to avoid manipulation of large covariance matrices arsbbee the SSS problem.
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When the training set containg samples and classes, each of which hag samples, between
(C)- and within(C'y)-class covariance matrices are defined as

c NZ .
Cp = Z ~ (M: = M)(M; — M)
| @)
Cw =+ oD (X(k) = M)(X (k) - My)"
=1 X(]C)Eci
where,M and M; are the mean of the whole training samples and the mean ofabg-g respectively.

Then, the objective function of C-LDA is defined as follows:

WTCLW|

WTChy W] ®)

Weom = arg max
W

The projection matriXVc,,, € R"*™ consists of projection vectoms;(= [w;1, .., wi]T)S Weom =
[w;Ws..W,,]). The set of composite featur&gk) is obtained fromX (k) as

Y (k) = (Weom) X (K), k=1,2,...,N (4)

Y (k) € R™*? hasm composite featurefy, (k) ...y, (k)]*, and each composite featuye(k) is a
d-dimensional vector. These composite features are usexdfssification.

3. Vapor Classification Using Composite Features

3.1. Experimental Setup for the Acquisition of E-Nose Data

The sensor array was implemented by dispensing the CB polgomeposite-solvent solution in the
micromachined gas sensor array chip T [It consists of 16 separate sensors with an interdigitated
electrode, microheater, and micromachined membrane inawnnel for further temperature-controlled
measurement applications. The resistance change of e&gimgrocomposite film was monitored in
response to the incorporation of chemical vapor. The @st&t change of polymer composite film was
amplified by 20 times and recorded every 0.1 s. Measuremenperdiormed after the sensor array was
placed into the chamber and the signal of resistance wafiztab Each measurement consisted of three
steps of stabilization (30 s), exposure (60 s), and purges$89]. The measured data are collected in
PC using data acquisition (DAQ) board DAQ6062E and LabVIBVgt{onal Instrumentation, USA).
The voltage-divider operated in the range from —10 V to +10 gains of 16 identical amplifiers were
set to 10 (output/input voltage) for maximum DAQ resolutj@h

3.2. Vapor Classification Using Composite Features

Now, we design a vapor classification system using comptesateires. The VOC (Volatile Organic
Compounds) measurement data used consists of 8 classe$, avhi acetone, benzene, cyclohexane,
ethanol, heptane, methanol, propanol and tolu&helhe data set contains 160 samples, N = 160.
Each sample was measured through 16 channels over 2,00(p¢imis, which can be viewed as a
16 x 2,000 matrix. In order to make composite vectors effectively, wansform this matrix into a
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32,000-dimensional vector using a lexicographic ordedpgrator B5]. Figure3 shows one example
of the data that is transformed into a vector form. Then, westroct a composite vector by grouping
adjacent elements and moving as much as the step size of shift

Figure 3. Data sample that is transformed into a 32,000 dimensiorcabwéorm.
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The length of the windowd), the number of composite features)(and the step size of shifp)
are important parameters that influence the classificagoiopnance. We investigated the classification
rates with respect td, m, andp. Figure4(a)shows the classification rates with respect @ndm. In
this case, we set= d/2 as in B5]. As can be seen in the figure, the classification rates arsamsitive
to d if m is properly decided. We set andm to 400 and 25, respectively. Then, we investigated
the classification rates with respectjto As can be seen in Figuib), the classification rates are not
sensitive top and the classification rate @f = 200 was slightly better than those of othgwalues.
Therefore, we set to 200.

Figure 4. Classification rates for various parameters.
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The set of extracted composite features consists g€ctors of dimensiod, and we need to define
the distance metrics in this subspace. The Euclidéah distance betweel (i) = [y, (i) ...y, (i)]*
andY (j) = [y,(4) ... ¥.,(4)]" are defined as

da(Y( = {Z Iy, (2) =y, (7)IIP}2 ()

where|| - || is the 2-norm. The distance betwegli) andy, (j) is obtained from the Euclidean distance
in thed-dimensional space. The2 distance is calculated by taking the square root of the gglsum of
these distances. For classification, one nearest neighdssifter B8] is used based on the2 distance.
The overall procedure of our system is shown in Fidare

Figure 5. Overall procedure of the e-nose system.
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4. Experimental Results

In order to evaluate the classification rates, we performéalBcross validation40] 8 times and
computed the average classification rate. In this schemesample from each class was randomly
selected for testing, while the remaining samples were tmeaining. There were 140 data samples
in the training set and 20 samples for testing. Each datalsamghe training set was also normalized
using the mean and the variance of the training set.

We compared the classification performance of the C-LDA wethith those of the LDA method
and the feature feedback method (FEQ][ In addition, in order to see the robustness of each method
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to the noise, which is likely to occur in sensing data, we dddaussian noise with standard deviation
from 1 to 4 to each data sample. Figufeand7 show some examples of the data with Gaussian noise
and classification rates of each case, respectively.

Figure 6. E-Nose data with Gaussian noise of standard deviation 1-4.
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As can be seen in Figuik all the methods give high classification rates for the oagdata. However,
as the degree of noise increases, the classification rateBfAfand FF decrease rapidly. In contrast,
C-LDA gives consistently high classification rates9£0% ~ 98.1%, which shows that our system
performs reliably in a noisy environment. In Figuféc), the classification rates of C-LDA aifd.1%
and35.2% higher than that of LDA and FF, respectively. In the case gliFé7(d), C-LDA gives16.6%
and41.1% higher classification rates than LDA and FF, respectively.
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Figure 7. Classification rates for the e-nose data.
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5. Conclusions

We presented a reliable e-nose system using an appropegtiad extraction method based on the
characteristics of e-nose data. C-LDA is a general methaiduibes the image covariance matrix, which
is a covariance matrix of composite vectors, instead of thegance of primitive variables. Since
the adjacent primitive variables are strongly correlatee-+inose data, the proposed method showed
better performance than other methods. In addition, we vaiddhe SSS problem, which occurs in
dealing with high-dimensional data such as e-nose data,singuhe small-sized image covariance
matrix, instead of large-sized covariance matrix. By eotiry composite features after rearranging
the primitive variables of e-nose data samples, we utilinéatmation about the statistical dependency
among the multiple primitive variables of the e-nose datg.ir®estigating classification rates for the
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various lengths of composite vectors and the step sizesftfwhk found an adequate parameter set for
vapor classification. In a real environment, the data meashy the portable e-nose system is likely
to be corrupted by noise, which interferes with extractimgpd) features for classification. Through

experimental results, we showed that the proposed systeengged classification performance even in
a noisy environment.
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