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Abstract: We present an effective portable e-nose system that performs well even in

noisy environments. Considering the characteristics of the e-nose data, we use an image

covariance matrix-based method for extracting discriminant features for vapor classification.

To construct composite vectors, primitive variables of thedata measured by a sensor array

are rearranged. Then, composite features are extracted by utilizing the information about

the statistical dependency among multiple primitive variables, and a classifier for vapor

classification is designed with these composite features. Experimental results with different

volatile organic compounds data show that the proposed system has better classification

performance than other methods in a noisy environment.
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1. Introduction

An electronic nose (e-nose) is a device intended to detect and discriminate odorants in the vapor

phase [1–6]. While human olfaction sense tends to be easily fatigued, an e-nose has advantages

in consistently detecting vapors, including those harmfulto the human body. In an early electronic



Sensors2012, 12 16183

nose, calorimetric sensors were used to perform measurements on vapors, and the measurements

were usually expressed in arrays of colors [7]. Such an e-nose system, which was used only in a

laboratory environment, utilized complicated analytic procedures, including precise equipment such as

gas chromatography (GC) systems or mass spectrometers (MS)combined with sophisticated machine

intelligence [8,9]. With recent advances in electrochemical sensors and digital technologies, an e-nose

system can support a more portable and intelligent platformfor the collection and processing of

gas compounds [10].

E-nose systems are used for various purposes, such as in control laboratories for line quality control or

production departments, environmental protection [11], the food industry [12], the detection of explosive

substances [13], and medical diagnosis in the identification of infectionsthrough the examination of

odors in breath or tissues [14,15]. Breath analysis has several potential applications in respiratory

medicine [16–22]. Also, electronic noses are potentially useful for classifying and subphenotyping of

patients with different respiratory diseases [23].

Most e-nose systems consist of a nonspecific sensor array anda computing system [24]. Each sensor

in a sensor array reacts to volatile compounds on contact. The adsorption of volatile compounds on the

sensor surface causes a physical change of the sensor. A specific response is recorded by the electronic

interface transforming the signal into the numerical data in vector form. In a computing system, various

pattern recognition techniques, such as feature extraction or feature selection methods, can be used to

classify the data into a suitable class. Some methods extract the discriminant features for classification by

using LDA (Linear Discriminant Analysis) [25] or combine Fisher discriminant analysis with modified

Sammon mapping [26]. In work [27,28], a vector machine such as the support vector machine or

relevance vector machine was used to classify vapors. In work [10], after refining the e-nose data through

the feature feedback process [29], vapor classification was performed by using LDA and a nearest

neighbor classifier.

Various feature extraction methods have different characteristics depending on the problems to be

solved. For example, PCA (Principal Component Analysis) [30] does not utilize the class information

of the data but finds the projection vectors from the data sample that minimize the mean square error of

approximating the data. Thus, PCA is more appropriate for a data representation problem rather than

a classification problem. On the other hand, LDA [31] finds a linear transformation that maximizes

the ratio of the between-class scatter matrix (SB) and the within-class scatter matrix (SW ). Since LDA

assumes that the samples in each class are normally distributed, it performs well for data that satisfies this

assumption. In the case of detection problems such as one-class classification problems, BDA (Biased

Discriminant Analysis) [32] performs well using the scatter matrix of the positive (SP ) and negative

(SN ) samples. Thus, it is important to determine an appropriatemethod depending on the properties of

the data, which has a great effect on the final classification results.

In this paper, we present an e-nose system robust to noisy environments by using composite features

for vapor classification. The e-nose sensor used measures vapors with a speed of 10 Hz, which

corresponds to a sampling rate of 2,000 points per 200 seconds [7]. Since a sensor array has 16 channels,

each measured data sample contains 32,000 primitive variables, which is likely to result in computational

burden. Figure1 shows one of the typical time responses of a 16-channel sensor array with respect to the

inflow of acetone vapor [10]. As can be seen in Figure1, there is a strong correlation between adjacent
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time responses in a sample. This makes it plausible to use a method that is suitable for high-dimensional

data and utilizes information on statistical dependency among multiple primitive variables.

Figure 1. Typical time-responses of 16 channel sensor array with respect to inflow of acetone

vapor at 5,000 ppm [10].
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There are several methods such as 2DFLD (Two-Dimensional Fisher Linear Discriminant) [33],

MatFLDA (Matrixized Fisher Linear Discriminant Analysis)[34] and C-LDA (Composite LDA) [35],

in which image covariance matrices were used instead of covariance matrices. Each element of an

image covariance matrix is defined as the inner product of twocomposite vectors, each of which is

obtained from a predefined window in a data sample [36]. 2DLDA and MatFLDA can be viewed

as a particular type of C-LDA because C-LDA becomes identical to these forms when the composite

vector is defined as a row or column vector [37]. The composite features, which are used to construct

a classifier, are obtained by linear combinations of the composite vectors. Kimet al. [36] showed

that composite features are effective for data that has a large correlation between primitive variables or

high-dimensional data such as face images. Therefore, we expect that classification using composite

features performs very effectively for e-nose data. Moreover, the size of an image covariance matrix

can be controlled by changing the window size or by overlapping the windows. This is another great

advantage in the classification of high-dimensional data such as e-nose data, because manipulation of a

large covariance matrix can be avoided and consequently theSSS (Small Sample Size) problem [38] can

be solved. By designing a classifier for vapor classificationwith composite features, we obtained very

good results even in a noisy environment. Experimental results show that our system is very effective in

vapor classification in terms of not only classification rates but also robustness to noise.

The rest of this paper is organized as follows. Section2 introduces an image covariance matrix

and presents the derivation of C-LDA. Section3 explains how e-nose data that are measured by a

sensor array are represented using composite vectors and how composite features are extracted for vapor

classification. Section4 describes the experimental results and the conclusion follows in Section5.
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2. Composite Feature Extraction Based on Image Covariance Matrix

In pattern recognition, data is generally stored in vectors, whose elements are called primitive

variables [36]. Conventional feature extraction methods such as PCA, LDA, or BDA use the covariance

of primitive variables. In each method, the features are extracted by solving the particular objective

function, which is defined using various types of covariancematrices. However, when dealing with

high-dimensional data, a huge number of combinations should be computed for obtaining the covariance

matrix. Since there are high correlations between neighboring primitive variables, it is redundant to

use all of these combinations. Moreover, it is likely to encounter the SSS problem in the process of

eigenvalue analysis of the covariance matrix.

In the feature extraction methods based on image covariancematrix, the covariance is calculated

from two sets of primitive variables instead of two primitive variables. Each sets of primitive variables

is called a “composite vector”. LetU denote a set ofn primitive variables{u1, u2, .., un}. Then, a

composite vectorxi ∈ R
d consists ofd(< n) primitive variables that are come from a predefined window

in a data sample (Figure2). If shifting a window as much asp, the number of composite vectorsv is

⌊n−d
p
⌋ + 1, where⌊·⌋ is the floor operator that gives the largest integer value no greater than the value

inside the operator. Depending on the length of the windowd and the step size of shiftp, the dimension

and number of composite vectors are determined.

Figure 2. Example of constructing composite vectors (d = 4 andp = 1).
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Let X(k) = [x1(k)x2(k)..xv(k)]
T ∈ R

v×d be a set of composite vectors obtained from thek-th data

sample. In Figure2, d andp are set to 4 and 1, respectively. Each element of an image covariance matrix

cij can be obtained from the inner product of two composite vectors and is defined as

cij = E[(xi − x̄i)
T (xj − x̄j)], i, j = 1, 2, .., v (1)

where x̄i and x̄j are the mean vectors ofxi and xj, respectively. Sincecij corresponds to the sum

of the covariances between the corresponding primitive variables, it contains information on statistical

dependency among multiple primitive variables. Moreover,when using image covariances obtained

from composite vectors, the size of the image covariance matrix can be reduced greatly, which enables

us to avoid manipulation of large covariance matrices and tosolve the SSS problem.
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When the training set containsN samples andc classes, each of which hasNi samples, between

(CB)- and within(CW )-class covariance matrices are defined as

CB =
c∑

i=1

Ni

N
(Mi −M)(Mi −M)T

CW =
1

N

c∑

i=1

∑

X(k)∈ci

(X(k)−Mi)(X(k)−Mi)
T

(2)

where,M andMi are the mean of the whole training samples and the mean of the classci, respectively.

Then, the objective function of C-LDA is defined as follows:

WCom = argmax
W

|W TCBW |

|W TCWW |
(3)

The projection matrixWCom ∈ R
v×m consists of projection vectorswi(= [wi1, .., wiv]

T )s (WCom =

[w1w2..wm]). The set of composite featuresY (k) is obtained fromX(k) as

Y (k) = (WCom)
TX(k), k = 1, 2, . . . , N (4)

Y (k) ∈ R
m×d hasm composite features[y1(k) . . . ym(k)]

T , and each composite featureyi(k) is a

d-dimensional vector. These composite features are used forclassification.

3. Vapor Classification Using Composite Features

3.1. Experimental Setup for the Acquisition of E-Nose Data

The sensor array was implemented by dispensing the CB polymer composite-solvent solution in the

micromachined gas sensor array chip in [7]. It consists of 16 separate sensors with an interdigitated

electrode, microheater, and micromachined membrane in each channel for further temperature-controlled

measurement applications. The resistance change of each polymer composite film was monitored in

response to the incorporation of chemical vapor. The resistance change of polymer composite film was

amplified by 20 times and recorded every 0.1 s. Measurement was performed after the sensor array was

placed into the chamber and the signal of resistance was stabilized. Each measurement consisted of three

steps of stabilization (30 s), exposure (60 s), and purge (90s) [39]. The measured data are collected in

PC using data acquisition (DAQ) board DAQ6062E and LabVIEW (National Instrumentation, USA).

The voltage-divider operated in the range from –10 V to +10 V and gains of 16 identical amplifiers were

set to 10 (output/input voltage) for maximum DAQ resolution[7].

3.2. Vapor Classification Using Composite Features

Now, we design a vapor classification system using compositefeatures. The VOC (Volatile Organic

Compounds) measurement data used consists of 8 classes, which are acetone, benzene, cyclohexane,

ethanol, heptane, methanol, propanol and toluene [7]. The data set contains 160 samples,i.e., N = 160.

Each sample was measured through 16 channels over 2,000 timepoints, which can be viewed as a

16 × 2, 000 matrix. In order to make composite vectors effectively, we transform this matrix into a
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32,000-dimensional vector using a lexicographic orderingoperator [35]. Figure3 shows one example

of the data that is transformed into a vector form. Then, we construct a composite vector by grouping

adjacent elements and moving as much as the step size of shift.

Figure 3. Data sample that is transformed into a 32,000 dimensional vector form.
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The length of the window (d), the number of composite features (m) and the step size of shift (p)

are important parameters that influence the classification performance. We investigated the classification

rates with respect tod, m, andp. Figure4(a)shows the classification rates with respect tod andm. In

this case, we setp = d/2 as in [35]. As can be seen in the figure, the classification rates are notsensitive

to d if m is properly decided. We setd andm to 400 and 25, respectively. Then, we investigated

the classification rates with respect top. As can be seen in Figure4(b), the classification rates are not

sensitive top and the classification rate ofp = 200 was slightly better than those of otherp values.

Therefore, we setp to 200.

Figure 4. Classification rates for various parameters.
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The set of extracted composite features consists ofm vectors of dimensiond, and we need to define

the distance metrics in this subspace. The Euclidean (L2) distance betweenY (i) = [y1(i) . . . ym(i)]
T

andY (j) = [y1(j) . . . ym(j)]
T are defined as

dL2(Y (i), Y (j)) = {
m∑

t=1

‖yt(i)− yt(j)‖
2}1/2 (5)

where‖ · ‖ is the 2-norm. The distance betweenyt(i) andyt(j) is obtained from the Euclidean distance

in thed-dimensional space. TheL2 distance is calculated by taking the square root of the squared sum of

these distances. For classification, one nearest neighbor classifier [38] is used based on theL2 distance.

The overall procedure of our system is shown in Figure5.

Figure 5. Overall procedure of the e-nose system.
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4. Experimental Results

In order to evaluate the classification rates, we performed 8-fold cross validation [40] 8 times and

computed the average classification rate. In this scheme, one sample from each class was randomly

selected for testing, while the remaining samples were usedfor training. There were 140 data samples

in the training set and 20 samples for testing. Each data sample in the training set was also normalized

using the mean and the variance of the training set.

We compared the classification performance of the C-LDA method with those of the LDA method

and the feature feedback method (FF) [10]. In addition, in order to see the robustness of each method
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to the noise, which is likely to occur in sensing data, we added Gaussian noise with standard deviation

from 1 to 4 to each data sample. Figures6 and7 show some examples of the data with Gaussian noise

and classification rates of each case, respectively.

Figure 6. E-Nose data with Gaussian noise of standard deviation 1–4.
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(a) Data with Gaussian noise (std 1)
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(b) Data with Gaussian noise (std 2)
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(c) Data with Gaussian noise (std 3)
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As can be seen in Figure7, all the methods give high classification rates for the original data. However,

as the degree of noise increases, the classification rates ofLDA and FF decrease rapidly. In contrast,

C-LDA gives consistently high classification rates of95.0% ∼ 98.1%, which shows that our system

performs reliably in a noisy environment. In Figure7(c), the classification rates of C-LDA are11.1%

and35.2% higher than that of LDA and FF, respectively. In the case of Figure7(d), C-LDA gives16.6%

and41.1% higher classification rates than LDA and FF, respectively.
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Figure 7. Classification rates for the e-nose data.
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(a) Classification rates for the original e-nose data
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(b) Classification rates for the e-nose data with Gaussian

noise (std 1)
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(c) Classification rates for the e-nose data with Gaussian

noise (std 3)
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noise (std 4)

5. Conclusions

We presented a reliable e-nose system using an appropriate feature extraction method based on the

characteristics of e-nose data. C-LDA is a general method that uses the image covariance matrix, which

is a covariance matrix of composite vectors, instead of the covariance of primitive variables. Since

the adjacent primitive variables are strongly correlated in e-nose data, the proposed method showed

better performance than other methods. In addition, we can avoid the SSS problem, which occurs in

dealing with high-dimensional data such as e-nose data, by using the small-sized image covariance

matrix, instead of large-sized covariance matrix. By extracting composite features after rearranging

the primitive variables of e-nose data samples, we utilizedinformation about the statistical dependency

among the multiple primitive variables of the e-nose data. By investigating classification rates for the
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various lengths of composite vectors and the step sizes of shift, we found an adequate parameter set for

vapor classification. In a real environment, the data measured by the portable e-nose system is likely

to be corrupted by noise, which interferes with extracting good features for classification. Through

experimental results, we showed that the proposed system gave good classification performance even in

a noisy environment.
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