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Abstract: This paper presents a vehicle dynamics prediction systemghaconsists of
a sensor fusion system and a vehicle parameter identificatistem. This sensor fusion
system can obtain the six degree-of-freedom vehicle dyceaand two road angles without
using a vehicle model. The vehicle parameter identificay@mtem uses the vehicle dynamics
from the sensor fusion system to identify ten vehicle patamsein real time, including
vehicle mass, moment of inertial, and road friction coefints. With above two systems,
the future vehicle dynamics is predicted by using a vehigleathics model, obtained from
the parameter identification system, to propagate with timecurrent vehicle state values,
obtained from the sensor fusion system. Comparing with reristing literatures in this
field, the proposed approach improves the prediction acguyath by incorporating more
vehicle dynamics to the prediction system and by on-linatifieation to minimize the
vehicle modeling errors. Simulation results show that thegppsed method successfully
predicts the vehicle dynamics in a left-hand turn event aralaver event. The prediction
inaccuracy is 0.51% in a left-hand turn event and 27.3% irlaver event.

Keywords: dynamics predictions; sensor fusion system; vehicle paramdentifications;
road condition identifications
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1. Introduction

In recent years, many vehicle control research proposg tisenfuture vehicle dynamics information
to assist drivers’ maneuvers. For example, the vehicle pebictions can provide the future position
error for the vehicle guidance controls. Compared with thieventional “look-down” sensing system
that provides current position error, the path predictia only provides the information that are
easier perceived by human drivers, but also provides adaitinformation of road conditions, weather
conditions.etc.[1,2]. As another example, many researchers propose usingl@ebllover predictions
as anti-rollover measure845]. The benefit is that the rollover prediction can trigger toatrol input
earlier than the approaches without prediction. Consetyehe advance of the control action both
saves actuation power and improves the driving safety. &legamples highlight the importance of
vehicle dynamics predictions.

In general, the future vehicle dynamics is predicted by gisanvehicle mathematics model to
numerically propagate current state values with time. &toge, a vehicle dynamics prediction system
needs a mathematic model and current vehicle state valuk [There are two concerns regarding the
mathematic model. First, many reports employ simplifiediclehmodels in the dynamics prediction,
such as 2 DOF model], 4 DOF [2], and 2 DOF yaw-roll modell-3,6]. The prediction results may
only be acceptable for limited purposes and driving condgi The inaccurate prediction result can
be understood that, from the control viewpoint, the dynampi@diction is an open loop system. Thus,
any model simplification would affect prediction accurasysbme extent. Our previous worK][shows
that even excluding the vehicle pitch dynamics from a 6 DOfiale model would result in an obvious
error in the rollover prediction. One of the key componeihigt tare often neglected in the vehicle
dynamics modeling is the road angle. Many research repaxs shown that road angles have direct
influences on the vehicle dynamicd8-L0]. Our previous reportq] also show that, under the same
driving maneuvers, a vehicle would roll over on a sloped rmaidvould be under control on a flat road.
Therefore, it is important to include the road angle in thieiele dynamics prediction.

The second concern is the parameter uncertainty in the leetmodel. Most dynamics prediction
methods use presumed vehicle parameters in the vehicleematits model1-3,7]. This approach
can simplify the prediction problem but may be inaccuratgtactice. This is because the vehicle
property (mass, moment of inertia) and road conditionsdlaagles, friction coefficients) may change
from different driving situations, such as number of pagees, amount of fuel, road surface profiles,
weather conditionsetc. Therefore, it is preferred that the parameters associatdd the vehicle
model can be identified in real time. From system identifaatriewpoint, the success of parameter
identification depends on the model accuracy, persistentagion, and signal-to-noise ratio (SNR) of
the excitation signalslfl]. Therefore, the vehicle parameter identification probisrclosely related
to the accompanied sensor fusion system that provides tlsurements of the vehicle dynamics.
In literatures, many vehicle parameter identification eys have been proposed to identify vehicle
parameters such as vehicle masses, moments of inertiatiredadlctions,etc.[9,12-14]. So far, we have
not found a research report that identifies more than sixcleparameters using their sensor systems.

As mentioned earlier, another key factor of the vehicle dyica prediction is the sensor system
for obtaining current vehicle state values. Since the ‘ehsgstem is highly nonlinear and many
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of its dynamics cannot be measured directly, the vehicleadhyos are often obtained by two ways:
one is the observer-based sensor fusion system; the ottier kinematics-based sensor fusion system.
The observer-based method needs a vehicle model and ledsenwhsensors. On the contrary,
the kinematics-based method does not require a vehicle lIratleeeds more sensors. Since the state
estimation accuracy of the observer-based method gregltgsron the incorporated model accuracy,
the observer-based method is less preferred as comparedheikinematics-based method. Lots of
kinematics-based sensor fusion systems employ a GPS anMdn(three-axis accelerometer and
three-axis gyroscope) to measure 6 degree-of-freedom JDfdions of an object. This sensor
fusion system has been widely used in many applicationd) ascaircraft systemsl¥|, ships [L€],

and road vehiclesl[/-19]. However, it has some drawbacks when applied to road vehidFirst, the
rotation angles obtained by integrating the angular ratag suffer from the initial value ambiguity
problem and the error accumulation problem. Second, both &®l IMU are inertial sensors. Thus,
the vehicle attitude and road angles are mingled togethgrerGPS and IMU measurements. Third,
the measurement accuracy of the GPS is inadequate to deeetime vehicle displacement in the
vertical direction.

From pervious discussion, it can be concluded that a pragbécle model is important for the
accuracy of the dynamics prediction. How precise this Jehimmodel can be is determined by
the accompanied sensor fusion system that provides cuvedmtle state values both for the state
propagations and for the real time identification of vehiglgameters. In our previous work(],
we propose a kinematic based senor fusion system that empldiiree-antenna global positioning
system (GPS), an inertial measurement unit (IMU), and faspsnsion displacement sensors. This
sensor fusion system can obtain the 6 DOF vehicle dynamit$vamroad angles. Based on this sensor
system, we develop a vehicle dynamics prediction systerhisngaper using a vehicle model that is
more complicated than most of the existing approaches. derethe parameters of this vehicle model
that may change in different driving conditions are ideetifin real time. In this paper, the dynamics
prediction procedures, the parameter identification #lgms, the parameter observability, the SNR
influence, and the prediction accuracy are all discussedtauld

2. Euler Angles and Coordinate Systems

Three coordinate systems are introduced to describe algehaving on a sloped road (see, Figje
These three coordinate systems are: global frégjeroad frame{r}, and vehicle framgv}. Similar
to conventional research, the global frame is fixed to a pminEarth, while the vehicle frame is fixed
to the center of gravity (CG) of the vehicle and rotates wité vehicle. The additional road frame is
introduced to describe the vehicle dynamics on a sloped mehith is fixed to a road and rotated with
the road terrain.

Three sets of Euler angles are used to describe the relafjpnbetween any two out of three
coordinate systems. The first set of Euler angles ¢,, ¢,), which are referred to in this paper as
the “absolute yaw angle”, “absolute pitch angle” and “absslroll angle”, are used to describe the
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absolute attitude of the vehicle (global frawe vehicle frame). The rotation order of this set of Euler
angles is yaw-pitch-roll. Its direction cosine matriXg) can be written as follows:

Cy = R(z, ¢g) R(z, ¥g) 1)

[ 1

R(z, ¢,) = 0 cos (bg sm( g
| 0 —sin (bg cos(¢g)
[ cos(6,) sin 6’9

R(y, b0,) = 0
| —sin(d,) O Cos(é’g
[ cos(vy)  sin(dhy) 0

R(z, ¢y) = —sin(y,) cos(tyy) 0

0 0 1

Figure 1. A schematic plot a vehicle and four coordinate systems @ilishme, road frame,
vehicle frame and auxiliary frame).

{9} | > X
global frame

The second set of Euler angles (¢,, v,), which are referred to in this paper as the “road grade
angle”, “road bank angle” and “road curve angle”, are usedescribe the road grade profiles (global
framevs. road frame). The rotation order of this set of Euler anglgstsh-roll-yaw. Since a vehicle
may move on a terrain irrelevant to the human-defined rodu, gas impossible to determine the road
curve angle from vehicle dynamics. Thus, it is assumed tcebe @, = 0) for simplicity. Its direction
cosine matrix Cg) can be written as:

Cy = R(z, ¢») R(z, ¢r) R(y, 0r) (@)

The third set of Euler angles)(, 6,, ¢,), which are referred to in this paper as the “vehicle yaw
angle”, “vehicle pitch angle” and “vehicle roll angle”, axsed to describe the vehicle attitude relative to a



Sensor012 12 15782

road plane (road frames. vehicle frame). The rotation order of this set of Euler asggeyaw-pitch-roll.
Its direction cosine matrix{;) can be written as:

C/ = R(z, ¢u) R(y, 0u) R(z, ) (3)

Since two sets of Euler angles are enough to describe thioredhips between three coordinate
systems, complying with the above angle definitions, thie¥ohg relationship can be established for
these angles:

Cy=C/ Cy (4)

An additional auxiliary frame (aux-frame) is obtained byating the z-axis of the road frame until
the x-axis of the road frame is aligned with the x-axis of tbeyframe. The aux-frame is used because
it describes vehicle translational motions in an intuitmanner while preserving the information of
other vehicle dynamics relative to the road level. In théofeing vehicle modeling, vehicle translational
motions are described in the aux-frame, and the rotation&bms are described by angles, 6, ¢,.

3. A Sensor Fusion System for Road Vehicles

Since lots of the vehicle dynamics cannot be directly mesashy individual sensors, a sensor fusion
system is constructed to obtain the vehicle dynamics on edlooad. The proposed sensor fusion
system consists of a group of sensors, a kinematic modeedeta those sensor outputs, and a state
estimation algorithm. They are discussed in the following.

3.1. Sensor Selections

3.1.1. Three-Antenna GPS System

Different from a conventional GPS system, a three-antenR& & used here because it not
only provides absolute position measurements®( yo, z97*) but also absolute angle measurements
(paps, 69P<, 4haP%). Both information are relative to the global frame, and éygorted angle measuring
error is approximately 0°Ifrom a test vehicleZ1,22).

3.1.2. Suspension Displacement Sensors

Four suspension displacement sensors are installed acéooers of a vehicle. The suspension
deflection can be related to the vehicle attitude and védisplacement of the vehicle CG, both relative
to the road frame:

—1,.(H{" + H3") — 1:(H5" + H™)

2 = (5)
21 4+ 21,
Hsus _ Sin,1 HiSuS + HQSUS . H§1LS _ Hius
v 21 + 21,

P

where the superscriptqs) denotes the physical quantities measured by the suspedsplacement
sensorsz, is the vertical displacement of the vehicle CG observedérttad frame(r}; H; represents

_Hfus + Héeus + ngs o qus
(2t¢ + 2t,) cos b,
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the displacement of suspension at the coineéne subscript#) refers to four suspension corners in a
way: 1— front-left, 2 to 4 in a clockwise directiori;; andl, are the distances from CG to the front and
rear axis, respectively; andt, are one half of the distances of the front and rear track petsely.

3.1.3. Inertial Measurement Unit

An IMU sensor is installed at the center of gravity of the wihito measure the 6 DOF movements.
They are used here to improve the estimation accuracy ofgheble dynamics.

3.2. A Kinematic Model

As discussed in this paper, three sets of Euler angles (miglesiin total) parameterize this vehicle
attitude determination system. The relationships state&quation 4) provide three constrained
equations; the 3-antenna GPS system provides the measuseofethree absolute vehicle angles
(¢g, 04, Vy); the measurements from suspension displacement sensurdgthe values of two vehicle
attitude @3¢, 6:°); the road curve angle is assumed to be zero£ 0). Therefore, even without a
kinematic model, those nine angles can be solved.

In addition to the angle measurements above, the vehid#ooal dynamics are also present in the
IMU measurements, GPS position measurements, and sugpeligplacement measurements. In order
to improve the robustness and accuracy of the angle detatimir) all the sensor measurements should
be used. Thus, the estimation of vehicle dynamics is donthérotational dynamics and translational
dynamics simultaneously. In that case, since Equatipprovide three constrained equations, six angles
must be employed as system states to describe the vehitlel@ttand those six angle states are chosen
as g, 0y, Uy, ¢, 0,, 1,) for the ease of subsequent fusion algorithm derivationrthéumore, in
order to apply existing state estimation techniques toghiblem, the “governing equations” of these
unknown angles must be obtained beforehand and added tonkertgional kinematic model. Since it
Is impractical to either use additional sensors to meas$igretiange rate of the last three angles or obtain
this information for a specific case, the change rates ofasigthree angles are assumed to be zero.

0, =0
1/‘}11:0

Thus, a kinematic model that can coordinate the outputs &f,IMPS and suspension displacement
Sensors is:

x = f(x,u) (7)
acc gyro
A{L‘ wx
= Fx+ Geee | AY | + Ggyro | WV
acc gyro
AZ wZ
T

Ty, Yg, 29y Tgy Yg, Zg, ¢g> ega ¢g> cee

Gr Or, Py
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T
- acc acc acc O O O
u= [AJ: ) Ay ) Az ) Wgy ) wgy ) wgy ]

F= 033 Isx3 0346
09><12

T
Gacc - |:03><3 C\é -1 06><3:|

Gyyro =
T
[03><6 C,! 03><3]
1 0 —sin 6,
Co= 10 cos¢, cosby,sing,

0 —sin ¢, cos b, cos ¢,

where (A, Ay, AZ) represents the measurements from a three-axis accel@mmet
(wgore, wavre, wvre) represents the measurements from a three-axis gyrosoopey,, z,) and
(g4, U4, 24) represent position and velocity observed in the global &a@l,, describes the relation
between angular rate and rate of change of Euler angleshwhit be found ing3].

3.3. State Estimation Algorithm

For a dynamics model shown in Equatiof),(a state observer that can estimate each state value is
constructed as follows:
% = f (%,u) + L (h(x) - h(x)) 8)

where the(") denotes the estimated state valhéx) is the system output equatioh;is the matrix of
observer gains. In this paper, the extended Kalman filtehasen as the state estimation algorithm to
calculate the observer gain. The standard procedures ekthaded Kalman filter can be found it].

The system output equatidr(x) in Equation 8) is carefully chosen as follows to ensure the system
observability.

r T
— gps gps sus sus
h(X) - yl ) y2 ) yl ) YQ :| (9)
gps __ S S S S S S
y i = g, g, o, o, o, g |

yg" = [Cy1.), Cy1.2)]
= [creyin, croy.y) |

yi® = [ CN(L3), CY(2.3), CY(3.3) ]

= [cver—11,3), €y 1(2,3), CICL1(3,3)

Sus sSus

Yo = ’27‘

= C;;<37 1) xg + Cg(?’v 2) yg + 05(37 3) Zg

whereC(m, n) denotes the element in theth row and thenth column of the matrixC. The output
equationy?”® provides the locations and attitude of the vehicle in thebgldrame and its values is
obtained from the measurements of a three-antenna GPS. ufpet @quationy3”” is a function of
(o, 0,,1,) and its values are calculated from the measurements ofea-tmtenna GPS. The output
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equationy;** is a function of ¢,, 6,) and its values are calculated from the measurements of the
suspension displacement sensors. The output equgitons related to a function of¢(., 6,) and
(z4,v4, 2zy) and its values are then calculated from the measuremeriteeafuspension displacement
sensors in Equatiord) and three-antenna GPS.

It should be emphasized that thg)(°, y:“*) are two sets of output equations, and each consists
of 2 to 3 nonlinear algebraic equations. Each equation stsef multiplication terms of two or more
trigonometric functions from the corresponding directt@sine matrix. In most cases, only one equation
in each set of output equations is enough to ensure the aisktyw of state estimations. However,
since it involves multiplications of trigonometric funetis, the estimation would fail at certain angles.
Therefore, redundant equations are used to ensure thessuatcall angles.

3.4. Multi-Rate Kalman Filter

Since the outputs of the GPS, IMU and suspension displadesesisors are unsynchronized and
contaminated by different noise characteristics (seeelBhlinstead of using a conventional extended
Kalman filter, a multi-rate extended Kalman filt&4] is chosen to coordinate these sensor outputs. The
algorithm of a multi-rate Kalman filter is similar to that ofcanventional extended Kalman filter with
the only difference in correcting the estimated state \&aluW&hen the GPS measurement is available,
the estimated state value is updated by the measuremerits GRS and the suspension displacement
sensors. When the GPS measurement is unavailable, theatsdistate value is updated only by the
measurements of the suspension displacement sensordoitedy the following:

when GPS measurements are available,

gps gps sus

T
h(x) = [yl Y9y, yius] (10)
T
h(x) = [0, 397, 57, 93 |
when GPS measurements are unavailable,

T
h(x) = [Ouse, Oz, ¥ v3* | (11)

T
h(%) = [ 0100 0rcan 7% 95 |

3.5. Alpha-Beta Filter

The above state estimation process can provide noiselesmation for the displacement, velocity,
and attitude of the vehicle, but not for the angular veloaityl accelerations. Without this information,
the subsequent vehicle parameter identification can be mapiplicated. Potentially, the angular
velocity and accelerations can also be obtained from Kalfite@ming by including those two states
as system states in Equatior).( However, this approach may need a fictitious noise ancasm the
computation complexity. Hence, the alpha-beta filter igluseobtain the values for the angular velocity
and acceleration.
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Table 1. Sensor output rates and noise characteristics.

Output Noise
frequency Standard deviation

GPS 5Hz 0.4
(attitude measurement)

GPS 5Hz horizontal: in

(position measurement) verticaln3

Suspension 1Hz 0.0Gh

displacement sensor

Accelerometer 1 kHz 0.0 /s?

Gyroscope 1 kHz 0.08s

Tachometer 1 kHz s

The measurement bias is not considered.

The alpha-beta filter is a steady-state filter for noisy dgjriés algorithm is shown as follows:

Xo(k+1) = Auxo (k) + Kok + 1) [2(k+1) — 2(k + 1)]
1T,

A, =
01

(12)

Kok +1) = [0, 6/T]

wherex, is a set of state vector for a two-dimensional modeis the measured first dimensional
state; Z is the estimated value of; A, is the system matrix of the two-dimensional modél; is
the sampling period; the feedback gaim&nd g are chosen empirically. The detailed information of
alpha-beta filters can be found ibl]. For examplex,, can be chosen ds,., w,]T; the corresponding

z is the measured rotational velocity from the gyroscap®’(). Thus, through the alpha-beta filter,
the rotational acceleration can be obtained without thectidifferentiation.

4. A Vehicle Model for the Dynamics Predictions

As mentioned earlier, a dynamics prediction system need®a@se vehicle model. Furthermore,
some of the parameters in that vehicle model should be iftkhin real time. To meet both requirements,
we propose the following vehicle model for the dynamics migah, which consists of 6 DOF vehicle
dynamics, road angles, tire-road friction, nonlinear sasjion etc.

mtot(:i‘a - yaqj)v) - Fx,tire + mtoth (13)
Mot (ya + I.'aqj)v) - Fy,tire + mtotGy

MyotZa = Fz,spring + mtoth
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lyw, = (I, — I)wyw, + M,
lywy = (I, — I)w.w, + M,
lw, = (I, — I))wewy, + M,
low; = =1l tirei + T (i=1~4)
G, 0
Gy | =R(z ¥y)R(z, ¢)R(y, 0,) | 0
G, —g

whereg is the Earth gravity(z,, v., 2,) represents the three-axis displacement of the vehicle CG
observed in the aux-framefy .., Fytire, F2spring) @re the translational forces generated by tires and
suspension systemsj\/,, M,, M) are the external torques acting on the vehicle CG alongethre
axes of the vehicle frame, which are the functions of fordésif., Fy tire; F7spring), VEhICle attitude
(¢, 0,, ¢,), and vehicle geometry2f]; (1., 1,, I.) are the moment of inertia of the vehicle body along
three axes of the vehicle framey,( w,, w.) are the rotational velocities of the vehicle body alongéhr
axes of the vehicle framej; represents the angular rate of each#jtg, ;.. ; is the longitudinal adhesive
force generated by tire T; are the wheel torque transmitted to the fire; is the effective rolling radius
of atirei; I, is the moment of inertia of a tire.

The suspension system is modeled as a nonlinear springdaaagser system. Thus, the translational
force generated by the suspension can be described asg$¢ipw

F, spring,i = KsiH; + Ds,iHi + Mg (14)
Ks,i = 01602(Hi_03) (Z =1~ 4)
H — { H; for Hy > —my g/ K,
C _mu,ig/Ks,iu fO?" Hz g _mu,ig/Ks,i

where K ; is the spring stiffness of the suspensioandC,, C,, C; parameterize the stiffness), ; is
the damper coefficient of the suspensipm,, ; is the unsprung mass of the suspension coiner

The adhesive force generated by tire is a highly nonlineaetfan of variables including slip ratios,
slip angles, vertical loadgtc.[26,27]. However, under normal vehicle maneuvering, the adhdence
is almost linearly proportional to those variables. Thulnear tire model 13,14] is used to describe
the longitudinal and lateral tire forces(ii e, Fi tire) fOr simplicity.

Fa,tire,i - O)\,i/\i (15)
Fb,tire,i = Oa,iai

whereC), ; andC,, ; are the tracking stiffness and the cornering stiffnessefitie:, respectively;; and
«; are the slip ratio and slip angle, respectively. The traimsial forces represented in the x-axis and the
y-axis of the aux-frameH( .., Fy tire) CAN be obtained as follows:

Fx,tire = Z (Fa,tire,i COS 5z - Fb,tire,i sin 51) (16)
F tire = Z (Fl tires SIN 0; + Fy tire,; COS 6;).

Noted that two rear wheel angle&; (64) are zeros for a front-steer vehicle, and two front wheel
angles {;, ;) are known values because they can be obtained by the gtaehieel angle and the
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Ackerman principle28]. The vehicle model for the dynamics prediction is thus ¢artded and shown
in Equations 13)—(16).

5. Vehicle Parameter Identification Systems

In this approach, the parameters shown in the vehicle maod&quations 13)—(16) needs to be
identified using the vehicle dynamics obtained from the gefusion system in Equatior’). Note that
the vehicle dynamics from the sensor fusion system is pteden the global frame, while the above
vehicle model is presented in the aux-frame. Thus, the astithvehicle dynamics are transformed
into the aux-frame using the matrices shown in Equatidi)s(8), prior to the vehicle parameter
identification.

After feeding the vehicle dynamics, Equatioh3] becomes a set of 10 linear equations with
12 unknown vehicle parameters. Hence, the number of theedamgstiffness is reduced from four
to two because the cornering stiffness is similar at twossiafethe vehicle 13,14]. In that case, the
model of the lateral tire force is simplified as follows:

Fy tive,f = Fhtive + I tire,2 (17)
~ Cy flar + ag)/2
Fy tiver = I tive,1 + Fb tire2
~ Co (o +ay)/2
where
Cof = Can +Cap
Cop = Coz+ Cpha.

5.1. Recursive Least-Square Algorithms

In order to apply the recursive-least-square (RLS) alporito identify vehicle parameters, the vehicle
parameters and the corresponding measured dynamics aanged into the following format:

(Q—Arlsvvvvili = Qb (18)

where X represent the vehicle parametefs;, andb are the vehicle dynamics both from direct sensor
measurements and the output of the sensor fusion sy§desithe weighting matrixW is the scaling
matrix. By choosing matrice€), W, and an initial guess of the vectar, the vectorx is solved
recursively by the following step29]:

P( 1) = ( ) — F(k)AQ(k + 1)T I+ Ag(k+1)-
P(k)Aq(k +1)"] " Ag(k + 1)P(k)
Xq(k +1) = Xq(k) — P(k + 1) Ag(k + 1)

[Q(k + 1)b(k + 1) — Ag(k + 1)Xq(k)]
Ag(k+1) = Q(k + 1) Aus(k + YW (k + 1)
Xo(k+1) = W(k+1)"'%(k +1) (19)

whereP is the covariance matrix.
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5.2. Vehicle Parameter Identifications

The following vehicle parameters are identified using thevelRLS algorithms: vehicle massy,),
moment of inertia of the vehicle body,( 1,, I.), tracking stiffness) ;.), and the cornering stiffness
(Ca.z, Cor). These parameters are identified in real time becausevhieies can be changing in each
driving condition. The other vehicle parameters such asfinmg stiffnesds, the damper coefficient
D, the unsprung mass,,, the rolling radius of tirer, and the moment of inertia of the titk, are
assumed to be known values.

In this case, it is possible to manipulate the signal prangssteps and formulate four independent
RLS problems for identifying the above ten parameters, iwban greatly reduce the computation loads
and efforts of searching the optinf@landW matrices. Those four independent RLS problems are “mass
identification”, “tracking stiffness identification”, “eaering stiffness identification”, and “moment of
inertia identification”.

5.2.1. Mass ldentification

The translational dynamics in z direction in the vehicle glad Equations 13) and (L4) can be
rearranged as:

Q11Arzs,1w11wﬂlf1 = qub (20)
where
T £ My
Apsy 2 2, - G.
4
by £ ) KH™ + DH™ 4 myg.

i=1

whereq;; andw;; are the elements in weighting and scaling matrices, reisrpd;ctHf“s is the derivative
of the suspension displacement and is obtained by the &letasfilter via the input from the suspension
displacement measurements.

5.2.2. Tracking Stiffness Identification

The wheel dynamics in the vehicle model in Equatiat®® énd (L5)—(16) can be rearranged as:
QzArzs,2W2W51§2 = Qyb, (21)
where
Xy = Wx,h 6)\,27 Um, 6>\,4]T
Arls,2 £ diag{—rle, —7’2):2, —7’3):3, —T4X4}
by 2 [[wcle STy, Ly — T, Lo — Ty, Loy — T4] '

Q>
W,

diag{ g1, ¢22, @23, Qo4 }

diag{wzh Wag, W23, w24}.

>
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Noted that the matriM,;, » is singular when one of the slip ratios is zero. It can be ustded that
the tracking stiffness cannot be identified when there israction force. Moreover, the angular rates
of four tires are directly measured by tachometers (seeeTaland conditioned by the alpha-beta filter.
The slip ratios are calculated using the measurements fiersansor fusion system and the tachometers.
The applying wheel torque is assumed to be obtained fronu&sgnsors.

5.2.3. Cornering Stiffness Identification

The longitudinal and lateral dynamics in the vehicle modgu&ions {3) and (L5—(17) can be
rearranged as:
QA3 W3 W 'X3 = Qsbs (22)

where

§3 = [Uoz,f7 6&,T}T

[ _autan g 6140
A N 5 Sl = 0
rls,3 a1+ao cos 61+02  Ag+dy
L 2 2 2
b3 A mtot (ia - gaw‘v - Gz) - Z C)\,i/\i COS (51
L mtot(ya + jawv - Gy) - Z C/\,i)\i sin 6@

Qs = diag{qs1, g2}
W3 é diag{wgl, U}32}.

Noted that the matriA,;, 5 is singular when the summation of the front (or rear) two slifgles
Is zero or the summation of the front steering wheel anglegiie. Again, it can be understood that
the cornering stiffness cannot be identified when there igteval force. Moreover, the slip angles are
calculated using the measurements from the sensor fusst@syand the steering wheel angle.

5.2.4. Moment of Inertia ldentification

The rotational dynamics in the vehicle model in Equatid8) Can be rearranged as:
QiAW W 'Ky = Quby (23)
where
% 2 [1,,1,,1.]"
Wy —0yl, Wy,
Aga 2| Gy @y —0.0
—WpWy Waloy W,

b, £ [M,, M,, M.]"
Qi = diag{qu, qu2, qus}

A .
W, = diag{w, wy2, wys}

[I>

In Equation £3), the angular velocities and accelerations are providettiéalpha-beta filter via the
input from the gyroscope measurements.
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6. Vehicle Dynamics Prediction

From a system observability viewpoirdq), if both the governing equations of a dynamic system and
state values at a time instant are given, the state valuey éinae instant can be calculated accordingly.
Stemming from this concept, one can predict the vehicle sy using a vehicle model and current
state values. In this case, the current vehicle dynamicdiaireed from the sensor fusion system
shown in Equations7)—(9); the vehicle model for propagating the current vehicléestas shown in
Equations {3)—(16); the parameters in that vehicle model is estimated using RLS algorithms in
Equations 20)—(23). The block diagram of this signal processing is shown iruFeg.

Figure 2. Block diagram of the vehicle dynamics prediction system.

Driver Maneuvers .| Sensor Fusion Algorithm | Vehicle dynamics
Steerging angle - >
gas /brake pedal (multi-rate EKF) Road angles
& v
3 »| Vehicle quamics »
Prediction
v I
Vehicle
Sensors parameters
e IMU » o-f filter
® 3-antenna GPS >
e Suspension disp. o] o-p filter Vehicle Parameter
sensors Identification (RLS)

® Tachometers | a-p filter

7. Simulation Results

Numerical simulations are used to demonstrate the fe#agibifl the proposed dynamics prediction
method. In these simulations, a vehicle moves at a longiaddipeed of 90 km/h. The steering wheel
angles and the generated tire torques are both varying withdt the frequency of 1 Hz (see, Fige
The road bank angle is°2and the road grade angle +2°. A full-state vehicle model, which is a
nonlinear 6 DOF vehicle model and consists of 20 states asd anglesT], is used to mimic the real
vehicle dynamics on this slope road. This full-state veshiobdel differs from the vehicle model shown
in Equation 3) only in the tire model, wherein the nonlinear tire model geaformula” [26] is used.
The selected sensors and their output characteristicstad in Tablel. The sampling frequency of the
simulations is 100 Hz. No other disturbance is applied tos#tacle system unless otherwise specified.

7.1. Vehicle Dynamics Estimations

The simulation results of the proposed sensor fusion syarenshown in Figurd, where the state
values from the full-state vehicle model are drawn in dadbied line, the sensor outputs are drawn in
dashed-dotted-green line, and the state values from tipeibot the sensor fusion system are drawn in
solid-red line. Simulation results indicate that the pregubsensor fusion system can accurately obtain
the 6 DOF vehicle dynamics and two road angles. The estimatior of each vehicle state, which
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is defined as the standard deviation of the difference betwee simulated vehicle dynamics and the
sensor fusion outputs, is also shown in Figdre

Figure 3. The driving maneuvers for the illustrative simulation. Thpger plot is the steering
wheel angle and the lower plot is the wheel torques applymépar tires. The frequency

is1Hz.
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Figure 4. Comparisons of the vehicle dynamics from the simulatedaleldynamics, the
sensor outputs, and the sensor fusion system outputs. Thdeseynamics are presented
in the global frame. The error standard deviations are tatled from the 5th second to the

10th second.
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7.2. \ehicle Parameter Identifications

The vehicle dynamics and sensor fusion outputs presentdeeiglobal frame (show in Figuré)
are converted into the aux-frame and shown in Figbre These state values, along with direct
sensor measurements conditioned by the alpha-beta filter,uaed for the vehicle parameter
identification. The identification results are shown in Feg6 and 7, where the identified vehicle
parameters are drawn in the solid-red line, and the realcleelparameters are drawn in the
dashed-blue line. The “relative inaccuracy” of estimatiehich is defined as (real value identified
value)/(real value) 31], of the mass and moment of inertial are calculated to(i®,, I.,1,,1.)
= (5.17 x 1073%,0.12%,5.05%,4.37%). The estimation accuracy is good mainly because the
incorporated suspension displacement sensors are edyatigcurate. On the other hand, as shown in
Figure7, the estimation of tracking stiffness and cornering séiffs do not converge well and because
there is no corresponding tracking stiffness and cornestiffipess in the full-state vehicle model. The
feasibility of the tire stiffness estimation is discussedhie next section.

Figure 5. Comparisons of the vehicle dynamics from the simulatedoleldynamics and
the sensor fusion system outputs. The vehicle dynamicsrasepted in the aux-frame.
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7.3. Vehicle Dynamic Predictions

Continuing from previous simulations, the driver is assdreehold still the steering wheel and the
gas/brake pedal at the time instant 10.25 s to do a left-hamdoin the road. The prediction system is
turned on at the 10.25 s to predict the vehicle dynamics fentxt 4.75 s, using the vehicle dynamics
from the sensor fusion system at the 10.25 s and the vehiaolieimoth the parameters identified from
Figures6 and7. Since the steering wheel and the gas/brake pedal are thedianimg 10.25 to 15 s,
both the vehicle dynamics and the prediction results duhirggperiod can be shown in the same plot for
comparison. In Figurg, the real vehicle dynamics are drawn in the dashed-bluediné the predicted
vehicle dynamics are drawn in the solid-green line. Acaugdo the simulation results, the proposed
method can predict the vehicle dynamics accurately. Thdigien error of each state can be found
in the plot. The relative-inaccuracy of this predictioneeged from vehicle displacemenis (., z.)
and vehicle attitude(,, 0,, ¢,), is 0.51%.
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Figure 6. The identification of the vehicle mass and moment of inefittee mean values are
calculated from the 15th second to the 10th second.
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Figure 7. The identification of the tire tracking stiffness and comgrstiffness. The mean
values are calculated from the 15th second to the 10th second
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In another example, the driver holds the steering wheébstilgenerate 1,000/ - m torques on two
tires on the right hand sidgy{ = 73 = 1,000 N - m). In that case, the vehicle is likely to rollover
due to the excess yaw moment applying to the vehicle. Thelatrmon results (see Figur@) show
that the vehicle roll angle is larger than°9ét the 11.5 s, which indicates a rollover incident. The
dynamic prediction system can predict the rollover everfite Telative-inaccuracy of this prediction is
27.3%, which is calculated from 10.25 s to 11.5 s and aver&ged vehicle states including vehicle
displacementsi,, v., 2z,) and vehicle attitude,, 0,, ¢,). The prediction accuracy is worse than that
of the previous case. The reason is discussed in the foltpsaation.
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Figure 8. Predictions of the vehicle dynamics in a left-hand turn e€verhe prediction
inaccuracy is 0.51% on average, calculated from the 10sxtbnd to the 15th second.
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Figure 9. Predictions of the vehicle dynamics in a rollover event. phediction system
successfully predicts the rollover incident. The predictinaccuracy is 27.3% on average,
calculated from the 10.25th second to the 11.5th second.
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8. Discussion

Although the vehicle rollover accident can be foreseenis¢hse, the prediction is a bit inaccurate.
According to the parameter identification results showniguFes6 and?7, this error is likely due to the
model difference used in the prediction process and in thelsited vehicle dynamics. In turns, it leads
to two possibilities: (1) the vehicle dynamics estimateairrthe sensor fusion system are not accurate
enough for the traction/cornering stiffness identificati(?) the adhesive tire forces in the rollover event
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are located in the nonlinear regime and the linear tire mzdieladequate to describe them. To clarify
this, FigurelO presents the relation between longitudinal tire force dipdatio, and Figurel 1 presents

the relation between lateral tire force and slip angle. Asaghin FigurelQ, the longitudinal tire force
estimated from the sensor fusion system (drawn in blue @mid)rom the simulated vehicle dynamics
(drawn in green stars) are not the same. Thus, the senserasssciated with the selected sensors does
affect the estimation of longitudinal dynamics to certatteat. In turns, the identified traction stiffness
(drawn in solid-black line) cannot be accurate. On the offaed, as shown in FigutEl the lateral tire
force estimated from the sensor fusion system are closeetsithulated vehicle dynamics. Thus, the
identified cornering stiffness is more accurate than thetified traction stiffness.

Figure 10. The relations between the slip ratio and the longitudimaladhesive force.

Front- left longitudinal force Front-right longitudinal force
1000 S, —ry 3500
R 3000
500 - 2500
g 2000
0og g 1500
= 0 N Z 1000
500
-500 0
7 F 500 s
-1000 - -1000 - o =
-0.03 -002 -001 0 001 002 003 -0.03 -0.02 -001 0 001 002 003
Slip ratio Slip ratio
Rear - left longitudinal force Rear -right longitudinal force
1000 ;
500
*
=z of
-5007 .
-1000 . A e
-0.03 -0.02 -001 0 001 002 003 -0.04 -0.02 0 0.02 0.04
Slip ratio Slip ratio
Sensor fusion system @ Vehicle dynamics in the rollover event

*  Real vehicle dynamics
© Vehicle dynamics in the left-hand turn event

Identified tracking stiffness coefficient

Figure 11. The relations between the slip angle and the lateral tiresida force.
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The tire forces of two prediction cases are also shown infégl0and11. The tire forces are drawn
in red circles for the left-turn event and in cyan squarestiier rollover event. The tire forces of the
left-hand turn event are very close to the forces calculfated the identified traction/cornering stiffness,
except for the force at the rear-left tire. Thus, the prediicof the left-hand turn dynamics is quite
accurate. On the other hand, the tire forces of the rollovemiare far from the forces calculated from the
identified traction/cornering stiffness. Thus, the préditof the rollover dynamics is a bit inaccurate.

From above discussion, one may propose using nonlineama@els, such as Pacejka’s magic
formula [26] or Dugoff tire model R7], for the friction coefficient identifications and dynamics
predictions. Our experiences show that it is possible totilemore parameters of a nonlinear tire model
as long as the nonlinear tire adhesive forces are preseheimeasured vehicle dynamics (persistent
excitation condition). However, the tire adhesive forces\aithin in the linear regime in most driving
conditions. In that case, including a nonlinear tire modehe identification process would not gain any
advantage but cause convergence problems.

This vehicle parameter identification is challenging mgaitdecause the system has a low
degree-of-observability3R,33], and it gets worse when large amount of noise is presentarsémsor
measurements. This effect can be investigated by the signadise ratio (SNR), where the signal is
referred to as the estimated vehicle dynamics from the séasion system, while the noise is referred
to as the estimation error. To show how the SNR affects thiamater identification, we use the
identification of the moment of inertia as an example. As ghawTable2, the estimation error can
be minimized when the SNR is large, and the relative erroraghes (1.94%, 2.68%, 0.33%) fdr,(

1, I.). The best estimation accuracy is limited by the numericare and the model errors from the
linear tire model assumption. To enlarge the SNR, eitherdinge of vehicle dynamics needs to be
enlarged or the noise from the sensor measurement needgiioibpgized. The vehicle dynamics cannot
have a large span due to its strong stability. On the othed h#sing high-end sensors would reduce the
noise but incur higher cost.

Table 2. The relations between the estimation error of sensor fusystem and the relative
inaccuracy of the parameter identification.

relative inaccuracy 1, I, I,

infinite 1.94% 2.68% 0.33%
SNR 30dB 250% 14.62% 1.52%
20dB 14.91% 60.28% 10.41%
10 dB 69.05% 93.63% 54.11%

One alternative to improve this parameter identificatiotvisicrease the degree-of-observability by
choosing proper weighting and scaling matrices shown inakga (19). To show the effectiveness of
this approach, we use the identification of the moment otimeis an example and assume no noise in
the sensor measurement. The choice of weighting mafyiy ¢hanges the minimum eigenvalue of the
estimation matrixl(x,TlS’4 1QuA 5 4) and results in different degree-of-observabili®2B3]. Table3
shows the larger minimum eigenvalues of the resulting mgtre better parameter observability and the
faster convergence rate of the parameter identification.
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Table 3. Different weighting matrices result in different convenge rate.

convergence rate 1, I, 1,
diag{0.625,0.625,0.625| 0.08 s 1.63s 0.24 s
Q. " diag{0.125,0.125,0.125| 6.19s 18.2s 3.32s
diag{0.025,0.025,0.025| 36s Narf 25s
diag{0.005,0.005,0.005| Nan® Nan¢ Nan®

aThe convergentrate is defined at the time when estimatee vahches 90% of the real value.
b Q, andW, are both designed as a diagonal mat€, varies in each case,
while W is kept the same as digg, 1, 1}.

¢ The value “Nan” means that the convergence time is too lorglzulate.

9. Conclusions

A vehicle dynamics prediction system, consisting of a kingos-based sensor fusion system and a
vehicle parameter identification system, is proposed anfiegby simulation results. The sensor fusion
system can obtain the 6 DOF vehicle dynamics and the two noglésiaccurately. The estimation error
for each vehicle dynamics is shown in Figute The vehicle parameter identification system uses the
dynamics information from the sensor fusion system to ifletén vehicle parameters in real time.
The identification inaccuracy of the vehicle mass and moroéitertia is less than 5.05%. Using the
vehicle dynamics from the sensor fusion system and the ketmodel from the parameter identification
system, the prediction system successful predicts thecketynamics in a left-hand turn event and
a rollover event. The prediction inaccuracy is 0.51% in thi-thand turn event and 27.3% in the
rollover event.

The prediction accuracy of the rollover event is worse thai of the left-hand turn event. It is mainly
because the identified linear tire model cannot accuratesgribe the nonlinear tire adhesive force in
the rollover event. Using a nonlinear tire model for the dwyies prediction is possible but not practical
in this case, because the nonlinear tire behaviors are oieexn normal vehicle maneuvers.

The prediction accuracy of two scenarios suggests that lmgderror of the unsprung mass system
may greatly affect the accuracy of the parameter identifinadnd thus the dynamics predictions.
Therefore, a detail modeling and/or real-time system ifleation of the unsprung mass system may
be needed to improve the feasibility of this approach. Besithis research also shows that the vehicle
parameter identification is challenging because the syBtea low degree-of-observability. Therefore,
increasing the SNR of the sensor systems and careful desfigmsweighting matrix of the identification
algorithm are recommended.
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