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Abstract: In this paper, we present a fully-automatic Spatio-Temporal GrabCut human
segmentation methodology that combines tracking and segmentation. GrabCut initialization
is performed by a HOG-based subject detection, face detection, and skin color model.
Spatial information is included by Mean Shift clustering whereas temporal coherence is

considered by the historical of Gaussian Mixture Models. Moreover, full face and pose
recovery is obtained by combining human segmentation with Active Appearance Models
and Conditional Random Fields. Results over public datasets and in a new Human Limb
dataset show a robust segmentation and recovery of both faceand pose using the presented

methodology.
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1. Introduction

Human segmentation in uncontrolled environments is a hard task because of the constant changes
produced in natural scenes: illumination changes, moving objects, changes in the point of view,
occlusions, just to mention a few. Because of the nature of the problem, a common way to proceed is to

discard most part of the image so that the analysis can be performed on a reduced set of small candidate
regions. In [1], the authors propose a full-body detector based on a cascade of classi�ers [2] using HOG
features. This methodology is currently being used in several works related to the pedestrian detection
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problem [3]. GrabCut [4] has also shown high robustness in Computer Vision segmentation problems,

de�ning the pixels of the image as nodes of a graph and extracting foreground pixels via iterated Graph
Cut optimization. This methodology has been applied to the problem of human body segmentation with
high success [5,6]. In the case of working with sequences of images, this optimization problem can also
be considered to have temporal coherence. In the work of [7], the authors extended the Gaussian Mixture

Model (GMM) of GrabCut algorithm so that the color space is complemented with the derivative in time
of pixel intensities in order to include temporal information in the segmentation optimization process.
However, the main problem of that method is that moving pixels corresponds to the boundaries between
foreground and background regions, and thus, there is no clear discrimination.

Once a region of interest is determined, pose is often recovered by the determination of the body limbs
together with their spatial coherence (also with temporal coherence in case of image sequences). Most
of these approaches are probabilistic, and features are usually based on edges or “appearance”. In [8],
the author propose a probabilistic approach for limb detection based on edge learning complemented

with color information. The image of probabilities is then formulated in a Conditional Random Field
(CRF) scheme and optimized using belief propagation. This work has obtained robust results and has
been extended by other authors including local GrabCut segmentation and temporal re�nement of the
CRF model [5,6].

In this paper, we propose a full-automatic Spatio-TemporalGrabCut human segmentation
methodology, which bene�ts from the combination of tracking and segmentation. First, subjects are
detected by means of a HOG-based cascade of classi�ers. Facedetection and skin color model are used
to de�ne a set of seeds used to initialize GrabCut algorithm.Spatial information is taken into account

by means of Mean Shift clustering, whereas temporal information is considered taking into account the
pixel probability membership to an historical of Gaussian Mixture Models. Moreover, the methodology
is combined with Shape and Active Appearance Models (AAM) tode�ne three different meshes of the
face, one near frontal view, and the other ones near lateral views. Temporal coherence and �tting cost

are considered in conjunction with GrabCut segmentation toallow a smooth and robust face �tting in
video sequences. Finally, the limb detection and a CRF modelare applied on the obtained segmentation,
showing high robustness capturing body limbs due to the accurate human segmentation. The main
limitation of our approach is that it depends on a correct detection of the person and his/her face, in order

to get the desired result. In order to test the proposed methodology, we use public datasets and present a
new Human Limb dataset useful for human segmentation, limb detection, and pose recovery purposes.

The rest of the paper is organized as follows: Section 2 describes the proposed methodology,
presenting the spatio-temporal GrabCut segmentation, theAAM for face �tting, and the pose recovery

methodology. Experimental results on public and novel datasets are performed in Section 3. Finally,
Section 4 concludes the paper.

2. Full-Body Pose Recovery

In this section, we present the Spatio-Temporal GrabCut methodology to deal with the problem of
automatic human segmentation in video sequences. Then, we describe the Active Appearance Models
used to recover the face, and the body pose recovery methodology based on the approach of [8].
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All methods presented in this section are combined to improve �nal segmentation and pose recovery.

Figure1 illustrates the different modules of the project.

Figure 1. Overall block diagram of the methodology.

2.1. GrabCut Segmentation

In [4], the authors proposed an approach to �nd a binary segmentation(background and foreground)

of an image by formulating an energy minimization scheme as the one presented in [9–11], extended
using color instead of just gray-scale information. Given acolor imageI , let us consider the array
z = ( z1; :::; zn ; :::; zN ) of N pixels wherezi = ( Ri ; Gi ; B i ), i 2 [1; :::; N ] in RGB space. The
segmentation is de�ned as array� = ( � 1; :::� N ), � i 2 f 0; 1g, assigning a label to each pixel

of the image indicating if it belongs to background or foreground. A trimapT is de�ned by the
user—in a semi-automatic way—consisting of three regions:TB , TF and TU , each one containing
initial background, foreground, and uncertain pixels, respectively. Pixels belonging toTB andTF are
clamped as background and foreground respectively—which means GrabCut will not be able to modify

these labels, whereas those belonging toTU are actually the ones the algorithm will be able to label.
Color information is introduced by GMMs. A full covariance GMM of K components is de�ned for
background pixels (� i = 0), and another one for foreground pixels (� j = 1), parametrized as follows

� = f � (�; k ); � (�; k ); �( �; k ); � 2 f 0; 1g; k = 1::K g; (1)

being� the weights,� the means and� the covariance matrices of the model. We also consider the
arrayk = f k1; :::; ki ; :::kN g, ki 2 f 1; :::K g, i 2 [1; :::; N ] indicating the component of the background
or foreground GMM (according to� i ) the pixelzi belongs to. The energy function for segmentation is

then
E(� ; k; � ; z) = U (� ; k; � ; z) + V (� ; z); (2)

whereU is the likelihood potential, based on the probability distributionsp(�) of the GMM:

U (� ; k; � ; z) =
X

i

� log p(zi j� i ; ki ; � ) � log � (� i ; ki ) (3)

and V is a regularizing prior assuming that segmented regions should be coherent in terms of color,
taking into account a neighborhoodC around each pixel

V (� ; z) = 
X

f m;n g2C

[� n 6= � m ] exp(� � kzm � znk2) (4)
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With this energy minimization scheme and given the initial trimap T, the �nal segmentation is

performed using a minimum cut algorithm [9,10,12]. The classical semi-automatic GrabCut algorithm
is summarized in Algorithm 1.

Algorithm 1 Original GrabCut algorithm.

1: TrimapT initialization with manual annotation.
2: Initialize � i = 0 for i 2 TB and� i = 1 for i 2 TU [ TF .
3: Initialize Background and Foreground GMMs from sets� i = 0 and � i = 1 respectively, with

k-means.

4: Assign GMM components to pixels.
5: Learn GMM parameters from data z.
6: Estimate segmentation: Graph-cuts.
7: Repeat from step 4, until convergence.

2.2. Automatic Initialization

Our proposal is based on the previous GrabCut framework, focusing on human body segmentation,
being fully automatic, and extending it by taking into account temporal coherence. We refer to each

frame of the video asf t , t 2 f 1; :::; M g beingM the length of the sequence. Given a framef t , we �rst
apply a person detector based on a cascade of classi�ers using HOG features [1]. Then, we initialize
the trimapT from the bounding boxB retuned by the detector:TU = f zi 2 Bg, TB = f zi =2 Bg.
Furthermore, in order to increase the accuracy of the segmentation algorithm, we include Foreground

seeds exploiting spatial and appearance prior information. On one hand, we de�ne a small central
rectangular regionR insideB, proportional toB in such a way that we are sure it corresponds to the
person. Thus, pixels insideR are set to foreground. On the other, we apply a face detector based on a
cascade of classi�ers using Haar-like features [2] over B , and learn a skin color modelhskin consisting

of a histogram over theHue channel of theHSVimage representation. All pixels insideB �tting in
hskin are also set to foreground. Therefore, we initializeTF = f zi 2 Rg [ f zi 2 � (zi ; hskin )g, where�
returns the set of pixels belonging to the color model de�nedby hskin . An example of seed initialization
is shown in Figure2(b).

2.3. Spatial Extension

Once we have initialized the trimap, we can apply the iterative minimization algorithm shown in steps
4 to 7 of original GrabCut (Algorithm 1). However, instead ofapplyingk-means for the initialization

of the GMMs we propose to use Mean-Shift clustering, which also takes into account spatial coherence.
Given an initial estimation of the distribution modesmh(x0) and a kernel functiong, Mean-shift
iteratively updates the mean-shift vector with the following formula:

mh(x) =

P n
i =1 x i g(k x � x i

h k2)
P n

i =1 g(k x � x i
h k2)

(5)

until it converges, wherexi contains the value of pixelzi in CIELuv space and its spatial coordinates,
and returns the centers of the clusters (distribution modes) found. After convergence, we obtain a
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segmentation� t and the updated foreground and background GMMs� t at framef t , which are used

for further initialization at framef t+1 . The result of this step is shown in Figure2(c). Finally, we re�ne
the segmentation of framef t eliminating false positive foreground pixels. By de�nition of the energy
minimization scheme, GrabCut tends to �nd convex segmentation masks having a lower perimeter, given
that each pixel on the boundary of the segmentation mask contributes on the global cost. Therefore,

in order to eliminate these background pixels (commonly in concave regions) from the foreground
segmentation, we re-initialize the trimapT as follows

TB = f zi j� i = 0g [
8
>>>>><

>>>>>:

zi j

tX

k= t� j

p(zi j� i = 0; ki ; � k)

j
>

tX

k= t� j

p(zi j� i = 1; ki ; � k)

j

9
>>>>>=

>>>>>;

TF = f zi 2 � (zi ; hskin )g

TU = f zi j� i = 1g nTB n TF (6)

where the pixel background probability membership is computed using the GMM models of previousj
segmentations. This formulation can also be extended to detect false negatives. However, in our case we

focus on false positives since they appear frequently in thecase of human segmentation. The result of this
step is shown in Figure2(d). Once the trimap has been rede�ned, false positive foreground pixels still
remain, so the new set of seeds is used to iterate again GrabCut algorithm, resulting in a more accurate
segmentation, as we can see in Figure2(e).

Figure 2. STGrabcut pipeline example: (a) Original frame, (b) Seed initialization,

(c) GrabCut, (d) Probabilistic re-assignment, (e) Re�nement and (f) Initialization mask for
f t+1 :

(a) (b) (c)

(d) (e) (f)
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2.4. Temporal Extension

ConsideringA as the binary image representing� at f t (the one obtained before the re�nement), we
initialize the trimap forf t+1 as follows

TF = f zi 2 I jzi 2 A 	 STe; � (zi ) = 1 g

TU = f zi 2 I jzi 2 A � STd; � (zi ) = 1 g nTF

TB = f zi ; zi 2 I g n(TF [ TU ) (7)

where	 and� are erosion and dilation operations with their respective structuring elementsSTe and
STd, � i := � (zi ), andn represents the set difference operation. The structuring elements are simple
squares of a given size depending on the size of the person andthe degree of movement we allow
from f t to f t+1 , assuming smoothness in the movement of the person. An example of a morphological

mask is shown in Figure2(f). Spatial information could be also included in the mean-shift algorithm in
conjunction with color and spatial information. However, we included this information explicitly to be
anisotropic. The whole segmentation methodology is detailed in the ST-GrabCut Algorithm 2.

Algorithm 2 Spatio-Temporal GrabCut algorithm.

1: Person detection onf 1.
2: Face detection and skin color model learning.
3: TrimapT initialization with detected bounding box and learnt skin color model.
4: Initialize � i = 0 for i 2 TB and� i = 1 for i 2 TU [ TF .

5: Initialize Background and Foreground GMMs from sets� i = 0 and � i = 1 respectively, with
Mean-shift.

6: for t = 1 ... M
7: Person detection onf t .

8: Assign GMM components to pixels off t .
9: Learn GMM parameters from data z.

10: Estimate segmentation: Graph-cuts.
11: Repeat from step 8, until convergence.

12: Re-initialize trimapT (Equation (6)).
13: Assign GMM components to pixels.
14: Learn GMM parameters from data z.
15: Estimate segmentation: Graph-cuts.

16: Repeat from step 12, until convergence.
17: Initialize trimapT using segmentation obtained in step 11 after convergence (equation7) for f t+1 .

18: end for
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2.5. Face Fitting

Once we have properly segmented the body region, the next step consists of �tting the face and the
body limbs. For the case of face recovery, we base our procedure on mesh �tting using AAM, combining

Active Shape Models and color and texture information [13].
AAM is generated by combining a model of shape and texture variation. First, a set of points are

marked on the face of the training images that are aligned, and a statistical shape model is build [14].
Each training image is warped so the points match those of themean shape. This is raster scanned into

a texture vector,g, which is normalized by applying a linear transformation,g 7! (g � � g1)=� g, where
1 is a vector of ones, and� g and� 2

g are the mean and variance of elements ofg. After normalization,
gT 1 = 0 andjgj = 1. Then, principal component analysis is applied to build a texture model. Finally,
the correlations between shape and texture are learnt to generate a combined appearance model. The

appearance model has parameterc controlling the shape and texture according to

x = x + Qsc (8)

g = g + Qgc (9)

wherex is the mean shape,g the mean texture in a mean shaped patch, andQs, Qg are matrices designing
the modes of variation derived from the training set. A shapeX in the image frame can be generated
by applying a suitable transformation to the points,x : X = St (x). Typically, St will be a similarity
transformation described by a scalings, an in-plane rotation,� , and a translation(tx ; ty).

Once constructed the AAM, it is deformed on the image to detect and segment the face appearance
as follows. During matching, we sample the pixels in the region of interestgim = Tu(g) = ( u1 +
1)gim + u21, whereu is the vector of transformation parameters, and project into the texture model
frame,gs = T � 1

u (gim ). The current model texture is given bygm = g+ Qgc, and the difference between

model and image (measured in the normalized texture frame) is as follows

r(p) = gs � gm (10)

Given the errorE = jr j2, we compute the predicted displacements� p = � Rr (p), where R =�
@rT

@p
@r
@p

� � 1
@rT

@p . The model parameters are updatedp 7! p + k� p, where initially k = 1. The
new pointsX0 and model frame textureg0

m are estimated, and the image is sampled at the new points
to obtaing0

mi and the new error vectorr0 = T � 1
u0 (g0

im ) � g0
m . A �nal condition guides the end of each

iteration: if jr0j2 < E , then we accept the new estimate, otherwise, we set tok = 0:5, k = 0:25, and so

on. The procedure is repeated until no improvement is made tothe error.
With the purpose to discretize the head pose between frontalface and pro�le face, we create three

AAM models corresponding to the frontal, right, and left view. Aligning every mesh of the model, we

obtain the mean of the model. Finally, to determine the classof a �tted face by AAM models, that is
given by its proximity to the closest mean model.

Taking into account the discontinuity that appears when a face moves from frontal to pro�le view, we
use three different AAM corresponding to three meshes of 21 points: frontal view= F , right lateral view

= R , and left lateral view= L . In order to include temporal and spatial coherence, meshesat framef t+1
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are initialized by the �tted mesh points at framef t . Additionally, we include a temporal change-mesh

control procedure, as follows

= t+1 = min= t +1 f E= F ; E= R ; E= L g; = t+1 2 � (= t ) (11)

where� (= t ) corresponds to the meshes contiguous to the mesh= t �tted at time t (including the same

mesh), andE= i is the �tting error cost of mesh= i . This constraint avoids false jumps and imposes
smoothness in the temporal face behavior (e.g., a jump from right to left pro�le view is not allowed).

In order to obtain more accurate pose estimation, after �tting the mesh, we take advantage of its
variability to differentiate among a set of head poses. Analyzing the spatial con�guration of the 21

landmarks that composes a mesh, we create a new training set divided in �ve classes. We de�ne �ve
different head poses as follows: right, middle-right, frontal, middle-left, and left. In the training process,
every mesh has been aligned, and PCA is applied to save the 20 most representative eigenvectors. Then,
a new image is projected to that new space and classi�ed to oneof the �ve different head poses according

to a 3-Nearest Neighbor rule.
Figure 3 shows examples of the AAM model �tting and pose estimation inimages (obtained

from [15]) for the �ve different head poses.

Figure 3. From left to right: left, middle-left, frontal, middle-right and right mesh �tting.

2.6. Pose Recovery

Considering the re�ned segmented body region obtained using the proposed ST-GrabCut algorithm,
we construct a pictorial structure model [16]. We use the method of Ramanan [6,8], which captures
the appearance and spatial con�guration of body parts. A person's body parts are tied together in a
tree-structured conditional random �eld. Parts,l i , are oriented patches of �xed size, and their position is

parameterized by location(x; y) and orientation� . The posterior of a con�guration of partsL = l i given
a framef t is

P(Ljf t ) / exp

0

@
X

(i;j )2 E

	( l i ; l j ) +
X

i

�( l i jf t )

1

A (12)

The pair-wise potential	( l i ; l j ) corresponds to a spatial prior on the relative position of parts and
embeds the kinematic constraints. The unary potential�( l i jI ) corresponds to the local image evidence

for a part in a particular position. Inference is performed over tree-structured conditional random �eld.
Since the appearance of the parts is initially unknown, a �rst inference uses only edge features in

� . This delivers soft estimates of body part positions, whichare used to build appearance models of
the parts and background (color histograms). Inference is then repeated with� using both edges and
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appearance. This parsing technique simultaneously estimates pose and appearance of parts. For each

body part, parsing delivers a posterior marginal distribution over location and orientation(x; y; � ) [6,8].

3. Results

Before the presentation of the results, we discuss the data,methods and parameters of the comparative,
and validation measurements.

Figure 4. (a) Samples of the cVSG corpus and (b) UBDataset image sequences, and (c)
HumanLimb dataset.

(a)

(b)

(c)

� Data: We use the public image sequences of the Chroma Video Segmentation Ground Truth

(cVSG) [17], a corpus of video sequences and segmentation masks of people. Chroma based techniques
have been used to record Foregrounds and Backgrounds separately, being later combined to achieve
�nal video sequences and accurate segmentation masks almost automatically. Some samples of the



Sensors2012, 12 15385

sequence we have used for testing are shown in Figure4(a). The sequence has a total of 307 frames.

This image sequence includes several critical factors thatmake segmentation dif�cult: object textural
complexity, object structure, uncovered extent, object size, Foreground and Background velocity,
shadows, background textural complexity, Background multimodality, and small camera motion.

As a second database, we have also used a set of 30 videos corresponding to the defense of

undergraduate thesis at the University of Barcelona to testthe methodology in a different environment
(UBDataset). Some samples of this dataset are shown in Figure4(b).

Moreover, we present the Human Limb dataset, a new dataset composed by 227 images from 25
different people. At each image, 14 different limbs are labeled (see Figure4(c)), including the “do

not care” label between adjacent limbs, as described in Figure 5. Backgrounds are from different real
environments with different visual complexity. This dataset is useful for human segmentation, limb
detection, and pose recovery purposes [18].

Figure 5. Human Limb dataset labels description.

� Methods: We test the classical semi-automatic GrabCut algorithm for human segmentation
comparing with the proposed ST-GrabCut algorithm. In the case of GrabCut, we set the number of
GMM componentsk = 5 for both foreground and background models. Furthermore, the already trained
models used for person and face detectors have been taken from the OpenCV 2.1.

We also test the mesh �tting and body pose recovery methodologies on the obtained segmentations.
The body model used for the pose recovery was taken directly from the work of [8].

� Validation measurements: In order to evaluate the robustness of the methodology for human body
segmentation, face and pose �tting, we use the ground truth masks of the images to compute the

overlapping factorO as follows

O =
P

MGC \ MGTP
MGC [ MGT

(13)

whereMGC andMGT are the binary masks obtained for spatio-temporal GrabCut segmentation and the

ground truth mask, respectively.
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3.1. Spatio-Tempral GrabCut Segmentation

First, we test the proposed ST-GrabCut segmentation on the sequence from the public cVSG corpus.
The results for the different experiments are shown in Table1. In order to avoid the manual initialization

of classical GrabCut algorithm, for all the experiments, seed initialization is performed applying the
commented person HOG detection, face detection, and skin color model. First row of Table1 shows
the overlapping performance of Equation (13) applying GrabCut segmentation withk-means clustering
to design the GMM models. Second row shows the overlapping performance considering the spatial

extension of the algorithm introduced by using Mean Shift clustering (Equation (5)) to design the GMM
models. One can see a slight improvement when using the second strategy. This is mainly because
Mean Shift clustering takes into account spatial information of pixels in clustering time, which better
de�nes contiguous pixels of image to belong to GMM models of foreground and background. Third

performance in Table1 shows the overlapping results adding the temporal extension to the spatial one,
considering the morphology re�nement based on previous segmentation (Equation (7)). In this case,
we obtain near 10% of performance improvement respect the previous result. Finally, last result of
Table1 shows the full-automatic ST-GrabCut segmentation overlapping performance taking into account

spatio-temporal coherence, and the segmentation re�nement introduced in Equation (6). One can see that
it achieves about 25% of performance improvement in relation with the previous best performance. Some
segmentation results obtained by the GrabCut algorithm forthe cVSG corpus are shown in Figure6. Note
that the ST-GrabCut segmentation is able to robustly segment convex regions. We have also applied the

ST-GrabCut segmentation methodology on the image sequences of UBDataset. Some segmentations are
shown in Figure6.

Table 1. GrabCut and ST-GrabCut Segmentation results on cVSG corpus.

Approach Mean overlapping

GrabCut 0.5356

Spatial extension 0.5424
Temporal extension 0.6229
ST-GrabCut 0.8747

3.2. Face Fitting

In order to measure the robustness of the spatio-temporal AAM mesh �tting methodology, we
performed the overlapping analysis of meshes in both un-segmented and segmented image sequence

of the public cVSG corpus. Overlapping results are shown in Table 2. One can see that the mesh
�tting works �ne in unsegmented images, obtaining a �nal mean overlapping of 89.60%. In this test, we
apply HaarCascade face detection implemented and trained by the Open Source Computer Vision library
(OpenCv). The face detection method implemented in OpenCV by Rainer Lienhart is very similar to the

one published and patented by Paul Viola and Michael Jones, namely called Viola–Jones face detection
method [19]. The classi�er is trained with a few hundreds of sample views of a frontal face, that
are scaled to the same size (20� 20), and negative examples of the same size. However, note that
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combining the temporal information of previous �tting and the ST-GrabCut segmentation, the face mesh

�tting considerably improves, obtaining a �nal of 96.36% ofoverlapping performance. Some example
of face �tting using the AAM meshes for different face poses of the cVSG corpus are shown in Figure7.

Figure 6. Segmentation examples of (a) UBDataset sequence 1, (b) UBDataset sequence 2
and (c) cVSG sequence.

(a)

(b)

(c)

Figure 7. Samples of the segmented cVSG corpus image sequences �ttingthe different
AAM meshes.

To create three AAM models that represent frontal, right andleft views, we have created a training set

composed by 1,000 images for each view. The images have been extracted from the public database [15].
To build three models we manually put 21 landmarks over 500 images for each view. The landmarks of
the remaining 500 images which covers one view, has been placed by a semi-automatic process, applying
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AAM with the set learnt and manually correcting. Finally, wealign every resulting mesh and we obtain

the mean for each model. As the head pose classi�er, to classify the spatial mesh con�guration in 5 head
poses, we have labeled manually the class of the mesh obtained applying the closest AAM model. Every
spatial mesh con�guration is represented by the 20 most representative eigenvectors. The training set is
formed by 5,000 images from the public database [15]. Finally, we have tested the classi�cation of the

�ve face poses on the cVSG corpus, obtaining the percentage of frames of the subject at each pose. The
obtained percentages are shown in Table3.

Table 2. AAM mesh �tting on original images and segmented images of the cVSG corpus.

Approach Mean overlapping

Mesh �tting without segmentation 0.8960
ST-Grabcut & Temporal mesh �tting 0.9636

Table 3. Face pose percentages on the cVSG corpus.

Face view System classi�cation Real classi�cation

Left view 0.1300 0.1211
Near Left view 0.1470 0.1347
Frontal view 0.2940 0.3037

Near Right view 0.1650 0.1813
Right view 0.2340 0.2590

3.3. Body Limbs Recovery

Finally, we combine the previous segmentation and face �tting with a full body pose recovery [8]. In

order to show the bene�t of applying previous ST-GrabCut segmentation, we perform the overlapping
performance of full pose recovery with and without human segmentation, always within the bounding
box obtained from HOG person detection. Results are shown inTable4. One can see that pose recovery
considerably increases its performance when reducing the region of search based on ST-GrabCut

segmentation. Some examples of pose recovery within the human segmentation regions for cVSG corpus
and UBdataset are shown in Figure8. One can see that in most of the cases body limbs are correctly
detected. Only in some situations, occlusions or changes inbody appearance can produce a wrong limb
�tting.

Table 4. Overlapping of body limbs based on ground truth masks.

Approach Mean overlapping

Limb recovery without segmentation 0.7919
ST-Grabcut & Limb recovery 0.8760
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Figure 8. Pose recovery results in cVSG sequence.

In Figure 9 we show the application of the whole framework to perform temporal tracking,
segmentation and full face and pose recovery. The colors correspond to the body limbs. The colors
increase in intensity based on the instant of time of its detection. One can see the robust detection and

temporal coherence based on the smooth displacement of faceand limb detections.

Figure 9. Application of the whole framework (pose and face recovery)on an image

sequence.

3.4. Human Limb Data Set

In this last experiment, we test our methodology on the presented Human Limb dataset. From the

14 total limb annotations, we grouped them into six categories: trunk, up-arms, up-legs, low-arms,
low-legs, and head, and we tested the full pose recovery framework. In this case, we tested the body
limb recovery with and without applying the ST-GrabCut segmentation, and computed three different
overlapping measures: (1) %, which corresponds to the overlapping percentage de�ned in Equation (13);

(2) wins, which corresponds to the number of Limb regions with higher overlapping comparing both
strategies; (3) match, which corresponds to the number of limb recoveries with overlapping superior
to 0.6. The results are shown in Table5. One can see that because of the reduced region where the
subjects appear, in most cases there is no signi�cant difference applying the limb recovery procedure with

or without previous segmentation. Moreover, the segmentation algorithm is not working at maximum
performance due to the same reason, since very small background regions are present in the images,
and thus the background color model is quite poor. Furthermore, in this dataset we are working with
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images, not videos, and for this reason we cannot include thetemporal extension in our ST-GrabCut

algotithm for this experiment. On the other hand, looking atthe mean average overlapping in the last
column of the table, one can see that ST-GrabCut improves forall overlapping measures the �nal limb
overlapping. In particular, in the case of the Low-legs recovery is when a more clear improvement
appears using ST-GrabCut segmentation. The part of the image corresponding to Low-legs is where

more background in�uence exists, and thus the limb recoveryhas the highest confusion. However,
as ST-GrabCut is able to properly segment the concave regions of the Low-legs regions, a signi�cant
improvement is obtained when applying the limb recovery methodology. Some results are illustrated on
the images of Figure10, where the images on the bottom correspond to the improvements obtained using

the ST-GrabCut algorithm. Finally, Figure11show examples of the face �tting methodology applied on
the human body limb dataset.

Table 5. Overlapping percentages between body parts (intersectionover union), wins
(comparing the highest overlapping with and without segmentation), and matching
(considering only overlapping greater than 0.6).

Trunk Up-arms Up-legs Low-arms Low-legs Head Mean

%
No segmentation 0.58 0.53 0.59 0.50 0.48 0.67 0.56

STGrabCut� 0.58 0.53 0.58 0.50 0.56 0.67 0.57

Wins
No segmentation 106 104 108 109 68 120 102.5

STGrabCut� 121 123 119 118 159 107 124.5

Match
No segmentation 133 127 130 121 108 155 129

STGrabCut� 125 125 128 117 126 157 129.66
� STGrabCut was used without taking into account temporal information.

Figure 10. Human Limb dataset results. Up row: limb recovery without ST-GrabCut
segmentation. Down row: limb recovery with ST-GrabCut segmentation.
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Figure 11. Application of face recovery on human body limb dataset.

4. Conclusions

In this paper, we presented an evolution of the semi-automatic GrabCut algorithm for dealing with

the problem of human segmentation in image sequences. The new full-automatic ST-GrabCut algorithm
uses a HOG-based person detector, face detection, and skin color model to initialize GrabCut seeds.
Spatial coherence is introduced via Mean Shift clustering,and temporal coherence is considered based
on the historical of Gaussian Mixture Models. The segmentation procedure is combined with Shape and

Active Appearance models to perform full face and pose recovery.
This general and full-automatic human segmentation, pose recovery, and tracking methodology

showed higher performance than classical approaches in public image sequences and a novel Human

Limb dataset from uncontrolled environments, which makes it useful for general human face and gesture
analysis applications.

One of the limitations of the method is that it depends on the initialization of the ST-GrabCut
algorithm, which basically depends on the person and face detectors. Initially, we wait until at least

one bounding box is returned by the person detector. This is acritical point, since we will trust the �rst
detection and start segmenting with this hypothesis. In contrast, there is no problem if a further detection
is missed, since we initialize the mask with the previous detection (temporal extension). Moreover, due
to its sequential application, false seed labeling can accumulate segmentation errors along the video

sequence. As the next step, we plan to extend the limb recovery approach so that more complex poses
and gestures can be recognized, and feed a gesture recognition system [20] with the temporal aggregation
of the recovered poses along the sequence in order to look formotion patterns of the limbs.

As a future work, the algorithm could be extended in order to segment sequences with more than one

person present in the images, since our current method only segments one subject in the scene.
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