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Abstract: The unintentional injuries due to falls in elderly people give rise to a multitude 
of health and economic problems due to the growing aging population. The use of early  
pre-impact fall alarm and self-protective control could greatly reduce fall injuries. This 
paper aimed to explore and implement a pre-impact fall recognition/alarm method for  
free-direction fall activities based on understanding of the pre-impact lead time of falls and 
the angle of body postural stability using an inertial body sensor network. Eight healthy 
Asian adult subjects were arranged to perform three kinds of daily living activities and 
three kinds of fall activities. Nine MTx sensor modules were used to measure the body 
segmental kinematic characteristics of each subject for pre-impact fall recognition/alarm. 
Our analysis of the kinematic features of human body segments showed that the chest  
was the optimal sensor placement for an early pre-impact recognition/alarm (i.e., 
prediction/alarm of a fall event before it happens) and post-fall detection (i.e., detection of 
a fall event after it already happened). Furthermore, by comparative analysis of threshold 
levels for acceleration and angular rate, two acceleration thresholds were determined for 
early pre-impact alarm (7 m/s/s) and post-fall detection (20 m/s/s) under experimental 
conditions. The critical angles of postural stability of torso segment in three kinds of fall 
activities (forward, sideway and backward fall) were determined as 23.9 ± 3.3, 49.9 ± 4.1 
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and 9.9 ± 2.5 degrees, respectively, and the relative average pre-impact lead times were 
329 ± 21, 265 ± 35 and 257 ± 36 ms. The results implied that among the three fall activities 
the sideway fall was associated with the largest postural stability angle and the forward fall 
was associated with the longest time to adjust body angle to avoid the fall; the backward 
fall was the most difficult to avoid among the three kinds of fall events due to the toughest 
combination of shortest lead time and smallest angle of postural stability which made it 
difficult for the self-protective control mechanism to adjust the body in time to avoid 
falling down. 

Keywords: biomechanics of fall; early pre-impact fall alarm; pre-impact lead time; 
postural instability; body sensor network 

 

1. Introduction 

Falls are the second leading cause of accidental injury deaths worldwide, and annually an estimated 
424,000 individuals die globally from falls, of which over 80% occur in low- and middle-income 
countries [1]. Most patients with chronic illnesses (e.g., Parkinson’s disease, stroke, arthritis and 
osteoporosis) and the elderly are at a higher risk of falling. The unintentional injuries due to falls give 
rise to a multitude of health and economic problems [2,3]. One of the most critical challenges faced by 
healthcare for the elderly is how to achieve early fall recognition/alarm to prevent falls and maintain 
safe standing and walking [4,5].  

In recent years, many researchers have developed a series of methods for early pre-impact fall 
recognition/alarm. The methods included three main techniques: video-based sensing, ambient sensing 
and wearable sensing. The video-based technique is widely applied in healthcare; however its drawbacks 
are the high cost as well as some fears regarding the privacy of patients [6]. The equipment used for 
application of ambient sensing is typically installed on the floor or bed which militates against the 
convenience of this method [7]. By using the two methods above it is still very difficult to achieve early 
pre-impact fall recognition/alarm. Thus, the wearable sensing technique appears to be the most 
convenient for use in biomechanics of fall due to its low-cost, ease-of-use and technical advantages [8,9].  

In terms of early fall recognition/alarm, one of the most important parameters is considered to be 
the pre-impact lead time, which refers to the ability of the measurement system to predict falls: optimal 
sensor placements and optimal method of measurement contribute to better fall recognition/alarm 
capability, and thus to a larger pre-impact lead time. Different kinds of fall activities are associated with 
different conditions to detect fall events, and thus, with different lead times. 

One typical problem that prevents successful early pre-impact recognition/alarm appears to be the 
too-short pre-impact lead time. The longest known lead time was reported by Nyan and its duration 
determined using a video-based system was about 700 ms [10,11]; in [12] a pre-impact fall lead time 
of about 220 ms was obtained using a gyroscope and high speed camera. However, the methods above 
cannot be used for practical pre-impact fall recognition/alarm. In our past preliminary research [13], 
the best pre-impact lead time of fall achieved in lab experimental conditions was about 500 ms by 
using an inertial sensing method.  
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In order to collect enough information about free-direction falls, and thus further understand the fall 
postural instability and fall prevention mechanisms, the kinematic features of falls in different 
directions were explored in this paper. Firstly, the segmental kinematic characteristics of the human 
body were analyzed in order to find the optimal placements for sensors in three different fall activities 
based on a wearable inertial sensor network. Then, threshold levels were determined for fall 
recognition/alarm. The average pre-impact lead time and critical angle of body postural stability were 
calculated and analyzed in three different fall activities to understand the fall prevention mechanism. In 
summary, the main contributions of this paper are as follows: 

• We presented a pre-impact fall recognition/alarm method that uses comparative and optimal 
approaches; it is based on an inertial body sensor network which consists of multiple nodes 
located on different segments of the human body. This method makes it possible to receive 
alarm early enough to reduce the risk of falls or completely prevent them. 

• We explored the optimal sensor placement and the optimal threshold levels for pre-impact 
fall recognition/alarm by analyzing accelerometer and gyroscope data, as well as the 
orientation data from nine sensors located on different segments of the human body. The 
results showed that the chest was the optimal sensor placement for early pre-impact fall 
recognition/alarm, and it was better to use the acceleration as input parameter for early fall 
recognition/alarm rather than the angular rate. 

• In our experiments we achieved the longest average lead time of 329 ± 21 ms during 
forward falls and the largest average angle of postural stability of 49.9 ± 4.1 degrees 
during sideway falls, which we consider a very good result. The results implied that, due 
to the specific trade-off between the pre-impact lead time and the angle of postural 
stability for each kind of events, the forward and sideway falls could be easily prevented, 
while it is difficult to avoid backward falls. 

The rest of the paper is organized as follows: Section 2 gives an overview of the methods for fall 
detection that use inertial sensing technology. Section 3 presents our experimental design and methods. 
The experimental results and discussion are presented in Section 4. Section 5 concludes the paper and 
gives directions for future work. 

2. State of the Art 

The rapid development of wireless sensors, the low-cost, ease-of-use and wide availability make 
body sensor networks (BSN) an increasingly attractive solution for healthcare applications, such as 
health monitoring, gait analysis, activity recognition and fall detection. 

Applications using body sensor networks are associated with different technical problems. Such are 
the matters related to accuracy, portability, lost data packet recovery, clock synchronization, sensor 
placement optimization, processing algorithms, data fusion, etc. Many researchers have searched for 
better solutions of these problems. Keally [14] presented a PBN solution for activity recognition 
feedback for mobile devices which was portable, lightweight, and accurate. Wark [15,16] presented a 
mobile sensor network for human motion monitoring and indoor localization. Liu [17] developed an 
efficient and accurate clock synchronization scheme for wireless sensor networks. Keally [18] explored 
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how to use sensor collaboration to take advantage of sensor diversity in wireless sensor networks. Wu [19] 
explored a collision recovery method to decrease the packet losses in wireless sensor networks. Li [20] 
presented a fall detection algorithm using posture and context information that can reduce false positives. 

In applications for fall detection based on inertial sensing technology, a single sensor on a single 
human body segment is usually used and detection is based on some pre-set threshold level. This 
approach is associated with ease-of-implementation and fast algorithm response. Such applications, 
based on a single accelerometer are described in [21–24]. Another example, based on a single 
gyroscope is described in [25]. However, these single-sensor methods were not accurate enough for 
fall detection. In order to improve the fall detection accuracy, a couple (or multiple) on-body sensors 
on multiple segments of human body should be applied for fall recognition. Bourke [26] used two  
tri-axial accelerometers—one on the trunk and one on the thigh, to find the optimal sensor placement 
and threshold levels for fall detection. Zhou [27] developed accurate fall-detection solution using two 
sensors (integrated accelerometer and gyroscope) placed on the chest and thigh, respectively, to 
recognize standing, bending, sitting, lying down and fall. However, with the development of the 
methods that use multiple sensors for fall recognition, how to find the optimal locations for sensor 
placement becomes a matter of high importance. The signals captured at different body segments have 
different characteristics and thus require different processing algorithms, respectively. This impacts the 
sensitivity and specificity, and thus also highly impacts the adherence. Existing solutions for pre-impact fall 
detection used mainly the head (behind the ear) [21], waist [22], trunk/chest (sternum) [23], wrist [24], or 
hip/thigh [26]. Kangas [28] used accelerometers to find the optimal sensor placements among wrist, 
waist and head, and showed that the waist and head were the optimal placements for fall detection. Our 
previous work [13] presented the optimal placement for pre-impact fall recognition using MTx 
(integrated accelerometer, gyroscope and magnetometer) sensors among five segments of the lower 
limbs, and showed that the waist was the optimal sensor placement. 

3. Methods 

This study was conducted at Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy 
of Sciences, China. The study was approved by the Human Research Ethics Committee of SIAT. 

3.1. Subjects 

It would be very risky to let elderly subjects perform the fall activities in arranged experiments, so 
eight healthy Asian adult participants aged 28.5 ± 4.3 were recruited from SIAT to perform these 
activities. The subjects signed an informed consent form prior to taking part in the study. 

3.2. Sensor Setup 

Commercial inertial sensors could be used for recognition and classification of human locomotor 
activities. This approach has a competitive advantage when applied to non-video monitoring 
environments. The MTx (The Motion Tracker, Xsens Technologies B.V., The Netherlands) is a small 
and accurate 3DOF inertial orientation tracker, which could provide drift-free 3D orientation and 
kinematic data of human body segments: 3D acceleration, 3D rate gyro and 3D Earth-magnetic field. 
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Table 1. Experimental procedures used for ADL and FA for each subject in this study. 

Activities Procedures of Trials 
Activities of Daily 
Living (ADL) 

(a) Stand-Sit-Stand (SSS) • Trial 1 (standing postural calibration). All nine MTx 
sensor modules were attached. Calibration for each 
subject was needed to be performed in standing 
posture prior starting a new group of activities. 

• Trials 2–4 (SSS_1, SSS_2, SSS_3). Each subject 
performed the stand-sit-stand activity. The chair 
height was 50 cm. 

(b) Walking (Walk) • Trial 5 (walking calibration). The same as Trial 1. 
• Trials 6–8 (W_1, W_2, W_3). Each subject walked 

straight forward for 5 m, turned around and walked 
back to the starting point.  

(c) Stand-Sit- Lie (SSL) • Trial 9 (SSL calibration). The same as Trial 1. 
• Trials 10–12 (SSL_1, SSL_2, SSL_3). Each subject 

performed the following activity: from standing 
position to sit on the edge of the mat (mat height was 
50 cm); then starting from the same sit position to lie 
down to the mat surface. 

Fall Activities (FA) (a) Right-sideway Fall (RF) • Trial 13 (fall calibration). The same as Trial 1. 
• Trials 14–16 (RF_1, RF_2, RF_3). Each subject 

performed the following activity: starting from 
standing position, the subject performed a fall to 
subject’s right-side down to the mat surface.  

(b) Forward Fall (FF)  • Trials 17–19 (FF_1, FF_2, FF_3). Each subject 
performed the following activity: starting from 
standing position to fall down forward to the mat 
surface. 

(c) Backward Fall (BF) • Trials 20–22 (BF_1, BF_2, BF_3) Each subject 
performed the following activity: starting from 
standing position, the subject performed a backward 
fall down to the mat surface.  

3.4. Experimentally Measured Data  

In the sections above, we assigned a number to each of the trials (i.e., j = 1,…,22) and to each of the 
sensor positions (i.e., i = 1,…,9). Based on the arranged numbers, all features of body segment i during 
the trial j in the MTx sensor local coordinate frame could be denoted as (xij, yij, zij). So we could 
describe all kinematic data of the nine MTx sensor modules attached to the human body segments. 
Once the raw data were filtered by the Xsens Kalman filter, we extracted directly the Acc(xij, yij, zij), 
Gyr(xij, yij, zij) and Mag(xij, yij, zij) of each MTx for the nine body segments in 22 trials (i = 1,…,9;  
j = 1,…,22). Then, the output orientation (rollij, pitchij, yawij) was calculated by the MTx from the 
orientation of sensor-fixed coordinate frame (xi, yi, zi, i = 1,…,9, see Figure 1) with respect to  
earth-fixed coordinate frame (x0, y0, z0); the calculated result for the output orientation is of XYZ Earth 
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fixed type. In addition, the resultant values of Acc(i, j), Gyr(i, j) and Mag(i, j) (i = 1,…,9; j = 1,…,22) 
could also be calculated by mathematical methods. The calculation equations were defined as follows: 

(1)

(2)

 (3)

3.5. Experimental-Analytical Method 

In the section above, the calculation of resultant values of Acc(i, j), Gyr(i, j) and orientation (rollij, 
pitchij, yawij) was described for each subject for nine sensing segments (i = 1,…,9) in a total of 22 
trials (j = 1,…,22). Based on the threshold levels of the Acc(i, j) and Gyr(i, j), we determined the 
optimal sensor placement by using classification and recognition methods. Then, we determined the 
thresholds of Acc(alarm), Gyr(alarm) for early pre-impact recognition/alarm as well as Acc(detec), 
Gyr(detec) for post-fall detection. Subsequently, after comparison of the pre-impact lead time for the 
acceleration (Ta) and the pre-impact lead time for the angular rate (Tg), we determined the optimal 
threshold level to gain the longest pre-impact lead time. Finally, the critical angle of body postural 
stability was determined in relation to the pre-impact lead time in different fall activities. The flow 
diagram of our experimental-analytical method is shown in Figure 2. 

Figure 2. Flow diagram of our method for pre-impact fall recognition/alarm and post-fall 
detection.  

 

4. Results and Discussion 

The kinematic characteristics of body segments can describe the human locomotion behavior. 
Firstly, we presented the kinematic features of torso, left and right lower limbs to classify and 
recognize the ADL and fall activities. The optimal sensor placements for fall recognition/alarm among 
all investigated segments were determined based on the threshold levels of MTx. Then, by comparison of 
the pre-impact lead time for the acceleration (Ta) and the pre-impact lead time for the angular rate (Tg), 

2 2 2( , ) ( ) ( ) ( )ij ij ijAcc i j Acc x Acc y Acc z= + +
2 2 2( , ) ( ) ( ) ( )ij ij ijGry i j Gry x Gry y Gry z= + +
2 2 2( , ) ( ) ( ) ( )ij ij ijMag i j Mag x Mag y Mag z= + +
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we determined the optimal threshold level to gain the longest pre-impact lead time. Finally, the critical 
angle of postural stability was determined and analyzed relative to the pre-impact lead time for early 
fall recognition/alarm.  

4.1. Kinematic Characteristics Used for Fall Recognition 

4.1.1. Using the Kinematic Characteristics of Torso for Fall Recognition 

Firstly, the acceleration information for torso was captured during the ADL and fall activities. 
Figure 3(A) shows that when the resultant acceleration threshold was 20 m/s/s (the red dotted line) the 
fall activities (RF, FF and BF) for the ADL were recognized with 100% reliability. Based on the 
results, we discovered that the characteristics of three sensor placements (chest, fore-waist and  
side-waist) were similar for the three kinds of fall activities. Then, the data for angular rate of torso 
were obtained as shown in Figure 3(B).  

Figure 3. Acceleration (A) and angular rate (B) curves for torso placements during:  
(a) SSS, (b) Walking, (c) SSL, (d) RF, (e) FF, (f) BF.  

 
(A) Acceleration curves and threshold levels (7 m/s/s and 20 m/s/s) 

 
(B) Angular rate curves and threshold levels (3 deg/s and 4 deg/s) 

For an angular rate threshold of 4 deg/s (the red dotted line), the reliability obtained for the chest 
placement was better than the one for the waist for fall recognition/alarm. This showed that only one 
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MTx sensor was enough for successful recognition of a fall event among the ADL, and the chest was 
the optimal placement area for fall prediction and post-fall detection. 

4.1.2. Using the Kinematic Characteristics of Lower Limbs for Fall Recognition 

Firstly, the acceleration data from placements on lower limbs were captured during the ADL and 
fall activities. Figure 4(A,B) show that the optimal threshold to recognize fall events during ADL was 
35 m/s/s, and the acceleration curves for the placements on right lower limb and left lower limb were 
similar. Then, the data received for the angular rate from the placements on the lower limbs were 
captured as shown in Figure 4(C,D). The angular curves for the placements on the right lower limb and 
the left lower limb were similar too. With the selected threshold of 6 deg/s for the angular rate (the red 
dotted line), the placement on the thigh was associated with better fall recognition reliability compared 
to the placements on shank and foot.  

Figure 4. Acceleration (A,B) and angular rate (C,D) curves for lower limb placements 
during: (a) SSS, (b) Walking, (c) SSL, (d) RF, (e) FF, (f) BF.  

  
(A) Acceleration curves for left lower limb placements 

 
(B) Acceleration curves for right lower limb placements 
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Figure 4. Cont. 

 
(C) Angular rate curves for left lower limb placements 

 
(D) Angular rate curves for right lower limb placements 

For the same threshold, for walking, SSL and fall activities, the error rates for placements at shank 
and foot were significant, while we obtained a zero error rate for the thigh placement (a non-zero error 
rate for walking and SSL activities means that the system falsely reported a fall event while there was 
no actual fall). Thus, in our experiment, for the lower limbs, to use only one of the thighs (the left or 
right) as a sensor placement area was the optimal choice for fall prediction and post-fall detection. 

4.1.3. Using the Postural Orientation Features for Fall Recognition 

The postural rotations of chest and left thigh were analyzed during the forward, right-side and 
backward fall activities. As shown in Figure 5, the impact phase of fall was the time from second 0 to 3, 
the subsequent phase was the stationary and recovery time for subjects to stand. The results showed 
that during postural rotation in the different fall directions the chest placement was associated with 
better reliability compared to the placement on the left thigh segment. The left thigh segment endured 
hyperextension when the human body impacted the mat bed, so the frontal angle had a larger 
extension-recovery amplitude as shown in Figure 5(b,f), which could be a reaction based on the  
self-protection consciousness of subjects. Furthermore, with consideration for the reliability of fall 
recognition, we chose to use the chest as the optimal placement for the sensor.  
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Figure 5. Orientation features of chest and left thigh during: (a,b) RF, (c,d) FF,  
(e,f) BF.  

 

4.2. Using the Pre-Impact Lead Time and Postural Instability for Pre-Impact Fall Recognition 

After the analysis of kinematic features of body segments, we determined that the chest placement 
was the optimal for fall recognition/alarm. In this section, we determined the optimal pre-impact lead 
time and the critical angle of body postural stability, and further analyzed the preventive and protective 
mechanisms and their relation with the trade-off between the lead time and the angle of body postural 
stability in different falls.  

4.2.1. Determination of the Optimal Pre-Impact Lead Time Using the Acceleration and Angular Rate 

In this section we analyzed the thresholds of acceleration and angular rate of chest segment in order 
to gain the longest pre-impact lead time. 

In Figure 3(A)(a,b,c) we can see that all values of acceleration were higher than the threshold of  
7 m/s/s (the red dash-dotted line) during the SSS, Walking and SSL activities. Thus, we chose the 
acceleration value of 7 m/s/s as a threshold for early pre-impact fall recognition/alarm during ADL and 
fall activities.  

In Figure 3(B)(a,b,c) we can see that all values of angular rate were lower than the threshold of 3 deg/s 
(the red dash-dotted line) during the SSS, Walking and SSL activities. So the angular rate value of 3 deg/s 
could serve as a threshold for early pre-impact fall recognition/alarm during ADL and fall activities.  

We estimated the optimal pre-impact lead time using the above chosen threshold levels of 7 m/s/s 
Acc(alarm), and 3deg/s Gyr(alarm). In Figure 6 is shown that the pre-impact lead time for acceleration 
(Ta) was always earlier than the pre-impact lead time for angular rate (Tg) regardless of the direction of 
the fall (RF, FF or BF). Thus, the pre-impact lead time based on the threshold for acceleration was 
determined as the optimal one and it was the longest in our experiment for early pre-impact fall 
recognition/alarm. 
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better fall recognition reliability compared to the thigh placement, so we suggested that the chest 
segment should be regarded as the optimal and reasonable placement.  

In order to gain the longest pre-impact lead time, we used the acceleration threshold value of  
7 m/s/s and the angular rate threshold value of 3 deg/s. The results showed that the pre-impact lead 
time for the acceleration (Ta) was always earlier than the pre-impact lead time for the angular rate (Tg), 
regardless the direction of the fall, so the acceleration threshold levels were determined for fall 
recognition/alarm using the chest sensor placement. The lower threshold (7 m/s/s), Acc(alarm) was 
used for pre-impact recognition/alarm, while the higher threshold (20 m/s/s), Acc(detec) was used to 
detect post-fall events. We used the relation between the average pre-impact lead time and the average 
critical angle of postural stability to optimize our system for early fall recognition/alarm. The longest 
average lead time was 329 ± 21 ms during forward falls, and the largest average angle of postural stability 
was 49.9 ± 4.1 degrees during sideway falls. The result implied that, due to the specific trade-off between 
the pre-impact lead time and the angle of postural stability for each kind of activity, the forward and 
sideway falls could be easily prevented, while this was not the case for backward falls.  

It should be clear that all experiments were performed by healthy young subjects under mat-bed 
cushioned impact conditions. Thus the experimental results could not completely represent the real 
conditions of elderly falls. In the future, in order to acquire data of real elderly falls in a natural 
environment, we will mount a chest placement sensor on people who are at high risk of falls, and thus 
conduct continuous 24-h monitoring of fall events.  
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