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Abstract: Finger vein patterns are considered as one of the most promising biometric 

authentication methods for its security and convenience. Most of the current available 

finger vein recognition methods utilize features from a segmented blood vessel network. 

As an improperly segmented network may degrade the recognition accuracy, binary pattern 

based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative 

Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional 

information hidden in the finger vein pattern has not been fully exploited by the existing 

local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a 

new direction based local descriptor called Local Directional Code (LDC) and applies it to 

finger vein recognition. In LDC, the local gradient orientation information is coded as an 

octonary decimal number. Experimental results show that the proposed method using LDC 

achieves better performance than methods using LLBP. 

Keywords: finger vein recognition; local directional code; local line binary pattern;  

local gradient orientation; webber local descriptor  

 

1. Introduction 

Recently, there has been much interest in biometric authentication for security purposes. Biometrics 

or biometric authentication [1,2] refers to automated methods of recognizing a person using behavioral 

or physiological features, such as, faces [3], irises [4], gaits [5], fingerprints [6,7], veins, etc. Biometric 
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features are unique characteristics to an individual which is convenient and more secure than 

traditional authentication methods. For example, biometric recognition is more reliable than  

token-based verification methods (keys or ID cards) and knowledge-based methods (passwords or 

PINs) while attaining higher efficiency and offering a better user experience. 

Personal verification based on biometric technology is widely used in door access control, security 

systems and forensics. However, under special circumstances, these biometric approaches may suffer 

from some practical limitations. For example, face recognition is susceptible to illumination changes 

and rotations. Fingerprints [8] are vulnerable to forgery because fingerprints are easily exposed to 

others. Moreover, the conditions of a finger such as dryness or sweat can also prevent a clear pattern 

from being obtained.  

Due to the limitations mentioned above, new approaches have been proposed to overcome the 

existing problems. Meanwhile, many new biometric features have been exploited. Finger vein 

recognition is just such a kind of biometric approach to overcome some of the limitations. In [9], the 

authors prove that each finger has a unique vein pattern that can be used for personal verification. In 

addition, finger vein recognition also has lots of advantages over other biometric authentication 

techniques [10,11]: (1) non-contact; (2) live-body identification; (3) high security; (4) small device size; 

(5) with ten fingers per person available, if something unexpected happens, other fingers can also be 

authenticated. The finger vein recognition is widely considered one of the most promising identification 

technologies in the future [12]. 

Finger vein recognition includes four main steps: image capturing, pre-processing, feature extraction 

and matching. The extracted features sometimes seriously affect the performance of the recognition 

systems. In order to extract better features from the segmented blood vessel network, in [13] the 

authors extract the finger vein pattern from the unclear image with line tracking, which starts from 

various positions. In [14], the minutiae features, including bifurcation points and ending points which 

can be used for geometric representation of the vein patterns’ shape are extracted from these vein 

patterns. In [15], the authors propose a mean curvature method, which regards the vein image as a 

geometric shape and finds the valley-like structures with negative mean curvatures; an equal error rate 

of 0.25% is reported with test images from 125 fingers. As mentioned above, most of the currently 

available finger vein-based recognition methods utilize features from a segmented blood vessel 

network. However, due to the optical blurring and scattering problems, the finger vein images are not 

always clear and show irregular shadings [16,17]. Improperly segmented networks may degrade the 

recognition accuracy dramatically. To solve this problem, binary pattern based methods are proposed 

and then LBP [18], LDP [19] are applied to the finger vein recognition. A number of LBP variants 

have also been proposed. For example, Local Ternary Pattern (LTP) [20] uses a three-value encoding 

instead of two-value encoding as in the original LBP while Local Quinary Pattern (LQP) [21] uses a 

five-value encoding. In [22], the authors proposed a new LBP variant called Directional Binary Code 

(DBC) and applied it to near-infrared face recognition. In [23], the authors proposed the use of a 

Personalized Best Bit Map (PBBM), which is rooted in a local binary pattern (LBP) and the 

experiments demonstrate that this feature achieves not only better performance, but also high 

robustness and reliability. Recently, Petpon and Srisuk [24] proposed a new variant of LBP called 

Local Line Binary Pattern (LLBP) and Rosdi et al. [25] applied it to finger vein recognition and the 

authors demonstrate a better accuracy than both LBP and LDP.  
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Though finger vein recognition methods can achieve high accuracy using local patterns, it is 

essentially a kind of network which is hard to extract. As a kind of networks, finger veins contain rich 

directional information. However, the above mentioned local pattern-based methods have not made 

full use of the directional information hidden in the finger vein images. Inspired by the Webber Local 

Descriptor (WLD) [26], we propose a more descriptive local descriptor called Local Directional Code 

(LDC). LDC is a square local descriptor which needs only four neighbors when encoding, while up to 

2(N-1) squared neighbors are used for encoding with LLBP, so the computing complexity of LDC is 

much lower than LLBP. In LDC, we code the gradient orientation information as an octonary decimal 

number, compared with the LLBP feature which is obtained in both the vertical and horizontal 

direction, LDC can better reflect the direction information and local features. Our experiments 

demonstrate that the LDC feature has improved recognition accuracy. 

The rest of the paper is organized as follows: Section 2 presents the proposed local directional code 

(LDC) in detail. Multi-direction analysis is also in this part. Section 3, the proposed method for finger 

vein recognition is described. Section 4 presents the experiments and results. Finally, Section 5 

concludes the paper. 

2. LDC Image Descriptor  

In this section, we describe the proposed local directional code (LDC) in detail. Subsequently, we 

present how to convert a finger vein image into a LDC image to better explain its expressive ability. In 

addition, we develop its multi-direction analysis. 

2.1. LDC 

LDC is a kind of local descriptor combined with the gradient direction information inspired by the 

Webber Local Descriptor (WLD). In WLD, the gradient orientation information, which is used as  

in [27], is coded as indexes for the differential excitation of each pixel. In our proposed LDC feature, 

we code the orientation information as a decimal number  , as shown in Figure 1. 

We use the difference of the neighbors of a pixel as the two components    and    of the local 

direction which are the outputs of the vertical filter    and horizontal filter   : 

6 2vv x x  , 8 4hv x x 
 (1) 

 

The gradient orientation is computed as: 
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  and          . This mapping considers the value of  , computed using (2), and 

the sign of    and   . The code function is then as follows: 

' 1
mod( , )

2 / 2
t T

T





 
  

 
 (4) 

For example, if    , as shown in Figure 1, then          . Different value of   represents 

different dominant orientation    
  

 
             . We set T = 8 in our finger vein experiments.  

Figure 1. Description of the calculation of the LDC descriptor. 
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In LDC, we code the orientation information into T dominant orientations, compared with the 

LLBP feature which is obtained in both the vertical and horizontal direction, LDC can better reflect the 

direction information and local features. The gradient orientation contains information from gradient 

differences of each pixel and their quantitative relations. We then quantize the gradient orientation into 

T dominant directions after a simple mapping. Each value of T reflect different trend of intensity, i.e., 

the trend of finger vein networks. Experiment 3 shows the effects of the parameter T.  

2.2. LDC on Finger Vein Image 

As shown in Figure 1, a finger vein image is converted into a code map with the same size. Each 

element is a directional code ranging from 0 to 7. To convert an image, one pass on the image is 

enough, which implies that LDC has great efficiency. In order to ensure simplicity, during the 
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computation of the LDC conversion process, the edge pixels of the image are ignored, which implies 

the dimension of the extracted LDCs is (W − 2) × (H − 2). The pseudo code of the LDC feature 

extraction process on a finger vein image is summarized in Algorithm 1. In the algorithm, first, we 

calculate the two components of the local direction, then the gradient orientation is computed using 

Equation (2). At last, the gradient direction is further quantized into T dominant orientation after a 

simple mapping using Equation (3). Parameters W and H refer to the width and height of a finger vein 

image. The calculation is performed in a 3 × 3 neighborhood. 

Algorithm 1. The LDC feature extraction. 

Require: Image ,{ | (1,... ), (1,..., )}i jX x i H j W    

Ensure: LDC feature map ,{ | (1,... 2), (1,..., 2)}i jM m i H j W      

1. Allocate 2D array M, where [ , ]M i j  is intended to hold the local directional code of pixel at position 

( 1, 1)i j  ; 

2. for     to     

3.    for     to     

4.       get , 1 , 1v i j i jv x x    and 1, 1,h i j i jv x x   ; // Calculate the two components of the local direction. 

5.       calculate ,( )i jx  using formula(2), ,( ) arctan( )h
i j

v

v
x

v
  ; // Compute the gradient orientation. 

6.       If 0hv   and 0vv   then // Mapping   to 
' . 

7.           '    ;  

8.       else if 0hv   and 0vv   then 

9.           ' 2    ; 

10.       else if 0hv   and 0vv   then 

11.           '  ; 

12.       else if 0hv   and 0vv   then 

13.           '     

14.       end if; 

15.       calculate [ 1, 1]M i j   using formula (4), 

' 1
[ 1, 1] mod( , )

2 / 2
M i j T

T





 
    

 
; // Further 

quantize   into T dominant directions. 

16.    end for; 

17.  end for; 

18.  Return M. 

The finger vein images processed using LDC are shown in Figure 2. It should be noted that for 

viewing convenience, the local directional codes computed for every pixel are normalized to values 

from 0 to 255. From Figure 2, we can see the discriminablity between different finger vein images. 
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Figure 2. Finger vein images processed by LDC. The first row shows the original finger 

vein images, the second row shows the LDC images, respectively. 

    

    

2.3. Multi-direction Analysis  

The LDC features described above are extracted from the 3 × 3 neighborhood in a vertically crossed 

way, where the gradient orientation is computed using the outputs of the vertical filter     and 

horizontal filter   . We mark it as LDC-00 where 00 means the original LDC without rotation. For the 

orientations of the finger vein vessel network may vary, we generalize LDC in different directions. In a 

3 × 3 neighborhood, the LDC in 45° rotation is given, which is illustrated in Figure 3.  

Figure 3. Illustration of 45°-direction analysis. (a) 3-square neighbor. (b) Vertical filter of 

LDC in 45° rotation. (c) Horizontal filter of LDC in 45° rotation. 
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We marked the LDC in 45° rotation as LDC-45. In LDC-45, the difference of the neighbors of a 

pixel      and      are the outputs of the vertical filter      and horizontal filter     : 

'

7 3vv x x  , 
'

5 1hv x x 
 (5) 

The gradient orientation of LDC-45 is computed as: 

'

'
( ) arctan( )h

c

v

v
x

v
   (6) 

Since we have extended the LDC in multiple directions, we also compare its performance with the 

original LDC (LDC-00) in Section 4. 

3. The Proposed Method 

In this section, we describe the proposed method for finger vein recognition. The vein recognition 

procedure includes preprocessing, feature extraction using Local Directional Code (LDC) and the 
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computation of matching scores. Feature extraction was already described in Section 2. Figure 4 shows 

the block diagram of the proposed finger vein recognition method.  

Figure 4. Flowchart of the finger vein recognition method. (a) Figure vein image after 

preprocessing; (b) Vision image for LDCs; (c) Matching results, here the black region 

implies the unmatched area, as Image 1 and Image 2 are from different classes, only 27 

percent of the LDCs are matched. 

MatchingInput Image1
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3.1. Preprocessing 

There are four main steps in the image preprocessing operation, which are image gray processing, 

ROI extraction, size normalization and gray normalization. 

Image Gray Processing 

The finger vein image captured by the device in this paper, which is shown in Figure 5(a), is a  

24-bit color image with a size of 320 × 240. In order to reduce the computational complexity, the 

original image is transformed into an 8-bit gray image based on the RGB to Grayscale Equation: 

114.0587.0299.0  BGRY  (7) 

where R, G and B denote the decimal values of the red, green and blue color components. 

ROI Extraction 

As the acquired finger vein image has an unwanted black background which may interfere with the 

recognition process, we employ an edge detection method to segment the finger vein region, which is 

defined as the Region of Interest (ROI), from the grayscale image. A Sobel operator with a 3 × 3 mask 

 
    
    
    

  is used for detecting the edges of a finger. The width of the finger region can be obtained 
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based on the maximum and minimum abscissa values of the finger profile and the height of the finger 

region can be similarly detected. A rectangle region, i.e., the ROI, can be captured based on the two values. 

Size Normalization 

The size of the ROI is different from image to image due to personal factors such as different finger 

size and changing location. Therefore it is necessary to normalize the ROI region to the same size 

before feature extraction. We use the bilinear interpolation for size normalization in this paper, and the 

size of the normalized ROI is set to be 96 × 64. 

Figure 5. Examples of preprocessing. (a) Original finger vein image; (b) ROI of (a); (c) 

Finger vein image after size normalization; (d) Finger vein image after gray normalization. 

(a) (b) (d)(c)
 

Gray Normalization 

In order to extract efficient features, gray normalization is used to obtain a uniform gray 

distribution. In this paper, the normalized image   is defined as follows: 
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where X(i,j) is the gray value of pixel at position (i,j) of the original image, Xmin denotes the minimum 

gray value of the original image and Xmax denotes the maximum gray value of the original image. 

3.2. Matching 

The proposed method estimates the similarities between the extracted local directional codes (LDC) 

and the enrolled codes of a certain individual. The matching score is measured using the  

following formula: 
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In Equation (9), Mt [as shown in Figure 4(c)] is a bitmap used to signify whether codeA(i,j) and 

codeB(i,j) have the same LDC value. CodeNum is the total number of LDCs of the matching area, to 

be more specific, the number of elements in Mt. Apparently, the Score ranges from 0 to 1.  

4. Experimental Results 

4.1. The Experimental Database 

The experiments were conducted using our finger vein database which was collected from 34 

individuals (20 males and 14 females, Asian race) who are students, professors and staff at our school. 

To acquire these natural finger vein images, each individual participated in two sessions, separated by 

20 days. The age of the participants was between 19 and 48 years. Each individual provides 4 fingers, 

which are left index, left middle, right index and right middle fingers, each of which contributes 30 

images. Consequently, our finger vein database includes 4,080 (34 × 4 × 30) finger vein images. The 

finger vein image captured by the device used in this paper, which is shown in Figure 5, is a 24-bit 

color image with a size of 320 × 240. The original spatial resolution of the data is 320 × 240, After 

ROI extraction and Size Normalization, the size of the region used for feature extraction is reduced to  

96 × 64. Samples collected from the same finger belong to the same class. Therefore, there are 136 

classes, where each class contains 30 samples in our database.  

4.2. The Experiment Settings 

All the experiments are implemented in MATLAB, and performed on a PC with a 2.4 GHz CPU 

and 2.0 G memory. In the experiment, the LDC is extracted from three square neighbors in both 0 and 

45 degrees, which are labeled LDC-00 and LDC-45. The experiments are designed to multilaterally 

evaluate the proposed method: (1) Experiment 1 evaluates the performance of the proposed method in 

verification mode, and compared with the LLBP based method. (2) In Experiment 2 we compare the 

proposed method and LLBP in the identification mode. (3) Experiment 3 discusses the influence of the 

parameter setting of T. (4) Experiment 4 measures the average processing time.  

4.3. Experiment 1 

We performed Experiment 1 on the established database in the verification mode. In this mode, the 

class of the input finger vein (test sample) is known, and each sample is matched with all the other 

samples from the same class and first six samples of the other 135 classes. A successful matching is 

called intraclass matching or genuine, if the two matching samples are from the same class. Otherwise, 

the unsuccessful matching is called interclass matching or imposter. As mentioned above, we use full 

matching in intraclass matching (each sample is matched with all the other samples from the same 
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class), and each sample is matched with the first six samples from the other 135 classes. Consequently, 

there are 59,160 (136 × C
2 

30) intraclass matching and 330,480 (136 × 6 × 135 × 6) interclass matching 

in total. In this paper, the performance of a system is evaluated by the EER (equal error rate), the FRR 

(false rejection rate) at zero FAR(false accept rate), and the FAR at zero FRR. The EER is the error 

rate when the FRR equals the FAR and therefore suited for measuring the performance of biometrics 

systems because the FRR and FAR are treated equally. On the other hand the FRR at zero FAR is 

suited for high security systems, as in those systems, false acceptance errors are much more critical 

than false rejection errors. On the contrary, the FAR at zero FRR shows the acceptance rate of 

impostors when more genuine rejected is desired. 

In the experiments, we compare the proposed method with the LLBP based method. Genuine and 

Imposter matching score distributions of these two methods are shown in Figures 6 and 7, respectively. 

From Figure 6, we can see that, the genuine matching score and the imposter matching score of the 

LLBP based method are overlapped between 0.67 and 0.83, while the genuine and imposter matching 

score of the LDC-00-based method is mainly between 0.35 and 0.7, 0.08 and 0.35, and of the  

LDC-45-based method mainly between 0.4 and 0.8, and the imposter matching score is mainly 

between 0.08 and 0.38, as we can see from Figures 7 and 8. 

The ROC curves are shown in Figure 9. The FRR at zero FAR and FAR at zero FRR values are 

listed in Table 1. From Figure 9 and Table 1, we can see that the proposed LDC method achieves a 

much lower EER than the LLBP-based method. This indicates that the LDC feature can better reflect 

the characteristics of a certain individual. Besides, it can make a better use of the directional 

information which can better illustrate the difference between the individuals. 

Figure 6. Matching score distribution of the LLBP-based method. 
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Figure 7. Matching score distribution of the LDC -00-based finger vein recognition. 

 

Figure 8. Matching score distribution of the LDC-45-based finger vein recognition. 

 

Figure 9. The ROC curve in the verification mode. 
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Table 1. Verification performance by different methods. 

Method EER FAR at zero FRR FRR at zero FAR 

LLBP 0.0225 0.7621 0.0877 

LDC-00 0.0116 0.4962 0.0653 

LDC-45 0.0102 0.4514 0.0468 

4.4. Experiment 2 

In Experiment 2, we compare the proposed method and LLBP in the identification mode.  

Closed-set identification experiments (identification is performed only for individuals who are present 

in the enrollment database) were also conducted. In the identification mode, we don’t know the class to 

which the input finger vein images belong to and have to verify it. In this mode, we use the first 10 

finger vein images of each class as test samples and randomly select one finger vein from the 

remaining 20 samples of each class as templates. Therefore, there are 136 templates and 1,360  

(130 × 10) probes in total. The probes were matched with all the template models. For each probe, we 

can get its rank according the matching results using just one pass: 

[1,136]

1 [ ( ) ( )]j

i

rank list i list j


    
(13) 

Here, rankj implies that the probe belong to class j. list represents the vector of the matching scores. 

                  returns 1 if                   is true. Then we can get the cumulative match curves 

as shown in Figure 10. The rank one recognition rate and the lowest rank of perfect recognition (i.e., 

the lowest rank when the recognition rate reaches 100%) are listed in Table 2. From the experimental 

results we can see that the proposed method is much better than that of the LLBP based method. The 

rank one rates of the proposed method LDC-00 and LDC-45 are both 100%, indicating that all the 

probes are identified correctly. 

Figure 10. Cumulative match curves by different methods. 

 
0 20 40 60 80 100 120

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

1.0005

Rank

C
u
rm

u
la

ti
v
e
 a

c
c
u
ry

 

 

LDC-00,LDC-45

LLBP



Sensors 2012, 12 14949 

 

 

Table 2. Identification performance by different methods. 

Method Rank one Recognition Rate Lowest Rank of Perfect Recognition 

LLBP 99.78% 135 

LDC-00 100% 1 

LDC-45 100% 1 

4.5. Experiment 3  

In this section, we discuss the influence of the parameter setting of T. Like WLD [26], the setting of 

T is still a trade-off between discriminability, statistical reliability and tolerance to noises. In general, if 

the parameter T becomes larger, the number of different dominant orientation becomes larger, and thus 

the LDCs become more discriminable. However, the number of pixels in each dominant orientation 

becomes smaller because the size of the input image is fixed. This degrades the statistical reliability of 

the LDCs. If the number of pixels belonging to each dominant orientation becomes too small, it will in 

turn degrade the discriminability of the LDCs because of its poor statistical reliability. Larger numbers 

of dominant orientations could cause a poor tolerance to noises. In contrast, if parameter T becomes 

smaller, the pixels in each dominant orientation becomes larger and acquire a better tolerance to noise, 

the LDCs become statistically more reliable. However, if T is too small, the number of the dominant 

orientations also becomes too small and degrades the discriminability of the LDCs. The experimental 

results when varying the parameter   are given is Figure 11. 

From Figure 11, we can see that, when the parameter T is equal to 8, the system can achieve a 

comparatively best tradeoff between discriminability and statistical reliability. 

Figure 11. The effects of using different vaules of parameter T. 
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two LDCs is 12 ms. The preprocessing time is 53 ms per image. From Table 3 we can see that the total 

running time for one match of LDC is slightly faster than LLBP. In a word, the proposed method can 

be used in real-time applications. 

Table 3. The average preprocessing time for the LDC method. 

Method Preprocessing Feature Extraction  Matching  

LDC 53 ms 16 ms 12 ms 

LLBP 53 ms 22 ms 8 ms 

5. Conclusions and Future Work 

Extraction of robust features from finger vein images is an important issue in finger vein-based 

biometric authentication. In this paper, we represent a novel feature extraction method based on the 

directional information and apply it to finger vein recognition. Though finger vein recognition methods 

can achieve high accuracy using local patterns, it is essentially a kind of inexact extractable blood 

vessel network. As a kind of network, finger veins contain a wealth of directional information. In the 

experimental results, we can see that LDC is more suitable for finger vein recognition than the  

LLBP- based method. In the future, we plan to design a new feature extraction method considering 

both the direction and global texture of the finger vein networks. 
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