
Sensors2012, 12, 14692-14710; doi:10.3390/s121114692
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Variable Scheduling to Mitigate Channel Losses in
Energy-Efficient Body Area Networks

Yuriy Tselishchev 1,2,⋆, Athanassios Boulis2,⋆ and Lavy Libman 3

1 Networks Research Group, School of IT, The University of Sydney, Eveleigh, NSW 2006, Australia
2 National ICT Australia, 13 Garden Street, Eveleigh, NSW 2015, Australia
3 School of Computer Science and Engineering, The Universityof New South Wales, Sydney,

NSW 2052, Australia; E-Mail: lavy.libman@unsw.edu.au

* Authors to whom correspondence should be addressed;

E-Mails: yuri.tselishchev@nicta.com.au (Y.T.); athanassios.boulis@nicta.com.au (A.B.).

Received: 11 July 2012; in revised form: 16 October 2012 / Accepted: 19 October 2012 /

Published: 2 November 2012

Abstract: We consider a typical body area network (BAN) setting in which sensor nodes

send data to a common hub regularly on a TDMA basis, as defined by the emerging IEEE

802.15.6 BAN standard. To reduce transmission losses caused by the highly dynamic nature

of the wireless channel around the human body, we explorevariable TDMA scheduling

techniques that allow the order of transmissions within each TDMA round to be decided

on the fly, rather than being fixed in advance. Using a simple Markov model of the

wireless links, we devise a number of scheduling algorithmsthat can be performed by the

hub, which aim to maximize the expected number of successfultransmissions in a TDMA

round, and thereby significantly reduce transmission losses as compared with a static TDMA

schedule. Importantly, these algorithms do not requirea priori knowledge of the statistical

properties of the wireless channels, and the reliability improvement is achieved entirely via

shuffling the order of transmissions among devices, and doesnot involve any additional

energy consumption (e.g., retransmissions). We evaluate these algorithms directly on an

experimental set of traces obtained from devices strapped to human subjects performing

regular daily activities, and confirm that the benefits of theproposed variable scheduling

algorithms extend to this practical setup as well.
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1. Introduction

Body Area Networks (BAN) are an emerging technology that hasattracted attention from researchers

in academia and industry due to its significant potential in many different areas including health care,

sports, military, and entertainment. A typical BAN application involves a number of low-power sensing

devices, operating on or around the human body, that collectsensor data, possibly processing it locally,

and transmit the information to a central device, known as acoordinator, sink, or hub. BANs exhibit

some similarities with other wireless networks, such as themaster-slave structure of cellular networks

and the low-power requirements of wireless sensor networks. Despite the similarities, BANs have several

characteristics that require a unique approach to the design of physical layer as well as network protocols.

One of these is the extreme limitations on power usage (having to last months and even years using

minuscule, unobtrusive batteries), which, in combinationwith the short range and existence of a central

hub, lead to novel power-saving techniques [1–6]. More importantly, the wireless propagation properties

in BAN are quite different from many other contexts, due to the low transmission power that the nodes

must use and due to the prevalent absorption effects of the human body. BANs must cope with deep

fading effects that can last much longer (10–300 ms) than similar effects in cellular networks [7,8]

and possible severe shadowing effects that can cause loss ofconnectivity up to several minutes [9].

The uniqueness and importance of these networks is reflectedin the creation of the IEEE 802.15

Task Group 6 [10] that is defining the physical and MAC layer communication standards specifically

for BANs.

The current draft proposal of the IEEE BAN Task Group puts forth a TDMA-based approach as

the most appropriate MAC solution to achieve the desired energy efficiency [11]. Indeed, a TDMA

mechanism avoids many common causes of energy waste, e.g., collisions, overhearing and idle listening,

while at the same time allowing nodes to turn their radios offoutside of their allocated TDMA slots, thus

achieving significant energy savings. On the other hand, a simple static TDMA allocation may lead to

significant waste due to the unreliable nature of wireless links around the body, namely, when a node’s

allocated time slot comes when its channel is in a bad state (while preventing a transmission by any

other node that may have a good link). Ideally, transmissionslots should be allocated to sensor nodes

only when their link state to the hub allows a successful datatransfer, which implies that the scheduling

should not be fixed but rather vary according to the real-timelink conditions of the nodes.

A TDMA mechanism typically involves splitting time into super-frames, or rounds. At the start of

each round, all the nodes turn their radios on to listen for the beacon packet, transmitted by the hub

to convey important network management information and assist with time synchronization. This fact

can be used in implementing a variable TDMA schedule, namely, by informing all the nodes (either

within the beacon packet itself or in a separate packet transmitted immediately after the beacon) about

the slot allocations for the upcoming round. Thus, any beacon-based TDMA MAC protocol (including

the upcoming 802.15.6 standard [11]) can support a variable slot allocation scheme.

Our contribution in this work is as follows. As a first step, weformulate the optimal variable

scheduling problem based on a simple, two-state (on/off) Gilbert model of wireless links, and propose a

number of scheduling strategies for the hub node based only on its observation of nodes’ transmission

outcomes (success or failure). Through simulation, based on Gilbert parameter ranges extracted from
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a set of experimental Received Signal Strength Indicator RSSI traces [12], we evaluate these strategies

numerically in terms of the reduction of loss rate as compared with a static TDMA allocation, and

uncover a number of important insights. Subsequently, we consider the use of the additional information

that may be available from actual RSSI readings of successful transmissions (rather than simply the

binary success/failure outcome), and we extend the above strategies with further heuristics that aim to

capture the dynamics of RSSI fluctuations, which are shown toreduce the loss rate even further. In

particular, we make the encouraging finding that near-optimal performance can be consistently attained

with a simple (so-called “Flipping”) strategy that orders the transmissions in each round according to

the order of the previous round and observed RSSI values, does not require anya priori knowledge of

statistical parameters of each link, and is trivial to implement and compute in real time.

The rest of the paper is structured as follows. Section2 discusses the related work, followed by

Section3 that presents our system and wireless channel model and formulates the slot scheduling

problem. Sections4 and5 present our proposed scheduling solutions with and withoutthe observation

of actual RSSI values, respectively. Finally, Section6 concludes the paper.

2. Related Work

The idea of dynamic assignment of transmission slots has been previously studied in the context of

the 802.15.4 communication standard, where the network coordinator is able to vary the allocation of

Guaranteed Transmission Slots (GTS) on a per-round basis and convey it to the sensor nodes in a periodic

beacon packet. Initially it was noted that simple GTS allocation mechanism proposed in the standard

is ineffective and leads to low bandwidth utilization due tothe fact that large parts of the GTS remain

unused [13,14]. It was shown that dynamic allocation of GTS on a per-round basis, where each slot is

shared among several nodes, not only improves bandwidth utilization but also leads to better quality of

service (QoS) and reduces the number of packets dropped due to overflow. A more advanced set of GTS

allocation schemes, where the coordinator is able to adapt to varying bandwidth requirements of sensor

nodes, was shown to improve waiting times and fairness as compared with a naive static method [15,16].

All of the above works focus on application requirements andtraffic characteristics when performing

slot assignments, rather than the state of the wireless channel, which in a BAN can sometimes be highly

volatile yet at other times can have a coherence time of up to 400 ms [17]. More specifically, variable

scheduling based on application characteristics tends to focus on the goal of increasing throughput and

fairness. In contrast, our work focuses on variable scheduling driven by the wireless channel variations,

with a goal of increasing reliability.

A variant of variable scheduling of TDMA slots that accountsfor wireless link states has been studied

in the context of TDMA-based cellular networks. A good discussion of the framework and survey

of proposed algorithms in this context, usually referred toas opportunisticscheduling, can be found

in [18,19]. In general, opportunistic scheduling techniques selecta user that will be allowed to transmit

in the next slot and attempt to maximize the overall network throughput, subject to satisfying certain QoS

constraints, such as fairness or individual minimum throughput requirements. An extension of the same

concept isopportunistic beamforming, which may select more than a single user with the best channel

to transmit at a given time [20]. However, such opportunistic scheduling approaches are not compatible
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with BANs, as they require the slave nodes to have their radios turned on at all times and continuously

available for polling and/or immediate assignment of the next slot. This requirement is incompatible with

radio duty-cycling, allowing the radio to be put to sleep when not used—an energy-saving mechanism

that is at the core of energy-efficient protocols in BAN [1–6] and sensor networks in general.

3. Model and Problem Formulation

3.1. System Description

We consider a typical medical application of a Body Area Network, such as monitoring of vital

life signs (e.g., blood pressure, heart rate, respiratory rate or temperature) [6]. In this setting, a

fixed pre-determined number of sensor nodes are employed around the patient’s body. The nodes are

generating data at regular time intervals, to be delivered to the hub (e.g., a smartphone) for further

processing and/or reporting to a health specialist [21]. Our study focuses on the MAC layer of the nodes,

where communication is organised in TDMA rounds (superframes), such that each sensor receives one

dedicated time slot per round from the hub, during which it can transmit data without interference from

other nodes. The slots in each round are numbered from1 to n, wheren is the number of sensors. We

assume that all slots are of identical duration and that nodes are synchronized and are aware of the slot

boundaries. The allocation of slots to nodes may change fromone round to the next; it is computed by

the hub and conveyed to the nodes inside the periodic beacon packet at the start of each TDMA round.

We denoteK(i) to be the slot assigned to nodei in a given round,1 ≤ K(i) ≤ n. Each node is assigned

exactly one slot in every round,K(i) 6= K(j) for i 6= j.

In our scenario, we set the data generation interval to be equal to the length of a superframe; in

other words, each sensor node has one new data sample per round, which it transmits to the hub.

Once the transmission attempt is completed, the sensor immediately goes to sleep as an energy-saving

measure, regardless of the success of the data delivery. Generally, an ARQ mechanism employing

acknowledgments from the hub and retransmissions by the sensor could be employed to increase the

data delivery success rate. However, we do not consider sucha mechanism in this work, as our focus

is on the delivery rate improvements that can be achieved through variable scheduling alone, without

expending additional energy for retransmissions (the performance of variable scheduling and its benefits

in the presence of retransmissions are discussed in our separate study [22]). We stress that, while the

sensors do not receive direct feedback on the outcome of their transmissions, the hub still collects and

employs this information for scheduling decisions in future TDMA rounds. More specifically, Section4

considers scheduling strategies that only use the binary outcome ( success of failure) of the transmission

from each sensor, while Section5 discusses scheduling that uses the actual received signal strength value

as well.

3.2. Channel Model

In order to gain initial insight into the design of efficient variable scheduling, we assume that each

wireless link between a sensor node and the hub evolves according to a discrete Markov process, in which

each state is classified as either “good” (allowing transmissions to be received successfully) or “bad” (in



Sensors2012, 12 14696

which no reception is possible). A similar Markov model for wireless links in BAN environments has

been suggested by the IEEE BAN Task Group [23] and shown to capture some of the key aspects of the

channel dynamics in BANs [24].

We denote the transition probabilities between the bad and the good state and vice versa byPu (up)

andPd (down), respectively; thus,Pu denotes the probability of moving from a bad state to a good state

within a slot interval, and vice versa forPd. We denote byP the Markov transition probability matrix,

namely,

P =

[

1− Pu Pu

Pd 1− Pd

]

If the probability of a link to be in the good state in a certainslot is denoted byp(0), then its probability

to be goodk slots later is

p(k) , [1− p(0) p(0)] · (P)k · [0 1]T =
Pu

V
+

p(0)Pd− [1− p(0)]Pu

V
· (1− V )k (1)

whereV , Pu+ Pd is the sum of the non-diagonal elements of the transition matrix; we subsequently

refer toV as avolatility measure of the link. In addition, we useS , Pu
V

to denote the steady-state

probability of the link to be in a good state, to whichp(k) tends ask → ∞. We henceforth prefer to

characterize the link dynamics using the steady-state probability S and volatilityV , rather than directly

usingPu andPd (the raw Markov transition probabilities can be computed from S andV as follows:

Pu = S · V , Pd = (1− S) · V ).

For the specific cases where a link is initially known to be in the bad state (p(0) = 0) or the good state

(p(0) = 1), Equation (1) can be simplified further:

p(k) =







S − S(1− V )k if p(0) = 0

S + (1− S)(1− V )k if p(0) = 1
. (2)

Note thatp(k) is monotonically increasing (decreasing) ifp(0) is lower (higher) than the steady-state

valueS. We point out that the same monotonicity property, which will be important in our subsequent

analysis, holds in general for Markov processes with multiple states as well.

We emphasize that the simple Markov model outlined above is only used to develop an initial set of

scheduling techniques that are evaluated in Section4, while the strategies in Section5 are designed and

evaluated on experimental RSSI traces [12] directly.

3.3. Evaluation Method

In order to obtain a set of realistic ranges for steady state and volatility values, we have used traces

from a publicly available data set that contains experimental RSSI measurements from devices strapped

to human subjects performing everyday activities over the course of several days [12]. We refer the reader

to [25] for further details about the experimental setup. To calculate the parametersS andV from such

traces, it is necessary to set the attenuation outage threshold, i.e., the difference between transmission

power and receiver sensitivity. Specifically, if the instantaneous pathloss between a sensor node and the

hub is above this threshold then transmitted packets cannotbe received (i.e., the corresponding link is in
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a “bad” state). Since there is no commonly accepted de-factostandard implementation of a BAN radio,

our evaluations are performed for a range of attenuation outage thresholds from 75 dB to 95 dB. We

point out that with values below 75 dB, wireless links becometoo unreliable for practical purposes, as

will be discussed in the next paragraph. On the other hand, attenuation outage thresholds beyond 95

dB are unlikely to be practical (e.g., for the nominal BAN transmission power of−10 dBm, this would

correspond to a radio sensitivity below−105 dBm, which, to the best of our knowledge, is beyond the

capability of existing low-power radios). Moreover, as we will show, the exploration of this range can

guide radio designers in their decision on choosing the attenuation threshold, based on quantitative data.

Additionally, we set the length of each slot to be 5 ms, which is small enough to allow fine-grain control

of transmission scheduling but does not introduce excessive overhead from frequent changes of the

radio state.

Figure1 illustrates 90% percentile ranges of link steady state (S) and volatility (V ) as a function

of outage attenuation threshold, computed among the entireset of various on-body links present in the

traces. Employing percentile ranges in this context allowsto remove outlier links that are either up

or down 100% of the time, regardless of the selected threshold. Figure 1 confirms the intuition that

increasing the attenuation threshold leads to increased average steady state,i.e., the probability to find

a particular wireless link in a “good” state. At the low end ofoutage threshold values, the differences

between the steady states of the links become more pronounced, and several links reach very low values

of S, making them marginally useful for communication. The linkvolatility measure follows an opposite

trend, where a high attenuation threshold implies that links are more likely to change their state rapidly.

More specifically, an outage on any link is unlikely to last more than 10–20 ms when the attenuation

threshold is between 90 dB to 95 dB.

Figure 1. Typical ranges for steady state and volatility.
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For our numerical evaluations in Section4, the values ofSi andVi for each linki will be drawn

randomly from a uniform distribution given by the ranges shown in the Figure1. Since different values
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of S will be chosen for each individual link, we cannot use the attained reliability (i.e., the fraction of

packets successfully delivered) directly as the performance metric, as it depends strongly on the average

link uptime. Rather, we focus on therelative reliability improvement, or, in other words, the fraction

of losses reduced relative to the expected rate of1 − S that can be attained in a system with static

scheduling and no retransmissions. For example, if a link has a steady state probability ofS = 0.9, then

it is expected that 10 out of every 100 transmissions on average will fail. If variable scheduling (or a

retransmission mechanism) increases the successful delivery rate to 94% of all packets,i.e., losing only

6 out of every 100 packets, then this translates to a relativefraction of 0.4 of losses avoided.

4. Simple Slot Assignment Strategies

We now consider the slot assignment strategy by the hub assuming that the wireless links evolve

according to the Gilbert model described in the previous section. We define anoptimal assignment

strategy as one that maximizes the long-term throughput from the sensor nodes, or, in other words,

minimizes the expected percentage of slots that result in transmission failures. While this definition

seems straightforward, the precise formulation of the respective optimization problem is trickier than

appears at first glance, as it depends on the information available to the hub. More specifically, if the hub

knows the instantaneous states of links to all sensor nodes at the start of each round, then the optimal

slot assignment for the next round is simply the permutationthat maximizes

max
K

n
∑

i=1

pi(K(i)) (3)

wherepi(x) is the probability of linki to be good afterx slots, as given by Equation (2).

However, while not entirely unrealistic, a full knowledge of all the link states by the hub would incur a

significant communication and energy overhead at the start of a TDMA round, as each sensor node would

then need to actively sample its wireless channel (e.g., with the transmission of a probe). Accordingly,

we are particularly interested in scheduling strategies that only use information already available without

additional probing—namely, the outcome (success or failure) of the transmission by each sensor in the

previous round. If we denote the number of slots elapsed since the transmission of nodei by D(i) (in

other words,D(i) is the amount of time that the information about the link state of nodei is outdated),

then the expected number of successful transmissions in thenext round is given by:
n

∑

i=1

pi(D(i) +K(i)) (4)

It is interesting to note that repeated slot assignments seeking to maximize (4) in every round may

not necessarily lead to the long-term optimal performance.This is due to the fact that the information

available to the hub depends on the scheduling decisions taken in the previous round; and hence we refer

to a permutation that maximizes (4) as asingle-roundoptimal assignment.

For the initial consideration of the optimal scheduling strategies, we assume that the statistical

parametersS andV of each link are known to the hub. However, we will return to this point later,

and show that in fact one of the proposed strategies can be applied even without this knowledge and still

achieve near-optimal performance in most scenarios of interest.
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4.1. Scheduling Based on Full State Information

We initially consider the optimal scheduling under the assumption that full information about current

channel states is available to the scheduling algorithm at the start of each TDMA round. As explained

above, this can be achieved in theory by probing all the linksbefore making a scheduling decision,

leading, however, to an unacceptably high overhead in termsof both time and energy costs it imposes

on the sensor nodes. We therefore emphasize that the assumption of full information is only used in this

subsection to obtain an upper bound reference, and it will bealleviated thereafter.

If the channel state information is always available to the scheduler, then the optimal long-term

performance is achieved simply by maximizing the rate of successful transmissions at each round

independently. Thus, the optimization target is given by Equation (3). To that end, we observe that

finding the permutationK that maximizes (3) can be seen as an instance of themaximum-weight

matchingproblem in bipartite graphs. Indeed, define a bipartite graph with n vertices corresponding

to the sensor nodes, and a furthern vertices corresponding to the time slots. Define an edge fromnode

i to slotj to have a weight ofpi(j), i.e., the probability for the node’s link to be in a good state in that

slot. Then a scheduling assignment that maximizes the expected number of successful transmissions (3)

is equivalent to a maximum-weight matching in the corresponding bipartite graph.

We point out that well-known algorithms for solving the maximum-weight matching problem exist,

requiringO(n3) time in general [26,27]. However, such a complexity cannot be considered reasonable

for more than a very small number of nodes (in fact, the standard allows up to 256 nodes [11]), since

the solution is required essentially instantly. Indeed, any delay in the scheduling computation translates

directly to a delay in the start of the next TDMA round. Accordingly, we are much more interested in

very low-complexity heuristics to approximate the optimalscheduling solution, not exceeding that of a

simple sorting operation.

To that end, we proceed by establishing a basic property of the optimal solution.

Lemma 1. If G is the subset of links in the “good” state at the start of the round,i.e.,G = {i|pi(0) = 1},

then in the optimal schedulingK∗, K∗(i) < K∗(j) for anyi ∈ G andj /∈ G.

Lemma (1) captures the intuition based on a fundamental property of the functionp(k) (which holds

more generally in Markov chains with multiple states as well), namely, that if a probability of a given

state at some time is higher (lower) than its steady-state value, then it will monotonically decrease

(increase) towards that steady-state value. Consequently, it is best to bring the links initially known

to be “good” forward to have their transmissions as early as possible, while deferring all “bad” links to

the end of the round. However, the question of ordering within each of the subsets remains, and unless all

links have identical Markov transition probabilities, theexpected number of successful slots will depend

on the chosen order within each subset.

Accordingly, we define the following scheduling approachesthat will be evaluated further:

1. Random Groups: Schedule all nodes with “good” links at the start of the round first, followed by

“bad” ones; within each subset, schedule the transmissionsrandomly (O(n) complexity).

2. Greedy Sorting: For each unassigned slotj, starting withj = 1, compute the value ofp′(j) ,

p(j)− p(j + 1) for all nodes not yet allocated; then assign slotj to the link with the highest value

of p′(j) (O(n2) complexity).
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3. Optimal: Compute the optimal schedule using an algorithm for solving the maximum-weight

bipartite matching (O(n3) complexity).

The rationale behind theGreedy Sortingheuristic is thatp′i(j) represents the “loss” of success

probability if the assignment of linki is deferred from slotj to slot j + 1. Therefore, for example,

it makes sense to assign to the first slot the link that would cause the highest reduction of the target

expression (3) if pushed back by one slot; a similar reasoning then appliesto the subsequent slots. This

heuristic may not lead to the optimal scheduling in general,since the order amongp′(j) may change as

j progresses (links with a higher volatilityV converge to their steady state probability quicker, and thus

have a highp′(j) whenj is small yet lowp′(j) later). However,Greedy Sortinghas the advantage of

a lower complexity than the optimal assignment algorithm, and in many cases achieves a comparable

performance.

Figure2 presents the relative loss rate reduction obtained by simulating the above strategies with a

representative number of 8 sensor nodes (n = 8) in a BAN, similar to the setup described in [8]. The

general trend is very consistent across all values of outageattenuation threshold. More specifically, the

performance of theGreedy Sortingalgorithm is almost identical toOptimal, despite its lower complexity.

Random Groupsscheduling lags behind due to differences in the links’ dynamic parameters which are

not accounted for (indeed, Random Groups is optimal only forhomogeneous links).

Figure 2. Performance based on link state information at the start of each round.
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It is interesting to point out that the gain achieved by variable scheduling declines for extreme values

of outage threshold. Indeed, when the threshold is low, the average volatility and steady state of all links

are also low (as it was shown in Figure1), thus outages happen frequently and last longer, often resulting

in several consecutive failures over the course of multiplerounds, obviously making any scheduling

decisions less relevant. A slight decline for high values ofattenuation threshold can also be noted, where

both the steady state and volatility of all links is high. Although the effect will be more pronounced

with the scenario in the next subsection, the underlying reason is that highly volatile links imply that
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information about the state of a wireless link becomes less useful after only a few slots (i.e., converging

rapidly to the steady-state average).

4.2. Scheduling Based on Last Round Outcomes

As explained earlier, requiring the nodes to actively sample their channels at the start of each round

would impose an unacceptably high overhead, in terms of bothtime and energy. We now move

away from that assumption and discuss scheduling algorithms that rely only on the outcome of the

communication during the previous round, which is available anyway and does not require additional

effort to obtain.

We first point out that, despite the delayed information, it is still true that the probability of being in

a good state continues to monotonically decrease over time for any link that was known to be good in

the previous round, and, conversely, monotonically increase for any link that was bad. Consequently,

the result of Lemma (1) continues to hold; in other words, it is still always betterto schedule all the

links in the “good” group ahead of the “bad”. However, it is nolonger true that, if all the links have

identical Markov transition parameters, then the orderingwithin each group does not matter. Our next

result explains this fact in detail and presents the optimaltransmission schedule in this case.

Lemma 2. Consider a system withn links with identical transition probabilities (Si = Sj andVi = Vj

for all 1 ≤ i, j ≤ n), and denote byK ′(i) the slot assigned to linki in the previous round. DenoteG

as the subset of links observed in the “good” state during their allocated slot in the previous round,i.e.,

G = {i|pi(0) = 1}. Then, for anyi, j such thatK ′(i) > K ′(j), the following properties hold for the

single-round optimal allocationK∗:

1. K∗(i) < K∗(j) if i ∈ G andj /∈ G;

2. K∗(i) > K∗(j) if i /∈ G andj ∈ G;

3. K∗(i) < K∗(j) if i, j ∈ G;

4. K∗(i) > K∗(j) if i, j /∈ G.

In other words, the order of the links in the “good” group should be reversed while the order of the links

in the “bad” group should be kept the same as in the last round.

As a result of Lemma (2), we add another strategy to our repertoire: schedule all links that were good

in the previous round ahead of the bad ones; and within the good group only, invert the order of the

transmissions from the last round. We refer to this approachas theFlipping strategy, since for a given

set of links, the order of their transmissions will be “flipped” among consecutive rounds as long as they

are successful (which is the most common outcome when the link steady state values are high). While

theFlipping strategy is optimal only in a system with homogeneous links,it has several other desirable

characteristics—specifically, it is trivially easy to compute and it does not require the knowledge of

the Markov parameters of the individual links. Thus it becomes interesting to apply it as a heuristic

in non-homogeneous scenarios,i.e., with diverse channels whose Markov parameters take a rangeof

different values.

The graph in Figure3 depicts the performance of different variable scheduling strategies together

with the maximum performance achieved in the previous subsection (shown as theUpper Boundin this

graph). We note that although the gains are much lower since the information available is more outdated,
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the general trends seen earlier persist here as well. Furthermore, the decline of performance for high

values of outage threshold is more pronounced since highly volatile links make outdated information

even less useful.

Figure 3. Performance based on link state information from the previous round.
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However, the most interesting finding is that the performance of the newly introducedFlipping

strategy is not only comparable with, but in fact is even consistently better than that of the single-round

optimal algorithm for almost all values of the outage threshold. This happens despite the fact that

optimal assignment accounts for individual Gilbert parameters of each link, whileFlipping strategy

relies solely on the outcomes of transmissions in the preceding round. We emphasize that the underlying

Markov parameters are not homogeneous across all links, but(for each link independently) drawn from

a range of typical values, as explained in Section3. We discuss the insights behind this counter-intuitive

performance effect in the next subsection.

4.3. Long-Term Performance

As mentioned earlier, when the scheduling is not based on theinstantaneous channel state information

at the start of the round, it is no longer necessarily true that a scheduling strategy that maximizes the

expected number of successful links in each round will also achieve the bestlong-termperformance.

This is because the schedule choice in a given round has an indirect effect on the information that will

be available to the scheduler at the next round. Thus, a certain schedule may maximize the expected

number of successful links in the upcoming round but leave the scheduler with “inferior” information,

in some sense to make its choice in the subsequent round.

Consider the following artificial example to illustrate this effect. Assumen links where all links but

one have their steady states equal to 1, thus making their probability of successful transmission,p(k),

always 1 regardless of the value ofk. Consecutively, slot assignment strategies focus around the state

of the single link that does not have perfect reception. Since both Flipping and Single-round optimal
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strategies would choose to place the transmission on that link as late as possible in the round if a failure

happens, we focus on the situation where a number of consecutive successful transmissions occur over

the course of several rounds. Based on the monotonicity property ofp(k) shown earlier, the single-round

optimal allocation would always schedule the transmissionin the earliest possible slot, as any increase in

the value ofk leads to decrease inp(k) given thatp(0) = 1. Thus, the transmission of this variable link

will be assigned to slot 1 as long as consecutive successes occur. This means that there will always be

exactlyn slots between those consecutive transmission attempts andthe Single-round optimal allocation

will have approximatelyp(n)× l successful transmissions on that link individually over the course ofl

rounds. The Flipping strategy would place the node’s transmission at the first slot in one round and at

the last slot in the following round, repeating that patternas long as consecutive successes occur. Thus

the interval between transmissions would alternate between 1 and2n−1 slots, making the probability of

successful transmissionp(1) andp(2n−1) respectively. Note that whilep(2n−1) < p(n) (making such

assignment not optimal for the round), butp(1) > p(n), in other words, the Flipping algorithm sacrifices

in one round but gains in the following round, if compared with the single-round optimal schedule. As

it turns out, for most practical combinations of link parametersS andV , the gain achieved by Flipping

the slots significantly outweighs the loss caused by not following the optimal slot assignment in every

second round, as was indeed shown by the numerical evaluation results. An in-depth discussion on this

long-term performance effect, as well as an exhaustive evaluation of a two-node scenario showing how

close theFlipping strategy is to the long-term optimal schedule, can be found in [28].

5. Scheduling Based on RSSI Information

The previous section explored scheduling strategies basedonly on the binary outcome (i.e., success

or failure) of the most recent transmission on each link. However, this does not exhaust the information

available to the network coordinator. In particular, the RSSI value itself is a useful benchmark of the

quality of a wireless link, which is indeed used in many practical algorithms for transmission power

control and routing. In this section, we investigate how theRSSI reading can be used to make informed

scheduling decisions and compare the results with the strategies proposed earlier, that rely purely on the

binary outcome information.

Since the Gilbert model discussed in Section3 does not capture the fluctuations of RSSI value, in this

section we move away from any particular model and evaluate the scheduling strategies using the RSSI

traces directly. We emphasize that the design of our algorithms is still based on the same insights from

previous sections,extendingthe functionality to account for RSSI dynamics rather than creating a whole

new set of scheduling strategies tailored to a specific set ofexperimental traces.

We proceed by examining how the probability of successful transmission evolves over time for

different RSSI values, thus establishing a connection withthe insights gained in the previous section.

Figure4 shows the experimentally computed probability of successful transmission, for two values of

outage thresholds (80 dB and 85 dB), starting from an initially observed RSSI value that is above or

below the outage threshold by a given margin (e.g., “+5” means that the initial RSSI measurement is

5 dB above the threshold value). The graph illustrates that the central claim of the previous section

continues to hold; namely, the probability of successful transmission still decreases monotonically for
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“good” links (i.e., initially observed RSSI is above the threshold) and increases monotonically for “bad”

links. An additional insight provided by Figure4 is that when the initial RSSI value is close to the

threshold, the probability converges to a long-term value much more rapidly; in other words, we verify

the intuition that links with RSSI readings close to the threshold are more volatile (i.e., more likely to

cross the threshold).

Figure 4. Probability of successful transmission based on most resent RSSI reading, with

attenuation thresholds of 80 dB and 85 dB.
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5.1. Scheduling Based on Full State Information

Once again, we start with the simple case where the information (namely, RSSI readings) from all

links is available to the scheduler at the beginning of the round. Recall that in the corresponding scenario

based on the Gilbert model, we introduced three scheduling strategies:“Random Groups”, “Greedy
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Sorting”, and“Optimal” . While the “Random Groups” algorithm can be applied in a straightforward

manner here as well, the other two strategies require the knowledge of the Gilbert model parameters

Si andVi of individual links, and cannot be applied on experimental traces directly. However, we can

still employ the rationale behind the“Greedy Sorting”algorithm, which dictates that more volatile good

links should be scheduled as early in the round as possible, as their probability to have a successful

transmission decays more rapidly. From the previously established connection between volatility and

proximity of the RSSI value to the threshold, we introduce theGreedy RSSI Sortingalgorithm, as follows:

schedule all “good” links before all “bad” links, and withinthe “good” group, sort the links by RSSI

value in increasing order.

Figure5 compares the performance of theGreedy RSSI Sortingalgorithm with the baseline provided

by Random Groups. It can be seen that smart ordering of transmissions within the “good” group based on

RSSI information provides a clear advantage for all values of attenuation threshold, reaching more than

45% reduction in losses for attenuation thresholds of 90 dB to 95 dB. Another important observation

is that the performance of theRandom Groupsalgorithm is noticeably lower than that in Figure2,

illustrating that the Gilbert link model is, in fact, only anapproximation of the real behaviour of the

body-area links.

Figure 5. Performance based on RSSI reading at the start of each round.
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5.2. Scheduling Based on Last Round Outcomes

As the next step, we aim to find out how the newly introducedGreedy RSSI Sortingalgorithm will

behave in the more realistic situation, when the schedulingis based on the outcomes of transmissions

in the previous round. For this case, theFlipping strategy will serve as the baseline, indicating the

attainable loss rate reduction if the RSSI information is not taken into account. This comparison is

performed in Figure6. As it turns out, theGreedy RSSI Sortingstrategy lags significantly behind

Flipping in performance. This can be explained by the fact that theGreedy RSSI Sortingalgorithm

allocates transmission slots focusing greedily on maximizing the expected number of successes in
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the current round only and ignoring the impact on subsequentrounds. Thus, it suffers from the

same long-term effect that causesFlipping to perform better than the single-roundOptimalstrategy in

Section4.

Figure 6. Performance based on RSSI reading from the previous round.
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Sorted Flipping

Despite the above fact, the RSSI information can still be useful for scheduling decisions based on the

previous round outcomes, and we devised a strategy to combine the strengths ofFlipping andGreedy

RSSI Sorting. The main benefit ofFlipping comes from the long-term effect, where sacrificing some of

the performance in the current round allows more gains in thenext round (by having more recent link

state information). On the other hand,Greedy RSSI Sortingalgorithm considers short-term benefits by

prioritizing highly volatile links. Thus, we define the “RSSI-sorted Flipping” (or, for brevity,Sorted

Flipping) algorithm as follows.

Similar to our previous strategies, the hub defines two groups of nodes: those that should be scheduled

as early in the round as possible (the “Early” group), and, conversely, as late in the round as possible

(the “Late” group). Previously, the “Late” group corresponded to the subset of nodes with bad links

and the “Early” group only contained those with good links, but now we allow more flexibility. More

specifically, the steps taken by theSorted Flippingstrategy are as follows:

1. Initially, the nodes are equally split between the two groups in a random manner.

2. Every round, each node is moved to the opposite group unless it failed to transmit in the previous

round, in which case it is forced to the “Late” group.

3. Slots are assigned by increasing RSSI order in the “Early” group and by decreasing order in the

“Late” group. If a failure happened in the previous round, that node is assigned a large negative

RSSI value, implying that it will be scheduled as late as possible.

Note that if the RSSI reading of each node remains constant across consequent rounds, then the

algorithm will behave exactly as simpleFlipping. From Figure6 it is evident thatSorted Flipping
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consistently improves the performance ofFlipping, and the gain is most pronounced for large values of

the attenuation outage threshold.

6. Conclusions

To improve the reliability in Body Area Networks, we have presented a framework for variable TDMA

scheduling, where transmission slots are assigned to nodesbased on the information about their wireless

links, with the goal of minimizing transmission failures due to bad channel state. Based on a two-state

Gilbert link model we have developed the simple yet effectiveFlippingstrategy, which creates an optimal

slot allocation for a single TDMA round when the links of all nodes are identical. Additionally,Flipping

has several other desirable characteristics, namely it is trivial to compute and performs well in practical

scenarios, where wireless links of the sensor nodes are not homogeneous.

Furthermore, we have conducted additional evaluations directly on an experimental set of RSSI traces,

reinforcing the main scheduling principles and extending the Flipping strategy to account for RSSI

information, making more informed scheduling decisions. It is important to emphasize that, while these

strategies were inspired by a two-state Markov channel model, their operation is based only on the

outcome of each transmission directly (i.e., the success/failure of the transmission, or the measured

RSSI value), and does not require thea priori knowledge of any statistical parameters of the links. We

have shown that up to 45% of all losses caused by bad channel state, can be avoided simply by smarter

allocation of TDMA slots if instantaneous channel state is available; or, in a more realistic setting where

only the previous round outcomes are used for scheduling purposes, up to 10% of all transmission failures

can be prevented.

We highlight that all the techniques proposed in this paper operate by varying the transmission

schedule of sensor nodes only, and the performance improvements are achieved without consuming

any additional energy (e.g., by retransmissions) or increasing the latency of incoming packets. It is

worth noting that in a separate work [22] we have shown that variable scheduling techniques continue to

perform well when retransmissions are employed to further increase reliability. More specifically, if the

retransmission mechanism follows the same scheduling principles, taking into the account the wireless

link state information of sensor nodes, then the reliability metric can be further improved for the same

amount of extra energy spent on retransmissions.

Our study has aimed to demonstrate the benefits of variable scheduling at a proof-of-concept level.

There are many practical issues that remain to be addressed in the design of a full MAC protocol

incorporating the ideas of this paper and [22] (e.g., the structure of a beacon packet, overcoming losses

of management packets,etc.). The implementation of such a MAC protocol in a simulation platform

(Castalia) and in real devices is the subject of ongoing work.
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Appendix

Proof of Lemma 1

Consider an allocationK that violates the lemma claim,i.e., such thatK(i) > K(j) for some

i ∈ G andj /∈ G. Using the definition ofp(k) (Equation ((2))), we calculate the change in the target

value (3) if the assignments ofi andj are swapped. We do so in two steps, first computing the change

pi(K(j))− pi(K(i)) from moving link i to slotK(j), and then similarly the effect of moving linkj to

slotK(i).

pi(K(j))− pi(K(i)) = (1− Si) · ((1− Vi)
K(j) − (1− Vi)

K(i)) > 0; (5)

pj(K(i))− pj(K(j)) = Sj · ((1− Vj)
K(j) − (1− Vj)

K(i)) > 0; (6)

We observe that both links improve their success probabilities as a result of the swap. Consequently,

the assignmentK cannot be optimal.

Proof of Lemma 2

The first and second claims of the lemma are essentially a repetition of Lemma (1) and follow trivially

from the monotonicity ofpi, pj.

Consider an allocationK that violates the third claim of the lemma,i.e., K(i) > K(j) and

K ′(i) > K ′(j) for somei, j ∈ G. The probability of linki to be successful in the next round is then given

bypi(n−K ′(i)+K(i)), wherepi is defined by the second case of (2); and similarlypj(n−K ′(j)+K(j))

for link j. We now calculate the gain in the optimization target (4) if the assignments ofi andj are

swapped:

[pi(n−K ′(i) +K(j)) + pj(n−K ′(j) +K(i))]−

[pi(n−K ′(i) +K(i)) + pj(n−K ′(j) +K(j))] =

(1− Si)(1− Vi)
n−K ′(i)+K(j) + (1− Sj)(1− Vj)

n−K ′(j)+K(i)−

(1− Si)(1− Vi)
n−K ′(i)+K(i) − (1− Sj)(1− Vj)

n−K ′(j)+K(j) (7)

Since the parameters of all links are identical, we can denoteS = Si = Sj , V = Vi = Vj , and obtain

(1−S)
[

(1− V )n−K ′(i)+K(j) − (1− V )n−K ′(i)+K(i) + (1− V )n−K ′(j)+K(i) − (1− V )n−K ′(j)+K(j)
]

=

(1− S)
[

(1− V )n−K ′(i) − (1− V )n−K ′(j)
]

·
[

(1− V )K(j) − (1− V )K(i)
]

> 0 (8)

sincen − K ′(i) < n − K ′(j) andK(j) < K(i). This shows that swapping the allocations ofi andj

improves the target value (4); consequently,K cannot be the optimal scheduling.

The proof of the fourth lemma claim follows a very similar derivation to the above, and is omitted

for brevity.
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