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Abstract: We consider a typical body area network (BAN) setting in vhsensor nodes
send data to a common hub regularly on a TDMA basis, as defipngldebemerging IEEE
802.15.6 BAN standard. To reduce transmission losses @dduysine highly dynamic nature
of the wireless channel around the human body, we explar@ble TDMA scheduling
techniques that allow the order of transmissions withiheBDMA round to be decided
on the fly, rather than being fixed in advance. Using a simplekMamodel of the
wireless links, we devise a number of scheduling algorittimas can be performed by the
hub, which aim to maximize the expected number of successfnémissions in a TDMA
round, and thereby significantly reduce transmission baseompared with a static TDMA
schedule. Importantly, these algorithms do not reqaiggiori knowledge of the statistical
properties of the wireless channels, and the reliabilitgriovement is achieved entirely via
shuffling the order of transmissions among devices, and doesvolve any additional
energy consumption (e.g., retransmissions). We evalba&setalgorithms directly on an
experimental set of traces obtained from devices strappduiian subjects performing
regular daily activities, and confirm that the benefits of pneposed variable scheduling
algorithms extend to this practical setup as well.
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1. Introduction

Body Area Networks (BAN) are an emerging technology thatdtaacted attention from researchers
in academia and industry due to its significant potential anyndifferent areas including health care,
sports, military, and entertainment. A typical BAN apptioa involves a number of low-power sensing
devices, operating on or around the human body, that cakrtdor data, possibly processing it locally,
and transmit the information to a central device, known as@dinator, sink or hub. BANs exhibit
some similarities with other wireless networks, such asnlaster-slave structure of cellular networks
and the low-power requirements of wireless sensor netw@#&spite the similarities, BANs have several
characteristics that require a unique approach to theesighysical layer as well as network protocols.
One of these is the extreme limitations on power usage (gawariast months and even years using
minuscule, unobtrusive batteries), which, in combinatiath the short range and existence of a central
hub, lead to novel power-saving techniquésd]. More importantly, the wireless propagation properties
in BAN are quite different from many other contexts, due te litw transmission power that the nodes
must use and due to the prevalent absorption effects of threhibody. BANs must cope with deep
fading effects that can last much longer (10-300 ms) thanlairaffects in cellular networks7|8]
and possible severe shadowing effects that can cause lagmpéctivity up to several minute8]|
The uniqueness and importance of these networks is refléstéae creation of the IEEE 802.15
Task Group 6 10] that is defining the physical and MAC layer communicaticanstards specifically
for BANs.

The current draft proposal of the IEEE BAN Task Group putshfa TDMA-based approach as
the most appropriate MAC solution to achieve the desiredggnefficiency fL1]. Indeed, a TDMA
mechanism avoids many common causes of energy waste aligipas, overhearing and idle listening,
while at the same time allowing nodes to turn their radio®atside of their allocated TDMA slots, thus
achieving significant energy savings. On the other handnalsistatic TDMA allocation may lead to
significant waste due to the unreliable nature of wirelesssliaround the body, namely, when a node’s
allocated time slot comes when its channel is in a bad statdg\ypreventing a transmission by any
other node that may have a good link). Ideally, transmisslots should be allocated to sensor nodes
only when their link state to the hub allows a successful ttatasfer, which implies that the scheduling
should not be fixed but rather vary according to the real-tinleconditions of the nodes.

A TDMA mechanism typically involves splitting time into sepframes, or rounds. At the start of
each round, all the nodes turn their radios on to listen ferlibacon packet, transmitted by the hub
to convey important network management information andgegsth time synchronization. This fact
can be used in implementing a variable TDMA schedule, nanislyinforming all the nodes (either
within the beacon packet itself or in a separate packetitnétest immediately after the beacon) about
the slot allocations for the upcoming round. Thus, any bedised TDMA MAC protocol (including
the upcoming 802.15.6 standaddl]) can support a variable slot allocation scheme.

Our contribution in this work is as follows. As a first step, Wemulate the optimal variable
scheduling problem based on a simple, two-state (on/offjg&i model of wireless links, and propose a
number of scheduling strategies for the hub node based onitg @bservation of nodes’ transmission
outcomes (success or failure). Through simulation, base@itbert parameter ranges extracted from
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a set of experimental Received Signal Strength Indicat@IR&ces 12], we evaluate these strategies
numerically in terms of the reduction of loss rate as congbaveh a static TDMA allocation, and
uncover a number of important insights. Subsequently, wsider the use of the additional information
that may be available from actual RSSI readings of successiasmissions (rather than simply the
binary success/failure outcome), and we extend the aboategtes with further heuristics that aim to
capture the dynamics of RSSI fluctuations, which are showedace the loss rate even further. In
particular, we make the encouraging finding that near-agdtperformance can be consistently attained
with a simple (so-calledFlipping”) strategy that orders the transmissions in each roundrdoupto
the order of the previous round and observed RSSI values, materequire any priori knowledge of
statistical parameters of each link, and is trivial to inmpét and compute in real time.

The rest of the paper is structured as follows. SecHatiscusses the related work, followed by
Section3 that presents our system and wireless channel model andulmes the slot scheduling
problem. Sectiond and5 present our proposed scheduling solutions with and withibbservation
of actual RSSI values, respectively. Finally, Secaoncludes the paper.

2. Related Work

The idea of dynamic assignment of transmission slots has pesviously studied in the context of
the 802.15.4 communication standard, where the networkdamator is able to vary the allocation of
Guaranteed Transmission Slots (GTS) on a per-round badisoavey it to the sensor nodes in a periodic
beacon packet. Initially it was noted that simple GTS allimramechanism proposed in the standard
is ineffective and leads to low bandwidth utilization duehe fact that large parts of the GTS remain
unused 13,14]. It was shown that dynamic allocation of GTS on a per-rouadi$y where each slot is
shared among several nodes, not only improves bandwidibatiton but also leads to better quality of
service (QoS) and reduces the number of packets dropped dwertflow. A more advanced set of GTS
allocation schemes, where the coordinator is able to adagtriying bandwidth requirements of sensor
nodes, was shown to improve waiting times and fairness apamed with a naive static methoti,16.

All of the above works focus on application requirements taaffic characteristics when performing
slot assignments, rather than the state of the wirelessehamhich in a BAN can sometimes be highly
volatile yet at other times can have a coherence time of uf@@mds [L7]. More specifically, variable
scheduling based on application characteristics tendsctasfon the goal of increasing throughput and
fairness. In contrast, our work focuses on variable scliegldriven by the wireless channel variations,
with a goal of increasing reliability.

A variant of variable scheduling of TDMA slots that accouimtswireless link states has been studied
in the context of TDMA-based cellular networks. A good dission of the framework and survey
of proposed algorithms in this context, usually referrecsmpportunisticscheduling, can be found
in [18,19]. In general, opportunistic scheduling techniques selader that will be allowed to transmit
in the next slot and attempt to maximize the overall netwbr&tighput, subject to satisfying certain QoS
constraints, such as fairness or individual minimum thigud requirements. An extension of the same
concept isopportunistic beamformingvhich may select more than a single user with the best channe
to transmit at a given time2p)]. However, such opportunistic scheduling approaches @ireampatible
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with BANSs, as they require the slave nodes to have their saiomed on at all times and continuously
available for polling and/or immediate assignment of the slot. This requirement is incompatible with
radio duty-cycling allowing the radio to be put to sleep when not used—an ergaging mechanism
that is at the core of energy-efficient protocols in BAN4] and sensor networks in general.

3. Model and Problem Formulation

3.1. System Description

We consider a typical medical application of a Body Area Neky such as monitoring of vital
life signs (e.g., blood pressure, heart rate, respiratatg or temperature)s]. In this setting, a
fixed pre-determined number of sensor nodes are employedctbe patient's body. The nodes are
generating data at regular time intervals, to be delivecethé hub (e.g., a smartphone) for further
processing and/or reporting to a health speciadigk [Our study focuses on the MAC layer of the nodes,
where communication is organised in TDMA rounds (super&@g)nsuch that each sensor receives one
dedicated time slot per round from the hub, during which it tansmit data without interference from
other nodes. The slots in each round are numbered freom, wheren is the number of sensors. We
assume that all slots are of identical duration and that i@de synchronized and are aware of the slot
boundaries. The allocation of slots to nodes may change tno@round to the next; it is computed by
the hub and conveyed to the nodes inside the periodic beamkepat the start of each TDMA round.
We denotei (i) to be the slot assigned to nodlim a given round] < K (i) < n. Each node is assigned
exactly one slot in every round (i) # K (j) for i # j.

In our scenario, we set the data generation interval to balgquthe length of a superframe; in
other words, each sensor node has one new data sample pel; thich it transmits to the hub.
Once the transmission attempt is completed, the sensor dimates/ goes to sleep as an energy-saving
measure, regardless of the success of the data deliveryer@lgn an ARQ mechanism employing
acknowledgments from the hub and retransmissions by theoseould be employed to increase the
data delivery success rate. However, we do not consideraumeechanism in this work, as our focus
is on the delivery rate improvements that can be achievealigitr variable scheduling alone, without
expending additional energy for retransmissions (theoperénce of variable scheduling and its benefits
in the presence of retransmissions are discussed in ourasesudy 22]). We stress that, while the
sensors do not receive direct feedback on the outcome afttaasmissions, the hub still collects and
employs this information for scheduling decisions in fetliDMA rounds. More specifically, Sectigh
considers scheduling strategies that only use the binaopme ( success of failure) of the transmission
from each sensor, while Sectiérdiscusses scheduling that uses the actual received stggragith value
as well.

3.2. Channel Model

In order to gain initial insight into the design of efficieranable scheduling, we assume that each
wireless link between a sensor node and the hub evolvestiogdo a discrete Markov process, in which
each state is classified as either “good” (allowing transiarss to be received successfully) or “bad” (in
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which no reception is possible). A similar Markov model fareless links in BAN environments has
been suggested by the IEEE BAN Task Grofg| [and shown to capture some of the key aspects of the
channel dynamics in BANSM].
We denote the transition probabilities between the bad laadood state and vice versa By: (up)
and Pd (down), respectively; thug;u denotes the probability of moving from a bad state to a goaie st
within a slot interval, and vice versa fétd. We denote byP the Markov transition probability matrix,
namely,
1— Pu Pu
Pd 1-—Pd

P

If the probability of a link to be in the good state in a certsiiot is denoted by(0), then its probability
to be goodk slots later is

Pu_ pl0)Pd— (1= p(0)]Pu

% % (1-V)* (1)

p(k) £ [1 = p(0) p(0)] - (P)*- [0 )" =
whereV’ £ Py + Pd is the sum of the non-diagonal elements of the transitiomimate subsequently
refer toV as avolatility measure of the link. In addition, we use2 % to denote the steady-state
probability of the link to be in a good state, to whighk) tends ast — oo. We henceforth prefer to
characterize the link dynamics using the steady-stategtibty S and volatility V', rather than directly
using Pu and Pd (the raw Markov transition probabilities can be computenhfiS' andV” as follows:
Pu=S-V,Pd=(1-.5)-V).

For the specific cases where a link is initially known to behia lbad state(0) = 0) or the good state
(p(0) = 1), Equation {) can be simplified further:

~ | . )
S+ (1-8)1—V) if p0) =1

) {ss<1v>k if p(0) = 0

Note thatp(k) is monotonically increasing (decreasingp{f) is lower (higher) than the steady-state
valueS. We point out that the same monotonicity property, whicH b important in our subsequent
analysis, holds in general for Markov processes with migltgates as well.

We emphasize that the simple Markov model outlined abovalis used to develop an initial set of
scheduling techniques that are evaluated in Sedjavhile the strategies in Sectidare designed and
evaluated on experimental RSSI tracgg| [directly.

3.3. Evaluation Method

In order to obtain a set of realistic ranges for steady statevalatility values, we have used traces
from a publicly available data set that contains experimeRES| measurements from devices strapped
to human subjects performing everyday activities over these of several dayd®]. We refer the reader
to [25] for further details about the experimental setup. To dakeuthe parameter$ andV” from such
traces, it is necessary to set the attenuation outage tidesle., the difference between transmission
power and receiver sensitivity. Specifically, if the indtareous pathloss between a sensor node and the
hub is above this threshold then transmitted packets cdre@ceivedi(e., the corresponding link is in
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a “bad” state). Since there is no commonly accepted de-&atalard implementation of a BAN radio,
our evaluations are performed for a range of attenuatioagauthresholds from 75 dB to 95 dB. We
point out that with values below 75 dB, wireless links becdoweunreliable for practical purposes, as
will be discussed in the next paragraph. On the other hatehwtion outage thresholds beyond 95
dB are unlikely to be practical (e.g., for the nominal BANrsanission power of-10 dBm, this would
correspond to a radio sensitivity belowl05 dBm, which, to the best of our knowledge, is beyond the
capability of existing low-power radios). Moreover, as wil show, the exploration of this range can
guide radio designers in their decision on choosing thea#on threshold, based on quantitative data.
Additionally, we set the length of each slot to be 5 ms, wh&chmall enough to allow fine-grain control
of transmission scheduling but does not introduce excessierhead from frequent changes of the
radio state.

Figure 1 illustrates 90% percentile ranges of link steady stategnd volatility (/) as a function
of outage attenuation threshold, computed among the esgiref various on-body links present in the
traces. Employing percentile ranges in this context alltevsemove outlier links that are either up
or down 100% of the time, regardless of the selected thrdshieigure 1 confirms the intuition that
increasing the attenuation threshold leads to increasexhge steady statee., the probability to find
a particular wireless link in a “good” state. At the low endmiftage threshold values, the differences
between the steady states of the links become more prondusree several links reach very low values
of S, making them marginally useful for communication. The luakatility measure follows an opposite
trend, where a high attenuation threshold implies thaslisle more likely to change their state rapidly.
More specifically, an outage on any link is unlikely to lastmthan 10-20 ms when the attenuation
threshold is between 90 dB to 95 dB.

Figure 1. Typical ranges for steady state and volatility.
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For our numerical evaluations in Sectidnthe values ofS; and V; for each link: will be drawn
randomly from a uniform distribution given by the rangeswhan the Figurel. Since different values
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of S will be chosen for each individual link, we cannot use thaiatd reliability (.e., the fraction of
packets successfully delivered) directly as the perfogeaanetric, as it depends strongly on the average
link uptime. Rather, we focus on thelative reliability improvement, or, in other words, the fraction
of losses reduced relative to the expected raté ef S that can be attained in a system with static
scheduling and no retransmissions. For example, if a liskehsteady state probability 6= 0.9, then

it is expected that 10 out of every 100 transmissions on geevall fail. If variable scheduling (or a
retransmission mechanism) increases the successfuédetate to 94% of all packetse., losing only

6 out of every 100 packets, then this translates to a rel&etion of 0.4 of losses avoided.

4. Simple Slot Assignment Strategies

We now consider the slot assignment strategy by the hub asguimt the wireless links evolve
according to the Gilbert model described in the previousisec We define aroptimal assignment
strategy as one that maximizes the long-term throughpu fitee sensor nodes, or, in other words,
minimizes the expected percentage of slots that resultamsmission failures. While this definition
seems straightforward, the precise formulation of theeetype optimization problem is trickier than
appears at first glance, as it depends on the informatiotaé@io the hub. More specifically, if the hub
knows the instantaneous states of links to all sensor nddée atart of each round, then the optimal
slot assignment for the next round is simply the permutatiab maximizes

max > pi(K (7)) (3)

wherep;(z) is the probability of linki to be good after slots, as given by Equatiog)

However, while not entirely unrealistic, a full knowledgeadl the link states by the hub would incur a
significant communication and energy overhead at the starfTtDMA round, as each sensor node would
then need to actively sample its wireless channel (e.gh thi# transmission of a probe). Accordingly,
we are particularly interested in scheduling strategiasdhly use information already available without
additional probing—namely, the outcome (success or &jlaf the transmission by each sensor in the
previous round. If we denote the number of slots elapsedgime transmission of nodeby D(:) (in
other words,D(i) is the amount of time that the information about the linkestftnode; is outdated),
then the expected number of successful transmissions metkteound is given by:

> pi(D) + K@) @

It is interesting to note that repeated slot assignmentsrsgéo maximize 4) in every round may
not necessarily lead to the long-term optimal performaridas is due to the fact that the information
available to the hub depends on the scheduling decisiors takhe previous round; and hence we refer
to a permutation that maximized)(as asingle-roundoptimal assignment.

For the initial consideration of the optimal schedulingattgies, we assume that the statistical
parameterss and V' of each link are known to the hub. However, we will return testpoint later,
and show that in fact one of the proposed strategies can iedepen without this knowledge and still
achieve near-optimal performance in most scenarios afaste
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4.1. Scheduling Based on Full State Information

We initially consider the optimal scheduling under the asggtion that full information about current
channel states is available to the scheduling algorithrheastart of each TDMA round. As explained
above, this can be achieved in theory by probing all the lipéfore making a scheduling decision,
leading, however, to an unacceptably high overhead in tefrbeth time and energy costs it imposes
on the sensor nodes. We therefore emphasize that the assamwidfiull information is only used in this
subsection to obtain an upper bound reference, and it walllegiated thereafter.

If the channel state information is always available to tbeesluler, then the optimal long-term
performance is achieved simply by maximizing the rate ofceasful transmissions at each round
independently. Thus, the optimization target is given bydimpn @). To that end, we observe that
finding the permutation’ that maximizes ) can be seen as an instance of thaximum-weight
matchingproblem in bipartite graphs. Indeed, define a bipartite lgnagh »n vertices corresponding
to the sensor nodes, and a furthevertices corresponding to the time slots. Define an edge frode
i to slotj to have a weight of;(j), i.e., the probability for the node’s link to be in a good state iatth
slot. Then a scheduling assignment that maximizes the egh@ecmber of successful transmissioBis (
IS equivalent to a maximum-weight matching in the corresiim bipartite graph.

We point out that well-known algorithms for solving the maxim-weight matching problem exist,
requiringO(n?) time in general 26,27]. However, such a complexity cannot be considered reasenab
for more than a very small number of nodes (in fact, the stahdkhows up to 256 noded ]]), since
the solution is required essentially instantly. Indeed, @glay in the scheduling computation translates
directly to a delay in the start of the next TDMA round. Accioigly, we are much more interested in
very low-complexity heuristics to approximate the optirea@heduling solution, not exceeding that of a
simple sorting operation.

To that end, we proceed by establishing a basic propertyeodptimal solution.

Lemma 1. If G is the subset of links in the “good” state at the start of thamd,i.e., G = {i|p;(0) = 1},
then in the optimal scheduling™, K*(i) < K*(j) foranyi € Gandj ¢ G.

Lemma () captures the intuition based on a fundamental propertigefunctionp(k) (which holds
more generally in Markov chains with multiple states as yyelamely, that if a probability of a given
state at some time is higher (lower) than its steady-staigeydhen it will monotonically decrease
(increase) towards that steady-state value. Consequénidybest to bring the links initially known
to be “good” forward to have their transmissions as earlyassible, while deferring all “bad” links to
the end of the round. However, the question of ordering wiglaich of the subsets remains, and unless all
links have identical Markov transition probabilities, tegpected number of successful slots will depend
on the chosen order within each subset.

Accordingly, we define the following scheduling approactieg will be evaluated further:

1. Random GroupsSchedule all nodes with “good” links at the start of the rddinst, followed by
“bad” ones; within each subset, schedule the transmissammly (O(n) complexity).

2. Greedy Sorting For each unassigned slgt starting withj = 1, compute the value of (j) £
p(j) — p(j + 1) for all nodes not yet allocated; then assign gltd the link with the highest value
of p'(j) (O(n?) complexity).
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3. Optimat Compute the optimal schedule using an algorithm for sglime maximum-weight
bipartite matching@(n?®) complexity).

The rationale behind th&reedy Sortingheuristic is thatp.(j) represents the “loss” of success
probability if the assignment of link is deferred from sloy to slot; + 1. Therefore, for example,
it makes sense to assign to the first slot the link that wouldsedhe highest reduction of the target
expressiong) if pushed back by one slot; a similar reasoning then apphi¢ise subsequent slots. This
heuristic may not lead to the optimal scheduling in genaiate the order among(j) may change as
j progresses (links with a higher volatility converge to their steady state probability quicker, ang thu
have a highy'(j) whenj is small yet lowp'(j) later). HoweverGreedy Sortindhas the advantage of
a lower complexity than the optimal assignment algorithng an many cases achieves a comparable
performance.

Figure 2 presents the relative loss rate reduction obtained by sitingl the above strategies with a
representative number of 8 sensor nodes=(8) in a BAN, similar to the setup described i8][ The
general trend is very consistent across all values of owttgauation threshold. More specifically, the
performance of th&reedy Sortinglgorithm is almost identical tOptimal despite its lower complexity.
Random Groupscheduling lags behind due to differences in the links’ dylagparameters which are
not accounted for (indeed, Random Groups is optimal onlyaéonogeneous links).

Figure 2. Performance based on link state information at the staracii eound.
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It is interesting to point out that the gain achieved by \agascheduling declines for extreme values
of outage threshold. Indeed, when the threshold is low, tkeagie volatility and steady state of all links
are also low (as it was shown in Figutg thus outages happen frequently and last longer, oftertties
in several consecutive failures over the course of multiplends, obviously making any scheduling
decisions less relevant. A slight decline for high valueatténuation threshold can also be noted, where
both the steady state and volatility of all links is high. #dugh the effect will be more pronounced
with the scenario in the next subsection, the underlyingaeras that highly volatile links imply that
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information about the state of a wireless link becomes lesfuliafter only a few slotd.€., converging
rapidly to the steady-state average).

4.2. Scheduling Based on Last Round Outcomes

As explained earlier, requiring the nodes to actively saipéir channels at the start of each round
would impose an unacceptably high overhead, in terms of biote and energy. We now move
away from that assumption and discuss scheduling algosittiat rely only on the outcome of the
communication during the previous round, which is avadainhyway and does not require additional
effort to obtain.

We first point out that, despite the delayed informations still true that the probability of being in
a good state continues to monotonically decrease over omanly link that was known to be good in
the previous round, and, conversely, monotonically ineeefar any link that was bad. Consequently,
the result of Lemmal() continues to hold; in other words, it is still always betterschedule all the
links in the “good” group ahead of the “bad”. However, it is lemger true that, if all the links have
identical Markov transition parameters, then the ordevitfpin each group does not matter. Our next
result explains this fact in detail and presents the opttnaalsmission schedule in this case.

Lemma 2. Consider a system with links with identical transition probabilitiesy; = S; andV; = V;
forall 1 < i,7 < n), and denote byK’(:) the slot assigned to linkin the previous round. Denot€
as the subset of links observed in the “good” state duringrtakocated slot in the previous rounde.,
G = {i|p;(0) = 1}. Then, for anyi, 7 such thatk’(i) > K'(j), the following properties hold for the
single-round optimal allocatior *:

1. K*(i) < K*(j) ifi € Gandj ¢ G,

2. K*(i) > K*(j)ifi ¢ Gandj € G;

3. K*(i) < K*(j) ifi,j € G}

4. K*(1) > K*(j)ifi,5 ¢ G.

In other words, the order of the links in the “good” group shdbe reversed while the order of the links
in the “bad” group should be kept the same as in the last round.

As aresult of Lemma2), we add another strategy to our repertoire: schedulen& lihat were good
in the previous round ahead of the bad ones; and within the gooup only, invert the order of the
transmissions from the last round. We refer to this appr@actineFlipping strategy, since for a given
set of links, the order of their transmissions will be “flipii@mong consecutive rounds as long as they
are successful (which is the most common outcome when tkesteady state values are high). While
the Flipping strategy is optimal only in a system with homogeneous liiiksas several other desirable
characteristics—specifically, it is trivially easy to coute and it does not require the knowledge of
the Markov parameters of the individual links. Thus it beesnnteresting to apply it as a heuristic
in non-homogeneous scenariog,, with diverse channels whose Markov parameters take a rahge
different values.

The graph in Figure depicts the performance of different variable schedulimgtsgies together
with the maximum performance achieved in the previous stilmse(shown as th&lpper Boundn this
graph). We note that although the gains are much lower sirecmtormation available is more outdated,
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the general trends seen earlier persist here as well. Fortine, the decline of performance for high
values of outage threshold is more pronounced since higtibtile links make outdated information
even less useful.

Figure 3. Performance based on link state information from the prevround.
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However, the most interesting finding is that the perforneant the newly introducedFlipping
strategy is not only comparable with, but in fact is even ¢siestly better than that of the single-round
optimal algorithm for almost all values of the outage thmddh This happens despite the fact that
optimal assignment accounts for individual Gilbert partsrse of each link, whileFlipping strategy
relies solely on the outcomes of transmissions in the pragedund. We emphasize that the underlying
Markov parameters are not homogeneous across all linkgfdngach link independently) drawn from
a range of typical values, as explained in SecBokVe discuss the insights behind this counter-intuitive
performance effect in the next subsection.

4.3. Long-Term Performance

As mentioned earlier, when the scheduling is not based anstentaneous channel state information
at the start of the round, it is no longer necessarily trué¢ ahsecheduling strategy that maximizes the
expected number of successful links in each round will alduexe the beslong-termperformance.
This is because the schedule choice in a given round has aedndffect on the information that will
be available to the scheduler at the next round. Thus, aicestdaedule may maximize the expected
number of successful links in the upcoming round but leagesttheduler with “inferior” information,
in some sense to make its choice in the subsequent round.

Consider the following artificial example to illustrategheffect. Assume links where all links but
one have their steady states equal to 1, thus making thddapriity of successful transmissiop(k),
always 1 regardless of the value laf Consecutively, slot assignment strategies focus arcuadtate
of the single link that does not have perfect reception. &imath Flipping and Single-round optimal
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strategies would choose to place the transmission on tikaa$ late as possible in the round if a failure
happens, we focus on the situation where a number of comgesuiccessful transmissions occur over
the course of several rounds. Based on the monotonicityeptyppf p(k) shown earlier, the single-round
optimal allocation would always schedule the transmissidhe earliest possible slot, as any increase in
the value ofk leads to decrease jiik) given thatp(0) = 1. Thus, the transmission of this variable link
will be assigned to slot 1 as long as consecutive successas. okhis means that there will always be
exactlyn slots between those consecutive transmission attempthar@ingle-round optimal allocation
will have approximately(n) x [ successful transmissions on that link individually over tdourse of
rounds. The Flipping strategy would place the node’s trassion at the first slot in one round and at
the last slot in the following round, repeating that patt@siong as consecutive successes occur. Thus
the interval between transmissions would alternate betwesnd2n — 1 slots, making the probability of
successful transmissigiil) andp(2n — 1) respectively. Note that whilg(2n — 1) < p(n) (making such
assignment not optimal for the round), lt) > p(n), in other words, the Flipping algorithm sacrifices
in one round but gains in the following round, if comparedhathie single-round optimal schedule. As
it turns out, for most practical combinations of link paraere.S andV/, the gain achieved by Flipping
the slots significantly outweighs the loss caused by nobt¥atg the optimal slot assignment in every
second round, as was indeed shown by the numerical evaluasaolts. An in-depth discussion on this
long-term performance effect, as well as an exhaustiveuatiah of a two-node scenario showing how
close theFlipping strategy is to the long-term optimal schedule, can be fonfja3].

5. Scheduling Based on RSSI Information

The previous section explored scheduling strategies baisigcon the binary outcome.€., success
or failure) of the most recent transmission on each link. B\, this does not exhaust the information
available to the network coordinator. In particular, theSR8alue itself is a useful benchmark of the
quality of a wireless link, which is indeed used in many piadtalgorithms for transmission power
control and routing. In this section, we investigate howR&SI reading can be used to make informed
scheduling decisions and compare the results with theegiest proposed earlier, that rely purely on the
binary outcome information.

Since the Gilbert model discussed in SectBafoes not capture the fluctuations of RSSI value, in this
section we move away from any particular model and evallitestheduling strategies using the RSSI
traces directly. We emphasize that the design of our alyostis still based on the same insights from
previous sectiongxtendinghe functionality to account for RSSI dynamics rather thaating a whole
new set of scheduling strategies tailored to a specific sexpérimental traces.

We proceed by examining how the probability of successfagmission evolves over time for
different RSSI values, thus establishing a connection Wighinsights gained in the previous section.
Figure4 shows the experimentally computed probability of suceagdsfinsmission, for two values of
outage thresholds (80 dB and 85 dB), starting from an ihjtiabserved RSSI value that is above or
below the outage threshold by a given margin (e.g., “+5” et the initial RSSI measurement is
5 dB above the threshold value). The graph illustrates tmatcentral claim of the previous section
continues to hold; namely, the probability of successfahsémission still decreases monotonically for
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“good” links (i.e., initially observed RSSI is above the threshold) and ireesanonotonically for “bad”
links. An additional insight provided by Figuris that when the initial RSSI value is close to the
threshold, the probability converges to a long-term valuwelmore rapidly; in other words, we verify
the intuition that links with RSSI readings close to the #in@d are more volatila.€., more likely to
cross the threshold).

Figure 4. Probability of successful transmission based on most td®86I reading, with
attenuation thresholds of 80 dB and 85 dB.
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5.1. Scheduling Based on Full State Information

Once again, we start with the simple case where the infoomgtiamely, RSSI readings) from all
links is available to the scheduler at the beginning of thumdb Recall that in the corresponding scenario
based on the Gilbert model, we introduced three schedutiagegies:“Random Groups’ “Greedy
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Sorting”, and“Optimal” . While the “Random Groups” algorithm can be applied in aightorward
manner here as well, the other two strategies require the/lkedge of the Gilbert model parameters
S; andV; of individual links, and cannot be applied on experimemnateés directly. However, we can
still employ the rationale behind tli&reedy Sorting”algorithm, which dictates that more volatile good
links should be scheduled as early in the round as possibléhear probability to have a successful
transmission decays more rapidly. From the previouslybisteed connection between volatility and
proximity of the RSSI value to the threshold, we introduceGneedy RSSI Sortirgjgorithm, as follows:
schedule all “good” links before all “bad” links, and withthe “good” group, sort the links by RSSI
value in increasing order.

Figure5 compares the performance of tBeeedy RSSI Sortingigorithm with the baseline provided
by Random Groupdt can be seen that smart ordering of transmissions witt@rigood” group based on
RSSI information provides a clear advantage for all valdedtenuation threshold, reaching more than
45% reduction in losses for attenuation thresholds of 90a@B5 dB. Another important observation
is that the performance of thRandom Groupslgorithm is noticeably lower than that in Figuge
illustrating that the Gilbert link model is, in fact, only approximation of the real behaviour of the
body-area links.

Figure 5. Performance based on RSSI reading at the start of each round.
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5.2. Scheduling Based on Last Round Outcomes

As the next step, we aim to find out how the newly introduGrdedy RSSI Sortinglgorithm will
behave in the more realistic situation, when the schedudirzased on the outcomes of transmissions
in the previous round. For this case, tRBpping strategy will serve as the baseline, indicating the
attainable loss rate reduction if the RSSI information i$ taken into account. This comparison is
performed in Figures. As it turns out, theGreedy RSSI Sortingtrategy lags significantly behind
Flipping in performance. This can be explained by the fact thatGneedy RSSI Sortinglgorithm
allocates transmission slots focusing greedily on maximgizhe expected number of successes in
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the current round only and ignoring the impact on subsequaumids. Thus, it suffers from the
same long-term effect that caudégoping to perform better than the single-rou@gptimal strategy in
Section4.

Figure 6. Performance based on RSSI reading from the previous round.
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Despite the above fact, the RSSI information can still béui$er scheduling decisions based on the
previous round outcomes, and we devised a strategy to centinstrengths d¥lipping and Greedy
RSSI SortingThe main benefit oFlipping comes from the long-term effect, where sacrificing some of
the performance in the current round allows more gains im#h round (by having more recent link
state information). On the other har@reedy RSSI Sortinglgorithm considers short-term benefits by
prioritizing highly volatile links. Thus, we define the “R&Sorted Flipping” (or, for brevitySorted
Flipping) algorithm as follows.

Similar to our previous strategies, the hub defines two ggafipodes: those that should be scheduled
as early in the round as possible (the “Early” group), andiecsely, as late in the round as possible
(the “Late” group). Previously, the “Late” group corresped to the subset of nodes with bad links
and the “Early” group only contained those with good linkst bow we allow more flexibility. More
specifically, the steps taken by tBerted Flippingstrategy are as follows:

1. Initially, the nodes are equally split between the two goumpa random manner.

2. Every round, each node is moved to the opposite group urlésked to transmit in the previous
round, in which case it is forced to the “Late” group.

3. Slots are assigned by increasing RSSI order in the “Earlguigrand by decreasing order in the
“Late” group. If a failure happened in the previous rounditthode is assigned a large negative
RSSI value, implying that it will be scheduled as late as ibss

Note that if the RSSI reading of each node remains constanssaconsequent rounds, then the
algorithm will behave exactly as simpHipping. From Figure6 it is evident thatSorted Flipping
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consistently improves the performancerdpping, and the gain is most pronounced for large values of
the attenuation outage threshold.

6. Conclusions

To improve the reliability in Body Area Networks, we have geated a framework for variable TDMA
scheduling, where transmission slots are assigned to tades! on the information about their wireless
links, with the goal of minimizing transmission failuresedto bad channel state. Based on a two-state
Gilbert link model we have developed the simple yet effediNpping strategy, which creates an optimal
slot allocation for a single TDMA round when the links of afides are identical. Additionall¥lipping
has several other desirable characteristics, namelyrivialtto compute and performs well in practical
scenarios, where wireless links of the sensor nodes areonobdpeneous.

Furthermore, we have conducted additional evaluatioestyron an experimental set of RSSI traces,
reinforcing the main scheduling principles and extendimg Rlipping strategy to account for RSSI
information, making more informed scheduling decisionss important to emphasize that, while these
strategies were inspired by a two-state Markov channel madkeir operation is based only on the
outcome of each transmission directiye( the success/failure of the transmission, or the measured
RSSI value), and does not require @neriori knowledge of any statistical parameters of the links. We
have shown that up to 45% of all losses caused by bad chamte] san be avoided simply by smarter
allocation of TDMA slots if instantaneous channel statevalable; or, in a more realistic setting where
only the previous round outcomes are used for schedulingpges, up to 10% of all transmission failures
can be prevented.

We highlight that all the techniques proposed in this pageerate by varying the transmission
schedule of sensor nodes only, and the performance impewsnare achieved without consuming
any additional energy (e.g., by retransmissions) or irgingathe latency of incoming packets. It is
worth noting that in a separate workJ we have shown that variable scheduling techniques coatiou
perform well when retransmissions are employed to furthergase reliability. More specifically, if the
retransmission mechanism follows the same schedulingiptes, taking into the account the wireless
link state information of sensor nodes, then the religbifitetric can be further improved for the same
amount of extra energy spent on retransmissions.

Our study has aimed to demonstrate the benefits of variahkdsding at a proof-of-concept level.
There are many practical issues that remain to be address#et idesign of a full MAC protocol
incorporating the ideas of this paper ar2@][(e.qg., the structure of a beacon packet, overcoming losses
of management packetsic). The implementation of such a MAC protocol in a simulatidatform
(Castalia) and in real devices is the subject of ongoing work
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Appendix

Proof of Lemma 1

Consider an allocatior that violates the lemma claim.e., such thatk'(i) > K(j) for some
i € Gandj ¢ G. Using the definition op(k) (Equation (R))), we calculate the change in the target
value @) if the assignments afand; are swapped. We do so in two steps, first computing the change
pi(K(j)) — pi(K(i)) from moving linki to slot £ (;), and then similarly the effect of moving linkto
slot K (1).
Pi(K (7)) = pi(K (D) = (1= Si) - (1 = V)9 — (1 = 1)) > 0; (5)

pi(K (i) = p;(K(j) = S; - (L = V)Y — (1 = V))*) > 0; (6)
We observe that both links improve their success probggslds a result of the swap. Consequently,
the assignmenk’ cannot be optimal.

Proof of Lemma 2

The first and second claims of the lemma are essentially &itiepef Lemma () and follow trivially
from the monotonicity op;, p;.

Consider an allocatioris that violates the third claim of the lemmag., K (i) > K(j) and
K'(i) > K'(y) forsomei, j € G. The probability of linki to be successful in the next round is then given
by pi(n—K'(i)+ K (7)), wherep; is defined by the second case ¥, (@and similarlyp;(n—K'(j)+ K (j))
for link 5. We now calculate the gain in the optimization targétif the assignments of and j are
swapped:

[pi(n = K'(i) + K (7)) + ps(n — K'(j) + K(2))] -
[pi(n = K'(i) + K@) + p;(n — K'(j) + K(5))] =
(1= S;)(1 = V) FOHEO) 4 (1 = 85)(1 — V) DR -
(1= S3)(1 = Vi) HOTED — (1= 85) (1 = V) OHED (@)
Since the parameters of all links are identical, we can desiet S; = 5;, V' = V; =V}, and obtain
(1-5) [(1— V)an/(i)JrK(j) —(1— V)an’(i)JrK(i) + (1= V) KOO _ (1 V)an/(j)JrK(J')] -
(1-29) [(1 — VRO (1~ V)"—K’U‘)] [ =VFO — (1 -)FD] >0 (8)

sincen — K'(i) < n — K'(j) andK(j) < K(i). This shows that swapping the allocations @ind j
improves the target valud); consequently’ cannot be the optimal scheduling.

The proof of the fourth lemma claim follows a very similar @ation to the above, and is omitted
for brevity.
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