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Abstract: In this paper, we propose an application of a compressive imaging system to the 
problem of wide-area video surveillance systems. A parallel coded aperture compressive 
imaging system is proposed to reduce the needed high resolution coded mask requirements 
and facilitate the storage of the projection matrix. Random Gaussian, Toeplitz and  
binary phase coded masks are utilized to obtain the compressive sensing images. The 
corresponding motion targets detection and tracking algorithms directly using the 
compressive sampling images are developed. A mixture of Gaussian distribution is applied 
in the compressive image space to model the background image and for foreground 
detection. For each motion target in the compressive sampling domain, a compressive 
feature dictionary spanned by target templates and noises templates is sparsely represented. 
An l1 optimization algorithm is used to solve the sparse coefficient of templates. 
Experimental results demonstrate that low dimensional compressed imaging representation 
is sufficient to determine spatial motion targets. Compared with the random Gaussian and 
Toeplitz phase mask, motion detection algorithms using a random binary phase mask can 
yield better detection results. However using random Gaussian and Toeplitz phase mask 
can achieve high resolution reconstructed image. Our tracking algorithm can achieve a real 
time speed that is up to 10 times faster than that of the l1 tracker without any optimization.  

Keywords: compressive imaging; coded aperture; compressive sensing; motion detection  
and tracking 

 

OPEN ACCESS



Sensors 2012, 12 14398 
 

 

1. Introduction 

In the field of computer vision, video surveillance is always an important tool in a variety of 
security applications. The challenge in video surveillance systems is that the use of conventional 
imaging approaches in such applications can result in overwhelming data bandwidths. To solve this 
problem, researchers generally compress those high-resolution video streams by using various data 
compression algorithms to reduce the overall bandwidth to a more manageable level. However, the 
optics and photo detector hardware must still operate at the native bandwidth, which seriously wastes 
valuable sensing resources and increases overall system cost. In fact, in video surveillance systems 
moving objects occupy only a small part of the full image, and a large portion of any obtained image 
data is redundant, such as the static background in the field of view that is repeated in every frame. We 
thus pose the following question: could we directly obtain compressed images during the collection 
process while ensuring that relevant information is preserved, only using these compressive 
measurements for detection and tracking of objects in motion?  

The new emerging theory of compressive sensing (CS) demonstrates that it is possible to 
reconstruct signals perfectly or robustly approximated with far fewer samples than the Shannon 
sampling theorem implies, when signals are sparse in some linear transform domain [1,2]. In fact, 
almost all images are sparse and compressible. Based on this assertion, a new research direction on 
compressive imaging (CI) has been developed [3]. The objective of a compressive imager is to design 
optical sensors that can collect linear random projections of a scene onto a small focal plane array  
and allow sophisticated computational methods to be used to recover the original scene image.  
CI has valuable implications for image acquisition fields, especially in fields with limited power, 
communication bandwidth and image sensor hardware, such as distributed camera networks, camera 
arrays and IR or UV cameras, and several promising compressive optical imaging architectures have 
been proposed. Although the field of CI is rapidly becoming viable for real-world sensing applications, 
little attention has been paid on motion target detection and tracking by using compressive sampling 
images, which could be an important application field of practical compressive imaging systems. In 
this paper, our goal is to optimize the optical CS imaging process not only to collect data in a 
compressed format, but also to perform motion target detection and tracking algorithms directly in a CI 
surveillance system.  

The main contributions of this research can be summarized in the following three aspects: first, we 
propose a coded aperture lens array optical system to realize CS imaging. This architecture can 
effectively reduce the needed high-resolution coded mask requirements and facilitate the storage of the 
projection matrix. Second, we describe a motion detection algorithm that is directly employed by using 
CI data without recovering traditional images. A mixture of Gaussian distribution is applied to model 
the background image directly in the CS space. Third, a real-time CS l1 tracking algorithm which is  
10 times faster than the l1 tracking method is proposed.  

The rest of this paper is organized as follows: in Section 2 the related work on the compressive 
sensing theory, state of the art CS imaging and motion detection and tracking algorithms using CS 
theory is reviewed. In Section 3, CS imaging based on the coded aperture lens array system is 
discussed. In Sections 4 and 5, motion detection and tracking algorithms applied directly on 
compressive sampling space are exploited. Experimental results for our CI optical system and the 
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motion detection and tracking methods are presented in Section 6. In Section 7 we draw some 
conclusions from the results of our simulation study. 

2. Related Work 

2.1. Background of CS 

Consider a scene represented as a vector X of length N. The CI camera observes the scene and 
generates a measurement vector Y of length M. In a noise free scenario, each of the M elements in the 
measurement Y represents a projection of the scene X onto the basis vectors comprising the projection 
matrix Φ. In matrix vector form, this set of linear equations can be expressed as:  
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or: 

XY Φ=  (2)

where the dimensions of the projection matrix Φ are M × N, and each row of Φ represents a sampling of 
the underlying image signal. If image signals are sparse, such signals can be expressed by a set of 
coefficients θєRN in some orthonormal basis N NR ×Ψ ∈ : 

θΨ=X  (3)

In many cases, the basis [ ]nψψψ ...21=Ψ can be chosen so that only NK <<  coefficients have 
significant magnitude. The image signal can be called K-sparse. The key principle of CS is that, with 
slightly more than K well-chosen measurements, a K-sparse signal can be recovered by multiplying it 
by a random projection matrix NM×Φ . Here M is significantly smaller than N but larger than K. 
Substituting Equation (3) into Equation (2) we observe that: 

θΦΨ=Φ= XY  (4)

CS addresses the problem of solving for X when the measurements are much smaller than original 
image signals. This is generally an ill-posed problem, because there are an infinite number of candidate 
solutions for X. Nevertheless, the CS theory provides a set of conditions that, if X is sparse or 
compressible in a basis Ψ , and Φ in conjunction with Ψ satisfies a technical condition called the 
Restricted Isometry Property (RIP):  
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2

2
2

2
2 11 xxx δδ +≤ΦΨ≤−  (5)

Candes and Tao [4,5] show that the signal X can be exactly recovered from few measurements by 
solving a l2 – l1 minimization problem: 
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Here the regularization parameter λ > 0 helps to overcome the ill-posed problem, and the l1 penalty 
term drives small components of θ to zero and helps promote sparse solutions. In fact, the RIP 
constrained condition of Equation (5) suggests that the energy contained in the projected image Y is 
close to the energy contained in the original image X.  

2.2. CI 

Compared with conventional camera architectures, the CI camera is specifically designed to exploit 
the CS framework for imaging. For example, the single pixel camera designed by Rice University 
differs fundamentally from a conventional camera [6]. A programmed digital micro-mirror device is 
used to perform linear projections of an image onto a single optical photodiode. In this type of optical 
architecture, the system cycles sequentially through the rows of the projection matrix Φ  to determine 
the measurement elements one at a time. Any arbitrary pattern of values in the domain [0,1] can be 
easily used by reprogramming the control software. However, as the measurement elements of y are 
measured sequentially, dynamic imaging is inherently time consuming. Considering the dynamic scene 
imaging problem, researchers have proposed some other optical CI systems. Rather than measuring a 
sequence of a scene image to a single pixel, they make a parallel measurement of the original scene 
image onto a small set of pixels. For example, the Duke University group describes the design of 
coded aperture masks for super resolution image reconstruction from a single, low-resolution, noisy 
observation image [7,8]. This architecture is simple and highly suitable for optical CS imaging because 
all measurements are collected at one time. More recently, based on their prior work, Harmany et al. [9] 
proposed a coded aperture keyed exposure sensing paradigm to realize spatio-temporal compressive 
sensing imaging. However, how to make the random coded aperture practically remains a key problem 
that needs to be solved. Fergus et al. reported a compact CI camera that uses a random lens [10]. This 
approach can achieve an ultra-thin optical system design and can be applied to numerous practical 
applications. However obtaining the sensing matrix from these random lenses is difficult. Shi et al. [11] 
proposed a compressive optical imaging system based on spherical aberration. Spherical aberration is an 
optical phenomenon attributed to the intrinsic refraction property of a spherical lens. The larger the 
curvature of the lens surface, the more serious the aberration will be. The optical structure of this 
architecture only needs a lens with significant spherical aberration. Although the research on this 
method is being undertaken, the method by which to design and to manufacture this special lens may 
be not easy. In [12,13], Neifeld et al. proposed an adaptive feature-specific imaging system for face 
recognition tasks.  

In summary, all the aforementioned compressive sampling strategies satisfy the following features: 
each element xi in the source image contributes to all compressed measurements { }myyy ...21  and 
each compressed measurement yi is a linear combination of all source elements { }1 2 ... nx x x . The 
coding of a particular pixel yi is relatively uncorrelated with that of its neighbors.  
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2.3. Motion Targets Detection and Tracking by Using CS  

In surveillance systems, background subtraction is commonly used for segmenting out objects of 
interest in a scene. However background subtraction techniques may require complicated density 
estimates for each pixel, which become burdensome in the case of a high-resolution image. In fact, 
performing background subtraction on compressed images, such as MPEG images, is not novel. In [14], 
the authors performed background subtraction on a MPEG-compressed video by using the DC-DCT 
coefficients of image frames. Toreyin et al. [15] similarly used this technique on wavelet representation. 
However, our technique focuses on CS imaging data, not on compressed video files. Moreover for 
motion tracking algorithms, Kalman filter, particle filter and mean shift methods are often used for 
tracking motion targets. However higher data dimensionality may be detrimental to the real time 
performance of tracking, which will lead to greater computational complexity when performing the 
density and background model estimations.  

Compared with the information that is ultimately of use, researchers have begun to consider 
whether such a large amount of image data is substantially necessary. New motion target detection and 
tracking strategies need to be developed. With the emergence of CS theory, researchers have begun to 
engage in motion detection and tracking algorithms by using CS data. For example, [16] describes a 
method to directly recover background subtracted images by using the CS theory. A single Gaussian 
distribution background model is employed and a compressive single-pixel camera is used to obtain 
the compressive sampling images. However the researchers need to recover the original image to 
update the background model and a single-pixel camera is used to obtain compressive images, which is 
time consuming and unsuitable for dynamic scenes imaging. In [17], compressive measurements of a 
surveillance video sequence are decomposed into a low rank matrix and a sparse matrix. The low rank 
matrix represents the background model, and the sparse components are utilized to identify the moving 
objects. The augmented Lagrangian alternating direction method is employed to solve the low rank and 
the sparse matrix simultaneously. However this algorithm requires a video sequence to identify the 
moving targets, which cannot be used in real time applications. In [18], authors propose a signal 
tracking algorithm the use compressive observations. The signal being tracked is assumed to be sparse 
and with slow changes. Compressive measurements are obtained by projecting the known signal xi 
onto a matrix Φi, which retains only the columns of Φ with indices that lie in xi. A Kalman filter in the 
compressive domain is utilized to estimate signal changes. This algorithm is only suitable for stationary 
or slowly-moving objects in surveillance scenarios. Wang et al. [19] developed a compressive particle 
filtering algorithm for moving targets tracking with compressive measurements to avoid image 
reconstruction procedures. Recently, Mei et al. [20] proposed a robust l1 tracker. Each motion target is 
expressed as a sparse representation of multiple pre-established templates. The l1 tracker demonstrates 
promising robustness compared with a number of existing trackers. However computational complexity 
hinders its real time applications.  

3. Coded Aperture CI Array 

Developing practical optical systems to exploit CS theory is a significant challenge. Researchers 
have proposed several CS imaging architectures and have tested these architectures in the laboratory 



Sensors 2012, 12 14402 
 

 

(see Section 2.2). As Stern proposed in [21], the typical size of a conventional image is megapixels  
(N = 106). For CI system it needs to store the projection matrix NM×Φ , which is M times larger than N 
and can reach 1012

 maximally. Data storage and the computation for Equation (6) will be challenge. 
Furthermore to calibrate projection matrix NM×Φ , N point spread functions have to be measured, which 
is exhaustive and time consuming. In order to solve the aforementioned problems, we propose a coded 
aperture array optical system to realize CS imaging. Figure 1(a) shows the architecture of our CI 
system. The general design is based on a 4f system, which comprises of a Fourier transform lens array, 
an inverse Fourier transform lens array and the corresponding phase-coded masks located between 
these two lens arrays. For each phase coded 4f system (see Figure 1(b)), the first lens is a Fourier lens, 
on the focus plane of the Fourier lens it produces a frequency spectrum of the light beam 
corresponding to the Fourier transformation. Placing a spatial light modulator on this plane to 
modulate the phase of lights, a phase coded “frequency image” can be obtained. After that we use 
another Fourier lens to transfer the modulated frequency spectrum to spatial image domain. Thus 
through a phased coded 4f system, the scene we wish to image can yield a phase coded measurements 
on detector elements, and finally can be digitally post processed to reconstruct the original scene. For a 
megapixel image, if we consider a 9 × 9 4f subsystem, the original image will be separated into 9 × 9 
blocks. For each block, the image data will be 1/81 

 
of the original image. Therefore the stored sensing 

matrix ( )B BM N
B B BM N×Φ <<  of each block will be at least 1/81 × 1/81, which is only 1/6561 of a single 

aperture CI system. Using separable scheme can effectively reduce the high resolution requirements 
coded mask needed and facilitate the storage of the coded matrix.  

Figure 1. (a) Optical compressive imaging system. (b) A typical 4F optical system. 

 
(a) (b) 

For each 4f subsystem, the action of each phase-coded mask can be considered as implementing a 
linear projection function across a block of original scene. Each block data collected by a compressive 
imaging 4f subsystem is represented as: 

( * )B By D h x=  (7)

where * denotes convolution, h is the phase-coding mask, and D is the random sampling operation of 
the scene. As shown in [22,23], the convolution of h with an image x can be represented as the 
application of the Fourier transform to x and h. In matrix notation, Equation (7) can be expressed as:  

1( * ) ( )B B B
hy D h x D F C Fx−= =  (8)
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where F is the two-dimensional Fourier transform matrix and hC  is the diagonal matrix of the )(hF . If 
the matrix production FCF h

1−  satisfies the RIP, we can accurately recover the original image Bx  with 
high probability when the compressive measurements )log( knCkm ≥ . After obtaining all CI signals in 
each 4f subsystem, the block CS algorithm can be used to reconstruct original signals. Thus by 
designing such a special optical system, we can acquire compressed imaging measurements. 

4. Motion Objects Detection Based on CS Images  

As previously mentioned, our CI system will segment the CS image into small blocks by using lens 
arrays. In this section we will demonstrate the method by which to detect CS motion targets directly 
for each CS imaging block without performing any recovery algorithm. This motion detection 
algorithm in the CS space is robust and has low computational cost, which will make it suitable for 
embedded systems. 

4.1. Background Model 

For motion detection algorithms background images are generally assumed to be temporally 
stationary, whereas moving objects or foreground objects change over time. Suppose that xb and xt are 
real background and test images in the scene and xd is a difference image or a foreground image. Given 
that the foreground image is composed by those pixels which only differ from background images. 
Therefore the foreground image is always smaller than the background image, and can be considered 
as a sparse signal in a special transformation domain. Suppose that we obtain compressive 
measurements yb of training background images xb and yt the compressed measurements of current 
images, the compressive measurements of the foreground image yd can be expressed as:  

( )d t b t t b b d dy y y x n x n x n= − = Φ + − Φ + = Φ +  (9)

where nt is an additional Gaussian noise of yt, nb and nd are the noises of yb and yd respectively. By 
solving a l2 – l1 minimization problem [4–5]: 

1

2
22

1minargˆ d
T

ddd xxyx Ψ+Φ−= λ  (10)

The foreground image xd can be exactly recovered. In Equation (10), Ψ can be the wavelet basis 
which is always used as the sparse basis. Although detecting moving objects in the compressive 
domain can be easily achieved by using a background subtraction algorithm and recovering the 
foreground image in the real world space with l2 – l1 minimization, reconstructing the foreground 
image frame by frame is time consuming. Can we detect the moving object directly in the compressive 
domain without recovering the foreground image? If the answer is positive, it will dramatically reduce 
the computational cost and energy consumption of surveillance systems.  

The Gaussian background model is often used to segment the foreground and background region in 
conventional motion detection algorithms. Each pixel ),( yx  over a time series Tt ......2,1=  is modeled 
by a Gaussian distribution ),(~),( 2 IuNyxI σ . I2σ  is the covariance matrix of the Gaussian model, and 
N is a Gaussian probability density function. According to the Gaussian theorem, if 1M , 2M  are two 
independent Gaussian random variables, with means μ1, μ2 and standard deviations σ1, σ2, then their 
linear combination will also be Gaussian distributed ),(~ 2

2
22

1
2

2121 σσμμ babaNbMaM +++ . Therefore it 
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is reasonable to assume each compressive measurement with a Gaussians distribution 2( , )i iN y Iσ . 
Here the mean value is i iy x= Φ . When the scene changes to include an object that was not part of the 
background model, theoretically every compressive pixel value , 1, 2......iy i m=  will be against the 
existing Gaussian distributions. In order to handle image acquisition noise and illumination changes, 
we use a mixture Gaussian distribution [24,25] to model the background of compressive images and a 
simple threshold test to declare motion targets.  

Using K Gaussian distributions, the probability density function of each compressive measurement 
at time t can be expressed as:  

∑ ∑
=

×=
k

j
tjitjititjiti ypwyP

1
,,,,,,,, ),,()( μ  (11)

where tjiw ,, , tji ,,μ  and tji ,,Σ  are the estimates of the weight, mean value, and covariance matrix of the j 
th Gaussian distribution of the i th pixel at time t in the mixture model respectively. The j th Gaussian 
probability density function ),,( ,,,,, tjitjitiyp Σμ  is defined as: 

))()(
2
1exp(

)2(

1),,( ,,,,,,,,
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1
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2

,,,,, tjititji
T

tjiti
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ntjitjiti yyyp μμ
π

μ −Σ−−
Σ

=Σ  (12)

when a compressive measurement belongs to one Gaussian distribution, its weight parameter tjiw ,,  
will be large and the standard deviation tji ,,σ  will be small, which indicates that the measurement 
belongs to a distribution with high certainty. In this paper, the background model parameters tjiw ,, ,

tji ,,μ  and tji ,,Σ  are estimated by using EM algorithm [26].  

4.2. Background Model Update 

With static background and lighting, only additional Gaussian noise is incurred in the sampling 
process, the density of background image could be described by a Gaussian distribution centered at the 
mean pixel value. However most surveillance videos involve lighting changes, shadows, slow moving 
objects and objects introduced to or removed from the scene. It is very necessary to update the 
background model continuously. Otherwise, errors in the background accumulate over time and finally 
trigger unwanted detections.  

To update the background, the background parameter of pixel 1, +tiy  at time instant 1t +  can be 
estimated by using following equations:  

αα +−=+ tjitji ww ,,1,, )1(ˆ  (13)

1,,,1,, )1(ˆ ++ +−= titjitji yρμρμ (14)

, , 1 , , , ,
ˆ (1 )i j t i j t i j tρ ρ+Σ = − Σ + ΔΣ  (15)

where α  is the leaning rate and the parameter ),,( 1 jjtyN Σ= + μρ . If the pixel 1, +tiy  matches one of 
the K distributions and is declared as the foreground, then that matched distribution is updated as 
defined above. Otherwise, the distribution with the smallest weight is discarded, and initialized to this  
pixel’s value.   
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4.3. Motion Detection Based on Compressive Sampling Images 

As described in [27], at time t the K distributions of the background model are ordered in 

descending order based on ,

,

j t

j t

w
σ

.This ordering supposes that a background pixel corresponds to a high 

weight with a weak variance due to the fact that the background is more static and the background 
pixel value is practically constant. The first B Gaussian distributions which exceed a certain threshold 
T  are considered a background distribution: 

,
1

arg min( )
b

j tb j
B w T

=

= >∑   (16)

The other distributions are considered to represent a foreground distribution. At time 1t + , if a pixel 
matches a Gaussian distribution of any B distribution, this pixel will be identified as “background”, 
otherwise the pixel is classified as “foreground”. If no match is found with any of the K Gaussians, the 
pixel is also classified as “foreground”. We declare that there is a new object when the result of 
Equation (17) is above a threshold. 

2

,

1 1 ,

M k
i i j

y
i j i j

y
E

μ
σ= =

−
=∑∑  (17)

5. Motion Objects Tracking Based on CS Images 

5.1. CS-l1 Tracking Algorithm 

The l1 tracker proposed by the authors in [20] is a promising motion target tracking algorithm, 
which can handle occlusions, corruption, and lighting changes issues. Their algorithm is based on a 
particle filter framework and each tracking target T dx ∈  is sparsely represented in a feature 
dictionary ( 2 )d Nt dA × +∈  spanned by target template sets d NtT R ×∈  and noises templates sets [ ]I I−  as: 

[ , , ]T

a
x T I I e Ac

e

⎡ ⎤
⎢ ⎥= − + =⎢ ⎥
⎢ ⎥−⎣ ⎦

 (18)

They use particle filter to estimate the posterior distribution ( )T
t tp s x . The state variable ts  is 

modeled by affine transformation parameters of a target object at time t , and the observation tx  is the 
corresponding object cropped from images by using ts  as parameters. Let { }1 2, ,..., nS s s s=  be the n

state candidates and { }1 2, ,...T T T TnX x x x=  be the corresponding target candidates at time t . The target 
candidate is estimated by finding the smallest projection errors: 

2

1,...,

ˆ arg max ( )( );0; )T T
T T

x X
j d

x x Ac j σ
∈

=

= −∏  (19)

An l1 optimization algorithm is used to solve the sparse coefficient c as follows:  
2

12

1ˆ arg min
2

Tc x Ac cλ= − +  (20)

A template update scheme is subsequently employed to reduce the drift. The main problem of the l1 
tracker is the extremely high dimensionality of its feature dictionary space, which leads to a heavy 
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computation burden. Inspired by their outstanding work, we aim to accelerate their tracking algorithm 
and discuss its application in CI systems. According to Equation (18), in the context of CS the 
corresponding compressive measurements Ty  of Tx  can be represented by:

 
 

' 'T Ty x Ac= Φ = Φ  (21)

where ' m d×Φ ∈  is a projection matrix. Obviously, the sparse coefficient c in Equation (21) can also 
be recovered with high probability by using TV optimization algorithm [28], OMP algorithm [29], 
gradient projection algorithms [30], LARS algorithm [31], and other l1 – l2 algorithms:  

2 2

1 12 2

1 1ˆ arg min ' arg min
2 2

T Tc y Ac c y Dc cλ λ= − Φ + = − +  (22)

The feature dictionary A in Equation (18) is substituted by a sparse projection dictionary 'D A= Φ , 
which can be considered as a compressive measurement of original feature dictionary A. As [20] does, 
the sparse feature dictionary D should also be updated to avoid drift. Clearly, the dimension of 
dictionary ( 2 )m Nt dD × +∈  ( m d<< ) is reduced by using the random projection matrix 'Φ . This will 
significantly speeds up the process of solving Equation (22).  

5.2. Compressive Target Image in CI system 

After observing Equation (21), we have a intuitive idea, whether the compressive measurements 
Ty  can be found in a CI system. Suppose that the motion target Tx has been detected through our 

motion detection algorithm and then reconstructed and labeled (see Figure 2), then we can utilize a 
projection matrix TΦ  to obtain compressive measurements image Ty . Here TΦ is a projection matrix 
by only keeping those columns of Φ  whose indices lie in Tx . For our CI system, the projection 
matrix Φ  can be accurately identified by an optical calibration method. Therefore, given the location 
index of motion targets, the projection matrix TΦ  can be acquired. However, with the movement of 
target Tx , the projection matrix TΦ  changes as well. In order to simplify our tracking algorithm, the 
projection matrix 'Φ  used in Equation (21) is fixed. The compressive dictionary D can be constructed 
with these compressive target templates. Figure 3 illustrates our motion detection and tracking 
framework that uses CS sampling images.  

Figure 2. Calculation of CS motion target. 
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Figure 3. Detection and tracking framework using CS images. 

 

6. Experiments 

6.1. Optical System Simulated in Matlab  

Romberg has proven that the random Toeplitz or Gaussian matrix is incoherent with any 
orthonormal basis Ψ with high probability [32]. In [33], a random binary matrix is also proven to be 
suitable for a projection matrix. Therefore in our experiments, random Gaussian, Toeplitz and binary 
matrixes are all utilized for phase coded masks. The CAVIAR database provided by INRIA Labs at 
Grenoble [34] is utilized as original image sequences. In an outdoor sequence, each frame has a size of 
288 × 384 with dynamic range [0,255] and motion objects have been generated manually. Figure 4 
shows three different phase coded masks we used in our simulation experiments. The corresponding 
compressive image using random Gaussian phase mask via Matlab simulation is shown in Figure 5. 

Figure 4. Different mask types. 

  
Random Gaussian Mask Random Binary Mask Random Toeplitz Mask 
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Figure 5. Original image and the corresponding compressive image via Matlab simulation 
platform. (a) Original image; (b) CS image using random Gaussian phase coded mask. 

 
(a) (b) 

6.2. Performance of Reconstruction Algorithm 

A total variation (TV) optimization algorithm is used to reconstruct the original image from 
compressive measurements [28]. The reconstruction is performed using several measurement rates 
ranging from 50% to 5% and with random Gaussian, Toeplitz and binary phase coded masks, 
respectively. In our experiments, the signal-to-noise ratio (SNR) is applied to evaluate reconstruction 
performance. Figure 6 shows the reconstruction results with a random Gaussian phase mask.  

Figure 6. (a). Reconstruction of background images and test images with sampling  
rates from 50% to 5%, and iterations = 800. (b). The foreground compressive image 
reconstructed with sampling rates from 50% to 5% and iterations = 800. 

 

  
50%, SNR = 20.3 20%, SNR = 13.1 10%, SNR = 9.2 5%, SNR = 7.4 

(a) 

 
50%, SNR = 16.5 20%, SNR = 12.8 10%, SNR = 11.3 5%, SNR = 10.2 

(b) 
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From Figure 6(a), we can see that the measurement rate can reduce to 20% without sacrificing 
performance. While a further decreasing measurement rate, the performance is gradually reduced. 
With rates as low as 5%, the background and test images are not recovered accurately. Figure 6(b) 
shows the reconstruction results of foreground yd. We can clearly find in Figure 6(b) that the sparser 
foreground can be recovered correctly from yd with rates as low as 5%. These simulation results can be 
explained by the following assumptions: when the sizes of moving objects are smaller than the original 
image sizes, we can assume that the sparsity of the motion image Kd is smaller than Kb and Kt. 
According to the CS theory, the number of compressive measurements necessary to reconstruct 
original image can be given by )/log( KNK . Therefore, if Kd < Kb ≈ Kt, the number of compressive 
measurements will be smaller than the background and test images.  

Table 1 compares the reconstruction results by using different phase coded masks. Here, the 
sampling rate decreased from 100% to 5%, the same TVAL recovery algorithm is utilized to 
reconstruct the original image, and the SNR is taken as the average of 10 tests. According to Table 1, 
the reconstruction algorithm that employs random Gaussian and Toeplitz masks achieves superior 
recoverey performances than a random binary mask.  

Table 1. Reconstruction performance with different phased coded mask styles.  

SNR 100% 70% 50% 30% 10% 5% 
Binary 32 15.9 13 10.3 7.2 5.7 

Gaussian 32.1 26.6 20.3 14.4 9.2 7.4 
Toeplitz 32 25.7 19.5 14.1 9.0 7.3 

6.3. Performance of Motion Detection Algorithm 

As presented earlier, we utilize a mixture Gaussian distribution to model the background. The 
foreground detection algorithm described in Section 4.3 is used to declare motion objects in 
compressive sampling space. The motion detection algorithms that use random binary, Gaussian, and 
Toeplitz phase masks are denoted by RB, RG, and RT respectively in this paper. Figure 7 shows the 
energy curves computed by using Equation (17) for three different phase mask systems with sampling 
rates of 10%, 50% and 70% in a 64 × 64 CI block (which included a motion target). Comparing 
random Gaussian, Toeplitz and binary projections, the energy value collected of compressive 
measurements is ordered as binary gaussian toeplitzE E E> > . With the decrease of the sampling rate, the 
energy values computed by using different phase coded masks all reduced gradually. The CS image is 
declared to include motion targets by using following equation: 

If log yE threshold≥ , motion target=true 

Otherwise log yE threshold< , motion target=false 
(23)

 

where log( )buthreshold E Cσ= + , yE  is the energy computed by using Equation (17), and bE μ  is the 
mean energy of the background CS image.σ  is the standard variance of Eμ  and C is a constant. 
  



Sensors 2012, 12 14410 
 

 

Figure 7. Energy curves computed in a 64 × 64 CI block using different phase masks with 
sampling rate 70%, 50% and 10% respectively. 

 

 

 
  



Sensors 2012, 12 14411 
 

 

We employ the Area Under Curve (AUC) metrics to evaluate the performance of our motion 
detection algorithm. Table 2 shows that the AUC values are affected by the constant C. The motion 
detection performance is the best with constant C = 8. Meanwhile the motion detection performance of 
RB is slightly better than that of RG and RT. The reconstruction performance of RG and RT is better 
than RB (see Table 1). This observation can be explained by the CS theory. In [32], researchers have 
proven that random Gaussian and random Toeplitz is incoherent with almost all sparse basis Ψ and 
thus can recover compressive signals with high possibility. While the binary matrix we used in our 
experiments are 0–1 matrices, which has been shown that 0,1-matrices require more than O  
(k log (n/k)) rows to satisfy the RIP [35]. Therefore when the sparsity of the original image is fixed, we 
need more compressive measurements to recover original signals by using a random binary mask. 

Table 2. AUC for motion detection using different thresholds and 50%, 10% sampling rates. 

AUC 
RB 

(50%) 
RG 

(50%) 
RT 

(50%) 
RB 

(10%) 
RG 

(10%) 
RT 

(10%) 
log( 6 )buth E σ= +  0.975 0.8875 0.9375 0.9625 0.825 0.8 
log( 8 )buth E σ= +  0.975 0.9625 0.9625 0.95 0.9625 0.9625 
log( 15 )buth E σ= +  0.9375 0.95 0.95 0.925 0.95 0.95 

6.4. Performance of Our Motion Tracking Algorithm 

6.4.1. Tracking Efficiency 

To evaluate the performance of our tracking algorithm, three videos were used in the experiments. 
The first test sequence is an infrared (IR) image sequence that was also used in [20]. CAVIAR [34] 
and PET2001 databases [36] were also used to examine our algorithm in terms of efficiency and 
accuracy. In our experiments, a random Gaussian projection matrix was performed with the dictionary 
dimension reduced from 100% to 83%, 55%, 22% and 10%. We retained the other experimental 
parameters as in [20]. In Table 3 we recorded the elapsed time of the l1 tracker and our CS tracker for 
each test experiment. According to Table 3, our CS tracker is 4–5 times faster than l1 tracker,  
even without dimensional reduction operation. With the decrease in sampling rates, our CS tracker is  
10 times faster than l1 tracker. Figure 8 shows our tracking results with three video sequences.  

Table 3. The running speed of l1 tracker and our CS tracker with 300 particles.  

 
L1 

tracker 
Our  

100% 
Our 
83% 

Our  
55% 

Our  
22% 

Our 
10% 

IR image 4.6 s 1 s 0.77 s 0.56 s 0.50 s 0.45 s 
CAVIAR 4.79 s 0.91 s 0.68 s 0.61 s 0.55 s 0.51 s 

Pets 5.14 s 0.72 s 0.63 s 0.57 s 0.51 s 0.47 s 
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Figure 8. The tracking results with our CS tracker. 

 

 

 

From the experimental results we can seen that the computation of our CS-l1 tracking algorithm  
is much cheaper. First, the reduction of templates’ dimensionality would speed up the optimization 
process. Second, probably the most important reason is that our method can lower the rank  
of feature dictionary matrix A. Mathematically, { }( ) min ( ), ( )rank AB rank A rank B≤ , therefore 

( ) ( )rank D A rank A= Φ ≤ . The rank of our CS-l1 tracker is smaller than that of l1 tracker, which accelerates 
the rate of iteration convergence obviously and hence makes it faster than its counterpart.  

6.4.2. Tracking Accuracy  

Intuitively, with the reduction of the sampling rate the tracking accuracy will decrease. Thus we 
also examine the tracking accuracy of our tracker with l1 tracker. For the PetsD2 video sequence, the 
red points are the trajectories of the motion target computed by using the l1 tracker. Cyan, blue  
and green points are positions computed using our method with a sampling rate from 22%, 55% to 
100%. As illustrated in Figure 9, the tracking approaches achieve similar performance on the video 
sequence with a sampling rate of 100%. With the decrease in sampling rates, the position error 
gradually increased.  
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Figure 9. The position of motion targets computed by using our method and l1 tracker for 
pets sequences. 

 

7. Conclusions 

We have demonstrated that by using a CI system we can detect and track objects in motion with 
significantly fewer data samples than conventional image methods. A parallel coded aperture imaging 
array, which is based on a phase-coded 4F system, is used to simulate compressive sensing images. A 
Gaussian mixture model is generated off-line for later use in on-line foreground detection directly in 
the compressive domain and a TV optimization algorithm is used for image reconstruction. A real-time 
CS tracking algorithm is proposed and then applied using compressive sensing images. For 
compressive imaging system, experimental results show that with the decrease in measurement rates, 
the recovered image performance is gradually reduced. Compared with the random binary mask, 
simulation results show that the use of random Gaussian or Toeplitz phase masks can achieve high 
resolution reconstructed images. Motion detection experimental results demonstrate that low 
dimensional compressed imaging representation is sufficient to determine spatial motion targets. The 
minimum amount of measurements to perform motion detection algorithm in compressive domain is 
fewer than the number of measurements needed to recover background and the test image. Motion 
tracking results show that we can construct a compressive dictionary and use it as a template set in the 
CS image space. With the same l1 reconstruction algorithm, our CS tracking method is 10 times faster 
than l1 tracking method. 
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