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Abstract: This paper is concerned with an intelligent predictor of energy expenditure (EE) 
using a developed patch-type sensor module for wireless monitoring of heart rate (HR) and 
movement index (MI). For this purpose, an intelligent predictor is designed by an advanced 
linguistic model (LM) with interval prediction based on fuzzy granulation that can be 
realized by context-based fuzzy c-means (CFCM) clustering. The system components 
consist of a sensor board, the rubber case, and the communication module with built-in 
analysis algorithm. This sensor is patched onto the user’s chest to obtain physiological data 
in indoor and outdoor environments. The prediction performance was demonstrated by root 
mean square error (RMSE). The prediction performance was obtained as the number of 
contexts and clusters increased from 2 to 6, respectively. Thirty participants were recruited 
from Chosun University to take part in this study. The data sets were recorded during 
normal walking, brisk walking, slow running, and jogging in an outdoor environment and 
treadmill running in an indoor environment, respectively. We randomly divided the data set 
into training (60%) and test data set (40%) in the normalized space during 10 iterations. 
The training data set is used for model construction, while the test set is used for model 
validation. The experimental results revealed that the prediction error on treadmill running 
simulation was improved by about 51% and 12% in comparison to conventional LM for 
training and checking data set, respectively.  
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1. Introduction 

Energy expenditure (EE) refers to the amount of energy that a person uses daily to complete all 
bodily activities from movement to breathing. The accurate measurement of EE from physical activity 
is a challenging problem that is important to epidemiologists, exercise scientists, clinicians, and 
behavioral researchers. Recently the need for wireless health monitoring and detection of emergency 
situations has rapidly increased [1]. Such a wireless system is used extensively, not only to estimate 
EE, but it is also useful for patient monitoring and athletic training. Previous commercial physiological 
sensors are relatively large and their power consumption is also considerable amount, so we recently 
developed a patch-type sensor module to solve these problems [2]. The leading characteristics of this 
sensor module are small size, wireless operation, low cost, light weight, and comfort for long-term 
wear, as well as integration of all required measurement parameters into a single sensor. Furthermore, 
a communication module is also integrated into the device to transmit heart rate and acceleration 
information. Oxygen exchange (VO2) is one of the most fundamental and widely recognized measures 
of EE. In general, the measurement of VO2 has been confined to laboratory settings and the use of a 
treadmill due to the sophisticated equipment required. The recent introduction of the Cosmed K4b2 
portable metabolic analyzer allows measurement of VO2 outside of a laboratory setting in more typical 
clinical or household environments [3]. This analyzer provides measurements of VO2 and VCO2 
during steady-state, submaximal exercise similar to the traditional gas exchange system [4]. The 
obtained VO2 is transformed into EE.  

There are many portable systems available. although perhaps none integrated with wireless 
connectivity. Wong [5] have developed and tested a portable device that measures energy expenditure 
per unit time of a human subject. Wixted [6] has analyzed the variance of accelerometer-count based 
energy estimates and identified mechanical, biomechanical, and anthropometrical influences. There are 
numerous portable instrumentations to measure movement [7–9]. Various methods have demonstrated 
success in classification or prediction applications [10–15]. Oliver [11] has investigated the utility of a 
variety of active accelerometer count thresholds for classifying sitting time in a sample of office 
workers. Xiao [12] has designed a prediction model using the feedforward neural network (FFNN) to 
reflect the effects of physical activities on the heart rate. In [13], a multi-step HR prediction method  
is proposed. The HR prediction problem was converted into an initial-value problem for ordinary 
differential equations. Then the Adams-Bashforth method was used to implement a multi-step 
prediction. Yuchi [14] and Xiao [15] proposed the well-known FFNN as the predictor model based on 
the relationship between heart rate and physical activity. The FFNN experimental results showed the 
potential of the predictor with the results close to the actual data. Vathsangam [23] estimated energy 
expenditure during treadmill walking using a single hip-mounted inertial sensor with a triaxial 
accelerometer and triaxial gyroscope. He performed a comparative analysis of the well-known 
probabilistic techniques in conjunction with inertial data modeling to predict energy expenditure for 
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steady-state treadmill walking. Nonlinear regression methods showed better prediction accuracy 
compared to linear methods. Lin [24] presented a wearable sensor module and two representative 
neural networks (RBFN, GRNN) for activity classification and prediction. He demonstrated the 
effectiveness of a wearable sensor module and its neural network-based activity classification 
algorithm for energy expenditure. The research in the literature mentioned above has been performed 
based on well-known neural networks [12–15,24] or statistical methods [23] from numerical data. 
However, these methods have not been considered to be knowledge representation via fuzzy  
if-then rules with meaningful linguistic labels. In general, it is frequently advantageous to use several 
computing techniques synergistically rather than exclusively, resulting in construction of 
complementary hybrid intelligent systems such as neural-fuzzy computing. The effectiveness of these 
complementary approaches has been demonstrated [21]. Therefore, our method shall be developed to 
possess intensive computational ability, together with meaningful linguistic labels [16]. 

This paper focuses on a method for designing an intelligent predictor of EE using the developed 
patch-type sensor module for wireless monitoring of a given input-output data such as heart rate (HR), 
movement index (MI), and EE. It has been demonstrated that the device used in this paper is suitable 
through reliability tests, performance evaluation of heart rate detection and movement indexes,  
as well as field tests using the Bruce protocol [2]. The intelligent predictor is designed by a  
Takagi-Sugeno-Kang-Linguistic Model (TSK-LM) with an interval prediction with the aid of fuzzy 
granulation realized via Context-based Fuzzy c-Means (CFCM) clustering [16]. This clustering 
technique builds information granules in the form of fuzzy sets and develops clusters by preserving the 
homogeneity of the clustered patterns associated with the input and output space [17–21]. The 
conventional LM was designed by linguistic contexts in the consequent part [19]. Although these 
contexts give meaningful linguistic labels, the obtained results did not show a good performance. The 
TSK type is by far the most popular candidate for fuzzy modeling and effective to develop a systematic 
approach [21]. Based on these two complementary approaches, we propose a TSK-based linguistic 
type in the subsequent work. The normal walking, brisk walking, slow running, and jogging experiments 
were performed in outdoor environments, as well as treadmill running in indoor environments [3]. The 
experiments results revealed that the proposed intelligent predictor outperformed the well-known 
methods [18,19,22]. The experimental results revealed that the prediction error on treadmill running 
simulation was improved by about 49~51% and 12% in comparison to RBFN-CFCM and conventional 
LM for training and checking data set, respectively. We also obtained 70% and 14% performance 
improvement in comparison to conventional RBFN for training and checking data set, respectively. In 
the case of outdoor environments, we obtained about 28~39% and 4~8% improvement in comparison 
to conventional LM for training and checking data set, respectively. 

The material of this paper is organized in the following fashion: in Section 2, we describe a  
patch-type sensor module to obtain the HR and MI. In Section 3, we present the intelligent predictor 
based on TSK-LM from numerical input-output physiological data pairs. In Section 4, we report the 
experimental setup and perform a comparison in indoor environments. Finally the conclusions and 
comments are given in Section 5. 
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2. Wireless Monitoring System with a Patch-Type Sensor Module  

This section covers the details of the patch-type sensor module for wireless monitoring of heart rate 
and movement index. This module consists of a sensor board, rubber board, and communication 
module. Figure 1 shows the module equipped with sensor board and silicon packaging case during 
treadmill running in an indoor environment [2]. 

Figure 1. Patch-type sensor module and Cosmed K4b2 gas system during treadmill running. 

 

The patch-type sensor board includes a Li-ion charger, USB interface connector, Zigbee RF 
module, ECG acquisition, micro-controller, voltage regulators, voltage converter, and 3-axis 
accelerometer. Here a Texas Instruments MSP 430 chip with 60 KB flash memory, 2048 SRAM 
memory, and 8 MHz clock frequency is used in the microcontroller. The input signals are interpreted 
appropriately as heart rate, heat stress, and movement index using a signal processing algorithm. 
Simultaneous, dependable real-time communication has been secured for a distance of over 400 m for 
eight people. To enable wireless exercise management, the acquired sensor data should be passed to a 
central monitoring system. In this system, a commercial Zigbee telecommunication module is used for 
data transfer [2]. Figure 2 shows the patch-type sensor board with 3-axis accelerometer and ECG 
acquisition [2]. 

Figure 2. Patch-type sensor board with 3-axis accelerometer and ECG acquisition. 
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In the heart rate monitor design, we used three electrodes for ECG measurement on the chest.  
These gel-free electrodes are mounted on a conductive adhesive patch. The ECG analog circuitry  
was specifically designed for effective motion artifact rejection during exercise. The ECG signal is 
converted into a digital signal with a sampling rate of 200 Hz for heart rate estimation. The 
performance evaluation of the heart rate detection algorithm was conducted by comparing it with the 
reference system, while changing the running speed. The average error between the heart rate monitor 
and the commercial stress ECG monitor was less than 2%.  

We used a three-axis accelerometer (MMA7260Q) to detect acceleration changes during exercise. 
This device is a cheap capacitive micro-machined accelerometer featuring good sensitivity, low power 
consumption, and very small size. With this sensor, this system can measure the athlete’s motion 
signals in the range of -6 to 6 g and calculate the movement index. We used the zero-crossing detection 
algorithm for the motion artifact rejection. This procedure reduces the probability of false-value 
extraction due to motion artifact noises [2]. The performance evaluation of the movement index was 
conducted on a feature-point extraction function. It showed good feature-point extraction characteristics 
with a maximum of 1%. Figure 3 shows data distribution of heart rate and movement index during 
treadmill running. The pairwise linear correlation coefficient between HR and MI is 0.892.  

Figure 3. Example of data distribution during treadmill running. 

 

Figure 4 visualizes theoretical acceleration waveform with feature points, feature values, and 
movement index. The movement index can be defined as the average of the triangular areas of the 
acceleration graph for each second in the acceleration waveform as shown in Figure 4. For further 
details on the theoretical acceleration waveforms, readers may refer to [2]. 
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Figure 4. Acceleration waveform and the method of defining the movement index  
(the sum of areas per second) [2].  

 

3. Intelligent Predictor by Linguistic Model 

For simplicity, we assume that the TSK-LM under consideration has two inputs x and y. Moreover, 
we assume that the number of the cluster centers in each context is equal. The output of this model is 
produced by the lower and upper bound with uncertainty because the estimated output is computed by 
the fuzzy number. The TSK-LM architecture is shown in Figure 5.  

Figure 5. Architecture of TSK-LM as intelligence predictor. 
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Every circle node of the second layer represents the membership grade of the fuzzy set associated 
with a linguistic label. Here fuzzy clustering in each linguistic context is performed in dashed-line 
rectangular area. Every node in the third layer is a fixed node labeled Σ, which computes the 
summation of overall membership grades obtained by each context. The zt, t = 1, 2, …, p, is the 
summation of membership values corresponding to the t-th context. The single node in the fourth layer 
is also a fixed node which computes the overall output as the summation of all incoming signals. 

The linguistic contexts are used to extract fuzzy rules in the CFCM clustering. In the conventional 
LM, these contexts were generated through a series of triangular membership functions equally spaced 
along the domain of an output variable. However, we may encounter a data scarcity problem due to 
small data sets included in some linguistic contexts. Thus, this problem brings about the difficulty to 
obtain fuzzy rules from the Context-based Fuzzy c-Means (CFCM) clustering [17]. Therefore, we use 
the probability distribution of output variable to produce the flexible linguistic contexts. 

The CFCM clustering method, as proposed by Pedrycz [17], is an effective approach to estimate the 
cluster centers preserving homogeneity on the basis of fuzzy granulation. In contrast to the context-free 
clustering methods, the CFCM clustering method is performed with the aid of the information 
granulation. As shown in Figure 5, CFCM clustering is performed in the second layer. Here the 
membership matrix is initialized with random values between 0 and 1. The optimization completed by 
the CFCM clustering is realized iteratively by updating the membership matrix and the cluster centers. 
The update of the membership matrix is completed as follows: 
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where tiku  represents the element of the membership matrix induced by the i-th cluster and k-th data in 
the t-th context. Here tkw  denotes a membership value of the k-th data to the t-th context. The cluster 
centers iv  are calculated in the form: 
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where the fuzzification factor “m” is taken as 2.0. When applying the CFCM clustering to numerical 
input-output data pairs, each of the cluster centers presents a prototype that exhibits certain 
characteristics of the system to be modeled. The t-th linguistic context is visualized in Figure 6, where 
[ ]+− ttt r,r,r  is a 3-element vector that determines the break points of this membership function. Thus the 

t-th consequent part combined with TSK-type is expressed as follows:  

[ ] yqxpr,r,rf tttttt ++= +−  (3)

where tf  is a vector represented by [ +− t*tt f,f,f ]. Here the parameters of linguistic contexts are 
obtained by probabilistic distribution. The linear coefficients { }tt q,p  of TSK-type are estimated by 

Least Square Estimator (LSE).  
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Figure 6. The t-th linguistic context in consequent part. 

 

The results obtained by conventional LM have shown a biased prediction error. This problem 
brings about a poor approximation and generalization ability. Therefore, we add a bias term to the 
conventional LM so that the TSK-LM can provide an unbiased prediction. The bias term is computed 
in a straightforward manner as follows: 
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where kpredict  denotes a modal value of fuzzy number produced for k-th input data point and N is the 

number of data point. The resulting fuzzy number with bias term is expressed as the following form: 

011 bfzfzfzf ttpp +⊕⊕⊗⊕⊕⊗= ""  (5)

We denote the algebraic operations by ⊗ and ⊕ to emphasize that the underlying computation 
operates on a collection of fuzzy numbers. Given the multiplication and addition for two operations, 
the final fuzzy number (model output) is computed as follows: 
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Furthermore, the lower and upper bound of model output are computed by the following form [4]: 
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Based on these bounds, we can represent the uncertain model output with fuzzy number.  

4. Experimental Results 

The system presented in this paper is a wireless, small size (6 cm × 9 cm) and light weight (41 g) 
sensor that can be patched on the chest of participants to obtain physiological data as shown in Figure 1. 
The sensor board consists of a 3-axis accelerometer and three ECG electrodes to detect heart rate (HR) 
and movement index (MI). This system can simultaneously monitor a maximum of eight participants 
in an open field over 400 meters. The Cosmed K4b2 portable metabolic system is used as the standard 
value to estimate energy expenditure (EE). Thirty participants (n = 30) were recruited from Chosun 

tr−tr +trtr−tr +tr
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University to take part in this study. The participants were advised of this study through a University 
bulletin. All of the recruited participants reported no chronic diseases or activity disabilities. Data 
regarding age, height, and weight were collected by survey. The body mass index (BMI) was 
calculated using weight (kg) per squared height (m2). Table 1 lists mean and standard deviation 
regarding the physical characteristics of the subjects. The participants were shown how to complete the 
procedure and understood the schedule based on a written paper before starting the experiment. 
Approval from the Ethics Committee of the Chosun University Medical Centre was obtained before 
beginning the study. The experiments were performed in both indoor and outdoor environments. 
Figure 7 visualizes the distribution of two input variables obtained from normal walking, brisk 
walking, slow running, and jogging in an outdoor environment and treadmill running in an indoor 
environment, respectively.  

Table 1. Physical characteristics of subjects.  

Characteristic Men (n = 17) Women (n = 13) 
Age (y) 26.0 ± 2.1 25.8 ± 3.2 

Height (cm) 169 ± 6.7 162.1 ± 6.3 
Weight (kg) 65.2 ± 9.6 52.1 ± 9.4 

BMI (kg.m−2) 22.8 ± 7.1 19.8 ± 7.1 

Figure 7. Distribution of two input variables obtained in indoor and outdoor environments.  

 

Firstly, we performed a treadmill running test in an indoor environment. The participants are tested 
on the treadmill based on the submaximal protocols. The treadmill is started at 2.7 km/h with 10% 
increase. The treadmill slope increases by 2% every three minutes. The database is recorded by the 
system in real-time around 9~12 minutes. The EE is simultaneously measured by the portable indirect 
calorimeter. In this experiment, we shall apply the TSK-LM for the prediction problem of EE as 
nonlinear regression. The EE depends on two continuous attributes, including HR and MI. The data set 
consists of 76 examples. The training and checking data set are randomly selected by 60%–40% split 
in the normalized space between 0 and 1, respectively. Ten iterations of the experiment were 
performed. The training data set is used for construction of the intelligent predictor model, while the 
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checking data set is used for intelligent predictor model validation. Thus, the resultant predictor is not 
biased toward the training data set and it is likely to have a better generalization capacity for new data. 
The prediction performance by root mean square error (RMSE) is obtained as the number of context 
and cluster increased from 2 to 6, respectively. Table 2 shows a comparison of RMSE with the 
previous prediction works. As listed in Table 2, the TSK-LM predictor showed good performance in 
comparison with the neural networks and LM. The Multilayer Perceptron (MLP) used in Table 2  
was designed by logistic activation function, back propagation algorithm, and 2-10-1 network, 
corresponding to the number of nodes in each layer. Here we used 1,000 epochs and a learning rate of 
0.01. In the design of the LM, we used three contexts and three clusters in each context, determined by 
trial and error. Although the LM has a structured knowledge representation in the form of fuzzy if-then 
rules, it lacked the adaptability to deal with nonlinear model. Moreover, we performed the experiments 
as the number of nodes in hidden layer increases from 3 to 20 in the design of Radial Basis Function 
Networks (RBFN). Finally, we determined the 20 nodes representing best performance.  

Table 2. Performance comparison of RMSE (indoor). 

 Trn_RMSE Chk_RMSE 
MLP [22] 1.41 1.42 

RBFN [22] 0.73 0.97 
RBFN-CFCM [18] 0.64 0.95 

LM(p = 3,c = 3) [19] 0.65 0.95 
TSK-LM(p = 6,c = 2) 0.52 0.85 
TSK-LM(p = 6,c = 3) 0.43 0.85 

Figure 8. Approximation and generalization capability with interval prediction for training 
and checking data. 
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Here the weights of RBFN were obtained by the least square estimate (LSE) methods. The best 
TSK-LM model was obtained when the checking error (Chk_RMSE) is minimal (p = 6, c = 3).  
Figure 8 shows the approximation and generalization capability with an interval prediction by lower 
and upper bound for training and checking data, respectively. As shown in Figure 8 and Table 2, the 
experimental results revealed that the presented intelligent predictor (TSK-LM) outperformed the  
well-known methods [18,19,22]. We obtained about 51% and 12% performance improvement in 
comparison to LM itself for the training and checking data set, respectively. Figure 9 shows linguistic 
contexts produced in the EE output space. Figure 10 visualizes the distribution of input variables and 
cluster centers estimated in each context when p = 3 in the normalized space. 

Figure 9. Linguistic contexts produced in output space (p = 6). 

 

Figure 10. Data distribution and cluster centers estimated in each context. 
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Table 3 lists the factor influence on the prediction performance for the training and checking data 
sets. The experimental methods and the number of rules are the same as mentioned above. As shown in 
Table 3, the HR has a strong influence in comparison to MI in the design by LM and TSK-LM. As 
listed in Table 3, the experimental results of TSK-LM on HR influence showed 73% and 27% 
improvement in comparison to LM itself for the training and checking data sets, respectively. 

Table 3. Factor influence on prediction performance.  

Factor Method Trn_RMSE Chk_RMSE 

HR 
LM [19] 0.97 1.08 
TSK-LM  0.56 0.85 

MI 
LM [19] 1.35 1.51 
TSK-LM 0.62 1.29 

We also performed normal walking, brisk walking, slow running, and jogging in an outdoor 
environment, respectively. All of the participants were encouraged to complete four exercise tests in 
the open field. Each test course was performed on a 400 meter oval track. The experimental procedure 
was designed to progress as naturally as possible. The participants were told to be in a pleasurable 
mood, as in doing exercise in the morning or taking a walk after dinner and to be comfortable when 
walking and jogging. The approximation and generalization performance are shown in Figure 11 to 
Figure 14 for normal walking, brisk walking, slow walking, and jogging data, respectively. Table 4 
lists performance comparison of RMSE under outdoor environments. In the case of the training data 
set, we obtained 39%, 29%, 36%, and 28% performance improvement in comparison to conventional 
LM for normal walking, brisk walking, slow walking, and jogging, respectively. We also achieved 
about 4~8% improvement for the checking data set. 

Figure 11. Approximation and generalization capability for normal walking data. 
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Figure 12. Approximation and generalization capability for brisk walking data. 

 

Figure 13. Approximation and generalization capability for slow running data. 

 

Figure 14. Approximation and generalization capability for jogging data. 
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Table 4. Performance comparison of RMSE (outdoor). 

Physical activity Method Trn_RMSE Chk_RMSE 

Normal Walking 
LM [19] 0.75 1.06 
TSK-LM 0.54 0.98 

Brisk Walking 
LM [19] 1.47 1.82 
TSK-LM 1.14 1.72 

Slow Running 
LM [19] 0.79 1.44 
TSK-LM 0.58 1.38 

Jogging  
LM [19] 2.0 2.74 
TSK-LM 1.56 2.58 

5. Conclusions 

We developed an intelligent TSK-LM predictor of energy expenditure with the aid of a patch-type 
sensor module for wireless monitoring of heart rate and movement index. This predictor possesses  
intensive computation ability together with meaningful linguistic labels and interval prediction based 
on fuzzy granulation. The experimental results revealed that the presented intelligent predictor showed 
good performance in comparison with the systems described in the previous works. Moreover, we 
could recognize that the system equipped with patch-type sensor module can be used as an efficient 
tool to predict energy expenditure for athletic training. 
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