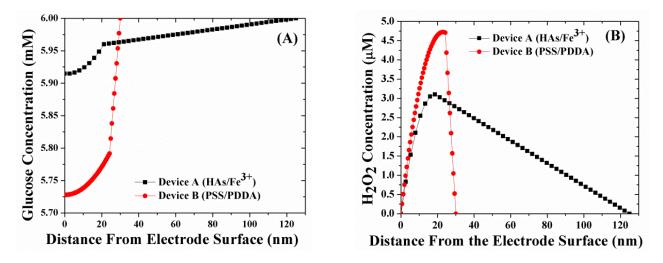
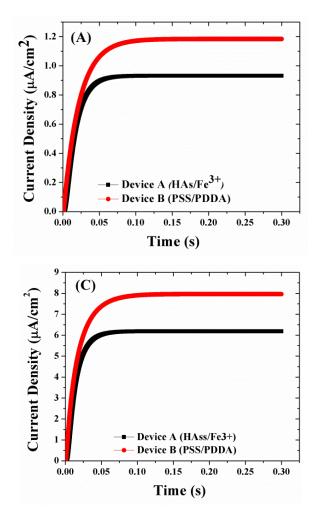
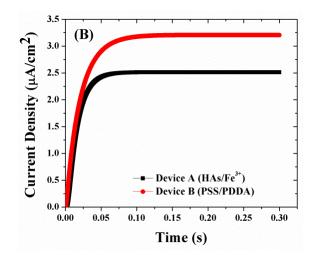

## Theoretical Analysis of the Performance of Glucose Sensors with Layer-by-Layer Assembled Outer Membranes

Robert A. Croce Jr.<sup>1</sup>, Santhisagar Vaddiraju<sup>2,3</sup>, Fotios Papadimitrakopoulos<sup>3,4</sup> and Faquir C. Jain<sup>1,\*</sup>


- <sup>1</sup> Electrical and Computer Engineering, University of Connecticut, 371 Fairfield Way, Storrs, CT 06269, USA; E-Mail: rjc03001@engr.uconn.edu
- <sup>2</sup> Biorasis Inc., Technology Incubation Program, University of Connecticut, Storrs, CT 06268, USA
- <sup>3</sup> Nanomaterials Optoelectronics Laboratory, Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA; E-Mails: sagar@ims.uconn.edu (S.V.); papadim@ims.uconn.edu (F.P.)
- <sup>4</sup> Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA

Figures S1 and S2 show the concentration profiles of glucose and  $H_2O_2$  for Devices A and B at a  $GO_x/PPD$  thickness of 15 and 25 nm, respectively. For both these  $GO_x/PPD$  thicknesses the concentration of  $H_2O_2$  is higher in Device B (PSS/PDDA) compared to Device A (HAs/Fe<sup>3+</sup>), similar to that shown in Figure 4. This confirms that tighter (less glucose permeable) outer membranes (Device B) leads to higher build-up of  $H_2O_2$  within the sensor geometry and the phenomena is independent of the enzyme thickness. Figures 5 and 7 in the manuscript represent the time taken for the sensor to reach 90% of its saturation value. In order to obtain these values, the transient response of the sensor shown in Figures S3 was utilized. These transient responses were obtained utilizing Equation (16).


**Figure S1.** (A) Simulated glucose concentration profile in the multi-layer sensor system consisting of 15 nm  $GO_x/PPD$  as the first layer, and different LBL membranes as the second layer (HAs/Fe<sup>3+</sup> and PSS/PDDA); (B) simulated H<sub>2</sub>O<sub>2</sub> concentration profile in the multi-layer sensor system consisting of 15 nm  $GO_x/PPD$  as the first layer, and different LBL membranes as the second layer (HAs/Fe<sup>3+</sup> and PSS/PDDA).




**Figure S2.** (A) Simulated glucose concentration profile in the multi-layer sensor system consisting of 25 nm  $GO_x/PPD$  as the first layer, and different LBL membranes as the second layer (HAs/Fe<sup>3+</sup> and PSS/PDDA); (B) simulated H<sub>2</sub>O<sub>2</sub> concentration profile in the multi-layer sensor system consisting of 25 nm  $GO_x/PPD$  as the first layer, and different LBL membranes as the second layer (HAs/Fe<sup>3+</sup> and PSS/PDDA).



**Figure S3.** Simulated transient response of Devices A and B at (**A**) 2 mM, (**B**) 4 mM and (**C**) 20 mM glucose.



