
Sensors 2012, 12, 13126-13149; doi:10.3390/s121013126

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

A Low Cost Matching Motion Estimation Sensor Based on

the NIOS II Microprocessor

Diego González
1
, Guillermo Botella

1,
*, Uwe Meyer-Baese

2
, Carlos García

1
, Concepción Sanz

1
,

Manuel Prieto-Matías
1
 and Francisco Tirado

1

1
 Department of Computer Architecture and Automation, Complutense University of Madrid,

Madrid 28040, Spain; E-Mails: dgonzalez@grupobme.es (D.G.); garsanca@dacya.ucm.es (C.G.);

csanzpineda@fdi.ucm.es (C.S.); mpmatias@dacya.ucm.es (M.P.M.); ptirado@dacya.ucm.es (F.T.)
2
 Department of Electrical and Computer Engineering, FAMU-FSU College of Engineering,

Tallahassee, FL 32310, USA; E-Mail: umb@eng.fsu.edu

* Author to whom correspondence should be addressed; E-Mail: gbotella@fdi.ucm.es;

Tel.: +34-91-394-4392; Fax: +34-91-394-7527.

Received: 27 July 2012; in revised form: 5 September 2012 / Accepted: 11 September 2012 /

Published: 27 September 2012

Abstract: This work presents the implementation of a matching-based motion estimation

sensor on a Field Programmable Gate Array (FPGA) and NIOS II microprocessor applying

a C to Hardware (C2H) acceleration paradigm. The design, which involves several

matching algorithms, is mapped using Very Large Scale Integration (VLSI) technology.

These algorithms, as well as the hardware implementation, are presented here together with

an extensive analysis of the resources needed and the throughput obtained. The developed

low-cost system is practical for real-time throughput and reduced power consumption and

is useful in robotic applications, such as tracking, navigation using an unmanned vehicle,

or as part of a more complex system.

Keywords: computer vision; optical flow; block matching algorithm; NIOS II; very large

scale integration (VLSI); FPGA; embedded systems

OPEN ACCESS

mailto:gbotella@fdi.ucm.es

Sensors 2012, 12 13127

1. Introduction

The field of multimedia information has progressed very rapidly; video coding standards have

become crucial when transmitting large amounts of video data. By removing temporal redundancy of

video data for proper storage and transmission, motion estimation has become key for high

performance in video coding. Since 1980, video coding has focused on representations of video data

for storage and transmission purposes, with efficient reduction of the size of encoded video data being

the most challenging issue to manage.

The International Telecommunication Union (ITU) developed a number of video coding standards

for real-time transmission applications (such as video conferencing). The first major aim of the ITU

was H.261, designed for transmission over ISDN lines with data rates in multiples of 64 Kbits/s. ITU

has published a series in the H.26X family, such as H.263+ [1,2]. As well, the International

Organization for Standardization (ISO) and the International Electro-technical Commission (IEC)

established the Moving Picture Experts Group (MPEG) in order to set standards for audio, video

compression, and transmissions such as MPEG-1, MPEG-2, and MPEG-4 [3,4] (MPEG-1 aims to

meet the low complexity requirement, MPEG-2 is meant for broadcast-quality television, and MPEG-4

is especially designed for low bitrate applications). In 2001, The Joint Video Team (JVT) joined the

ITU-T Video Coding Experts Group (VCEG), and ISO/IEC MPEG started the development of a new

video coding standard, H.264/AVC [5ï7], completed in 2003. Commonly known as MPEG-4 Part 10,

the standard H.264/ Advanced Video Coding (AVC) provides good video quality with lower bitrate

than previous coding standards, though at the expense of notably increasing the design complexity. In

earlier coding standards, such as H.261 and MPEG-1, working with one reference frame, H.264/AVC

supports multiple reference frames, as Figure 1 shows.

Motion estimation plays a very important role in these video-coding standards, widely adopted in

MPEG-n, H.26n. (n = 1é4). Regarding motion estimation, there are many family algorithms,

strategies, and specific architecture implementations with Very Large Scale Integration (VLSI) [8,9]

systems. Gradient motion estimation families are based on a constant brightness assumption.

We have developed the sensor focusing on the matching motion estimation family, which we will

explain further as we consider each frame as divided into fixed-size MacroBlocks (MBs). The goal of

this process is to remove temporal redundancy existing between adjacent frames by finding the Motion

Vector (MV), which points up to the best macro block prediction, according to any metric in the

Reference Frame (RF).

This process analyzes the blocks of a reference frame, in order to estimate the closest block to the

current one, as shown in Figure 2. Hence, motion vector is an offset from the coordinate of the current

macro block to the corresponding macro block in the reference frame. The process of coding the frame

processed with motion estimation in video is also known as inter-frame coding, which is applied to

control the navigation in flying robots such as in an unmanned aerial vehicle. Motion estimation is one

of the information channels to be integrated into compressed sensing in avionics.

Sensors 2012, 12 13128

Figure 1. Different schemes of video compression between H.263 and H.264. H.263

(2001) encodes the motion only one reference frame at a time. Nevertheless, H.264/AVC,

completed in 2004, uses multiple reference frames to encode the motion vectors as shown

in the figure. It is possible to appreciate the blocks from the previous frames (t-4,t-3,t-2,t-1)

projected in frame t.

Figure 2. The FST scheme of the process.

In the framework of real-time computing sensors, there are other platforms, such as the work of

Deutschmann [10] or Stocker [11,12]. Deutschmann provides an analog VLSI sensor that computes

real-time division of the temporal and spatial derivatives of the local light intensity. Stocker presents a

VLSI distributed visual processing sensor, with a network architecture applying an error correction

strategy which is able to deliver the motion estimation components based on the Horn and Schunck

gradient-model approach [13].

Sensors 2012, 12 13129

Regarding the matching family used in the present contribution, we reference the work of Niitsuma

and Maruyama [14], who developed a high performance systolic processor system using FST. Also the

University of Seoul [15] presented a matching family sensor using a NIOS II processor, although

neither accuracy data (PSNR) nor throughput measures are provided. Finally Guzman et al. presented

an embedded sensor based on a commercially specialized smart-camera [16] which is able to operate at

176 × 144 @ 10,000 fps and also uses a NIOS II processor.

The contribution of this work is a low-cost FPGA-based motion estimation sensor, which uses three

selected and very well-known algorithms in the block matching family [17]. This system is designed

by means of using a NIOS II soft-core microprocessor [18] and an ALTERA DE2 board [19].

The matching motion family used in this work is widely used for multimedia coding, as stated

previously, the system itself is customizable, with changing the microprocessor architecture and the

motion search window being possible, among other features. We have developed an analysis of the

accuracy and efficiency of the system as we explain further.

This paper is organized as follows: Section 1 describes the multimedia scope and the importance of the

motion estimation algorithms. Section 2 describes and specifically compares the algorithms used in the

sensor functionality. Section 3 shows the hardware architecture and the primitive functions implemented

and accelerated in the hardware. Section 4 discusses the results in terms of throughput and resources

consumed. A visual output is shown, and a comparison with existing sensors is also accomplished.

Finally, Section 5 contains the concluding remarks and future lines of this embedded system.

2. Matching Estimation Methods from Multimedia Video Coding Inspired by Sensor Construction

We provide, in the following paragraphs, an overview of the matching algorithms, focusing on three

specific ones chosen for their peculiarities while being implemented. The aim of Block-Matching

Methods (BMMs) is to estimate Motion Vectors for each Macro Block within a specific and fixed

search window in the reference frame [17,20]. For example, the Full Search Technique (FST), also

denoted as an exhaustive search algorithm, is one of the most straightforward methods in BMMs. The

FST algorithm exhaustively matches all Macro Blocks within a search window in the reference frame

to estimate the optimal Macro Block; i.e., the one with the minimum Block-Matching Error (BME).

There are several definitions for BME, but the most used is the Sum of Absolute Difference (SAD) of

all the pixels between an MB of the current frame and that of the reference frame and the Mean

Squared Error (MSE), this last metric being less conservative due to the square factor. Usually, the

huge amount of computations required to calculate the error by the FST limits its applicability, turning

the development of efficient motion estimation search algorithms into a significant topic for video coding.

In order to reduce the computational weight, many enhanced search algorithms have been proposed.

These methods can be organized in two categories: (1) the Search Reduction (SR) of SAD and (2) the

Calculation Reduction (CR) of SAD. SR algorithms are based on reducing the search points within

a search window [21ï24]. Examples of well-known algorithms belonging to this group are the

Three-Step Search Technique (TSST) [25]; the New Three-Step Search Technique (NTSST) [26,27];

the Four-Step Search Technique (4SST) [28]; the Block-Based Gradient Descent Search Technique

(BBGDST) [29]; the 2-D Logarithm Search Technique (LOGST) [30]; the cross-search algorithm [31];

the dynamic search window adjustment algorithm [32]; the Diamond Search (DS) [23]; and

Sensors 2012, 12 13130

Hexagon-based Search (HS) algorithm [33]. These algorithms employ fixed patterns with/without

limited searching steps in order to locate the MB with the minimum SAD. Many other varieties with

different pattern shapes motion estimation algorithms have also been presented [34ï36]. In order to

accelerate the search process, we assume the target candidate points toward the inside of the local

optimum; therefore the quality of the results becomes worse than with the FST. Comparison of Fast

Search Techniques implemented in the presented sensor.

Conversely, algorithms categorized as CR of SAD try to reduce the computations. Since SAD

is calculated by adding the differences of each pixel, the computation of the partial SAD is simpler

than the computation of the total SAD between two MBs. Because of this, a Partial Distortion

Search Technique (PDST) was first proposed to reduce computations in vector quantization [37].

Additionally, other techniques not addressed in this paper have been found to reduce the calculation

number and improve the estimation. Several examples of this approach are the fast lossless PDS

algorithm [38] or the Normalized Partial Distortion Search (NPDS) method, which rejects the invalid

candidate MVs [39,40] early.

2.1. Full Search Technique

The Full Search Technique (FST) is the most straightforward Block Matching Method (BMM) and

also the most accurate one. FST matches all possible blocks within a search window in the reference

frame to find the block with the minimum Summation of Absolute Differences (SAD), defined as:

 (1)

where It (x, y) represents the pixel value at the coordinate (x, y) in the frame t and (u, v) represents the

displacement of the Macro Block (MB) candidate. Thus, given a block with the size N = 32, the FS

algorithm requires 1,024 subtractions and 1,023 additions to calculate a SAD. The required number of

checking blocks is (1 + 2d)
2
, while the search window is limited within ±d pixels, usually by a power

of two.

As seen in Figure 2, one block from the left part of Frame T is matched (using any metric error,

such as the SAD) with the corresponding one from the right part of Frame T + 1 inside of the search

window. The displacement from frame T to T + 1 constitutes the estimated motion for this block.

2.2. Three Step Search Technique (TSST) and (NSST)

The TSST [25] is the first BMM based on a non-exhaustive search. The TSST supports two

important contributions for motion estimation in terms of fixed search patterns and limited search

steps. Most of the later works still include these characteristics to design the algorithms.

The aim here is to perform a multi-scale process, applying three steps in order to find the most

similar MB within the search window of the reference frame. In the first step, the step size of the

search window is designated as half of the search area. Nine candidate points, including the center

point and eight checking points on the boundary of the search window, as shown in Figure 3(A), are

selected in each step.

1 1

12
0 0

1
(, ; ,) (,) (,)

N N

t t

x y

SAD x y u v I x y I x u y v
N

- -

-

= =

= - + +ää

Sensors 2012, 12 13131

The second step moves the search center forward to the matching point with the minimum SAD of

the previous step; and the step size of the second step is reduced by half, as shown in Figure 3(B). The

third step stops the search process. The step size of one pixel and the optimal MV with the minimum

SAD can now be obtained, as shown in Figure 3(C). Using the same search window, ±7 pixels, the

TSST only needs 25 search points in comparison with the FST algorithm, which needs 255. As we can

see in Table 1 FST uses more search points than TSST and 2DLog, but less search steps than these.

Figure 3. TSST. (A) The first step. (B) The second step. (C) The third step.

Table 1. Comparison of Fast Search Techniques implemented in the presented sensor.

 Number of Search Points Number of Search Steps

Method MIN MAX MIN MAX

FULL SEARCH (EXHAUSTIVE) 225 225 1 1

THREE-STEP SEARCH 25 25 3 3

2D-LOG SEARCH 13 26 2 8

The new Three-Step Search Technique NTSST [27] exploits the fact that the MVs of the frame with

slow motion are mostly found near the center of the search window. This technique manages a center

biased checking point pattern and a halfway-stop technique for stationary MBs to improve the

performance of the TSST. The process first checks the points of the pattern. If the center point contains

the minimum SAD, the search is done; but if the minimum SAD appears as one of the neighbors of the

center point, the NTSST checks five corners or three edge points; after this, the search is over.

Otherwise, the search steps of the NTSST are similar to those of the TSST (Figure 3).

2.3. Two Dimensional Logarithmic Search (2DLOG) and Modifications

An alternative to the techniques previously explained is the Two Dimensional Logarithmic-based

Search (2DLOG) [41], which is feasible to implement in hardware. This approach uses a pattern cross

search (+) in each step, with an initial step size of d/4. The step size is reduced by half only when the

minimum point of the previous step is the center one or the current minimum point reaches the search

window boundary. If none of these two conditions is accomplished, the step size remains the same.

Sensors 2012, 12 13132

As an example, two different search paths are shown in Figure 4. When the step size is reduced to

1, all eight of the checking points adjacent to the center checking point of that step are searched. The

bottom search pathway needs 23 = 5 + 3 + 2 + 3 + 2 + 8 checking points through the six steps to

complete the process; nevertheless, the top search pathway requires 19 = 5 + 3 + 3 + 8 checking points.

Figure 4. 2DLOG. Two search paths for the 2DLOG search algorithm.

3. Hardware Implementation of the Sensor

An embedded system [42] is a computer system which performs specific tasks and can be part of a

more complex system (mechanical, optical, etc.). Usually this design depends on a set of parameters,

such as data processing throughputs, efficiency, power consumption, reliability, configurability, and

low cost, among others. Sometimes, due to the kind of application and the environment where the

sensor will be used, it is desirable to keep a good trade-off solution between many of these parameters.

Nowadays, many embedded systems are associated with our routine work as part of complex sensors,

such as video cameras, vehicular technology, security, scientific instrumentation, optics, industrial

inspection, and so on.

A Field Programmable Gate Array (FPGA) [43,44] contains millions of connections and logic cells

that can be configured to achieve a specific digital logic design. FPGAs can be programmed in a large

variety of low-level and high-level Hardware Description Languages (HDL) [45]. Due to the

configurable capacity of the FPGA devices, a customized hardware can be designed to be included in

any sensor. It is possible to design processor features, develop specialized hardware accelerators for

intensive computation tasks, and create custom input/output ports to be connected with other physical

parts of the sensor. These systems, built together in the same FPGA, are known today as a System-on

Programmable Chip (SoPC) [46]. Figure 5 shows a real example of FPGA devices.

Sensors 2012, 12 13133

Figure 5. (Top) FPGA Chip and Prototyping Board. (Bottom) Cyclone II Architecture

(Pictures extracted from [47]).

3.1. NIOS II Soft-Core Processor

The NIOS II [48] is a soft-core processor based on RISC architecture. It is targeted for Altera

devices, allowing scalable development and flexibility since it can be customized with additional

features depending on performance or cost objectives. NIOS II [48] is an enhanced version, which

offers higher performance and a lower cost than the previous 16-bit soft-core processor NIOS [49].

This 32-bit processor belongs to a three-member family named Fast, Economy, and Standard, where

each one is optimized for a specific price and performance range. Each one of the three cores uses a

common 32-bit Instruction Set Architecture (ISA), with 100% binary code compatibility between them.

The NOS II/f Fast CPU is optimized for maximum performance, bringing performance up to a 220

DMIPS in the Stratix II [50] family of FPGAs, which places it squarely in the ARM 9 [51] class of

processors. While this core is four times faster than the original NIOS CPU, it is 40% smaller. It has

4 K bytes of separated data and instruction cache, an oscillator of 144 MHz, and 20 embedded

multipliers of 9 × 9 bits. Performance in systems based on NIOS II can scale to fit the application by

means of custom instructions, high bandwidth switch fabric, and hardware accelerators. It also

supports fixed and variable cycle operations. The NIOS II/e Economy CPU is optimized for the lowest

cost, achieving a smaller FPGA footprint (less than 600 LEs). It has no data or instruction cache, is

Sensors 2012, 12 13134

half the size of the smallest NIOS core, and increases performance by four times. Finally, the NIOS

II/s Standard CPU is a trade-off solution between processing performance and logic element usage. It

is 60% faster than the fastest NIOS CPU and smaller than the smallest NIOS CPU. It achieves over

120 DMIPS while consuming only 930 LEs (Stratix II).

3.2. Hardware Acceleration and Algorithms

For the current sensor, the NIOS II C2H Compiler [18] is used, moving specific functions,

which are critical for performance, from running on the FPGA soft-core processor (Cyclone II

EP2C35F672C6) [52] to optimized and pipelined hardware accelerators. The current accelerators have

direct access to the processorôs memory, largely improving the parallel transactions to the needed

number of buffers.

Usually the processors share a single system bus with DMA channels and other master functions,

limiting bus access to only one master. NIOS II systems benefit from the so-called Avalon Switch

Fabric [53] that provides, as shown Figure 6 (right), a dedicated data path to each master, allowing all

masters to transfer data simultaneously, which delivers greater system performance. This bus supports

a plethora of characteristics, such as address decoding, dynamic bus sizing, clock domain crossing,

off-chip interfaces, and datapath multiplexing. Large blocks of data can be processed concurrently

with CPU operation constructing application-specific hardware accelerators, boosting the system

throughput due to dedicated datapaths. The performance of the embedded system not only depends on

the frequency or benchmarks but also on the surrounding system.

Figure 6. C2H Integration and Avalon Switch Fabric Connecting Master and Slave in a

system (Diagram extracted from [47]).

Sensors 2012, 12 13135

Figure 6. Cont.

Figure 6 (up) shows how the NIOS II C2H Compiler integrates into the software build process in

the IDE. The left half of the flowchart shows the standard C compilation of main.c and accelerator.c,

as it occurs without acceleration. The right-hand side of the flowchart shows the hardware compilation

process invoked when a function in accelerator.c is accelerated. It also shows the generation and

selective linking of the accelerator driver into the executable file.

Altera claims that no restrictions on the bandwidth are imposed inside/outside of the accelerator

different from the physical limitations of the connected memories. When the NIOS II C2H Compiler

creates hardware for a function, it generates sufficient master ports for pointer and array operations.

These master ports allow access to memory and other peripherals in the system and are able to operate

independently, in parallel. It is also possible to write data to output buffer and fetch data from input

buffers in parallel over the same clock cycle.

Next, the functionality of the algorithms implemented in the sensor is briefly described and shown

(Figures 7 and 8). The three first Algorithms (I, II, III) correspond to the techniques represented in

Figures 2 through 4. Additionally, Algorithm IV moves data in memory; Algorithm V gets a specific

MacroBlock (MB); and, finally, Algorithm VI delivers the accuracy of the motion estimation in the

sensor itself:

¶ Algorithm I. Full Search Technique (FST). This function looks into the current frame for each

block situated in (x, y) in the reference frame. All the possibilities are tested, returning the

motion of the block in the current frame as explained in Section 2.1 and Figure 2.

¶ Algorithm II. Three Steps Search Technique (TSST). This function performs three steps through

a limited search step and using a fixed search pattern as explained in Section 2.2 and Figure 3.

¶ Algorithm III. 2D Log Technique (2DLOG). This function performs three steps between 2 and

8 times executing a logarithmic search using a fixed search pattern as explained in Section 2.3

and Figure 4.

¶ Algorithm IV. Copy_do_DMA. This is a simple function that copies ñlengthò bytes from the

ñsourceò memory direction to the ñdestinyò memory direction. It manages memory transfers.

Sensors 2012, 12 13136

¶ Algorithm V. Get_Block function. This function results in a copy block, pointed by ñblockò, of

the parameter ñframeò, receiving as parameters the block size, the width, and the position of the

block into the frame (x, y).

¶ Algorithm VI. Get_Cost function. This function returns the cost between the current block and

the reference block calculated according to a SAD metric, as shown in Equation (1).

Figure 7. Flow Chart of Algorithms I, II, III: FST (Upper left): For a given block in a

current frameôs position, scan all blocks between a movement range on the reference

frame, and compare them with the given block for achieving the minimum cost. TSST

(Upper right): For a given block in a current frameôs position, scan nine blocks (position

and around) in the reference frame, and compare them with the given block for achieving

the minimum cost. Then, the searching step is reduced to half, and the base position is

changed to the minimum cost block one. This process is repeated three times. 2DLOG

(Lower center): For a given block in a current frameôs position, scan five blocks

(diamondôs center and diamondôs corners) in the reference frame, comparing them with the

given block for achieving the minimum cost. Then, diamondôs center position is updated to

the minimum cost block one or the searching step is reduced to half. This process is

repeated until the searching step converges to one.

Sensors 2012, 12 13137

Figure 8. Flow Chart of Algorithms IV, V, VI: CopyDoDMA (Upper left): Copy ñlengthò

bytes from the source address to the destination address. GetBlock (Upper right): Copy

one frame block into the destination address. GetCost (Lower center): Return cost

between urrent block and reference block according to chosen metric.

4. Results Testing the Sensor

In this section, we present the results obtained applying different methods, different window

searches, different processors, and also different accelerated functions.

The quality of the acceleration code is organized into four categories: (1) no, where the entire code

is executed in the NIOS II without acceleration; (2) low, which accelerates do_dma (Algorithm IV);

(3) medium, which accelerates do_dma and Get_Block (Algorithms IV & V); and (4) high, which

accelerates all the functions (Algorithms I or II or III and IV, V, VI).

Regarding the input sequence test, we have used many well-known sequences [54] for measuring

matching-based motion estimation systems, which will be commented upon later. The output sensor

shows its reference motion for each Macro Block, the reference frame, and the cost expressed

according to the error metric Sum of Absolute Differences or Mean Squared Error, this last metric

being less conservative, as remarked upon previously.

Foreachbyte in sourceaddress

Copybyte from sourceaddressto destinationaddress

Foreachrow into block size

CallDo DMA with block row and destinationaddress

Sensors 2012, 12 13138

4.1. Throughput Obtained

The throughput of the sensor is represented as a function of the kilopixels per second (kpps)

delivered with the system. Every technique is implemented using a range of window searches of 8, 16,

and 32 pixels, as well as the three different architectures of the NIOS II microprocessor (Economic,

Standard, and Fast), as mentioned in Section 3.

We first considered in this preliminary analysis the behavior of the system from no code

accelerated, algorithm IV, and algorithm IV+V; thus, in other wordsðno, low, and medium

configurations for each one of the three matching techniques considered (FST, TSST, 2DLOG).

The throughput of the whole system with low or medium acceleration behaves similarly when

comparing the execution of the whole functions in embedded software (no acceleration) under the

NIOS II and the FST technique, as shown in Figure 9. If we focus on the TSST technique, this

behavior becomes lineal (when considering no, low, and medium acceleration). If we see the 2DLOG

technique, the linear response is emphasized again for no, low, and medium acceleration, as well as the

fast architecture (NIOS II /f). Although every throughput for every architecture depends on the

window size (8, 16, and 32 pixels, respectively), the linear tendency of all responses remains constant

for all sizes. We notice, for instance, that by using only medium acceleration (Algorithms IV and V),

the 2DLOG technique and fast architecture (NIOS II /f) is obtained as throughput range between 16

and 21 Frames per second (Fps) at a 50 × 50 pixel resolution when using different windows sizes.

Figure 9. Throughput measured in kilopixels per second (kpps) obtained using FST, TSST,

2DLOG with NIOS II (e/s/f).: ñnoò runs the whole code in the NIOS II with no

acceleration; ñlowò accelerates do_dma (Algorithm IV); ñmediumò accelerates do_dma

and Get_Block (Algorithms IV and V); ñhighò accelerates all functions (Algorithms I or II

or III and IV, V, VI together).

0

10

20

30

40

50

60

70

80

no low medium high

K
p

p
s

Quality of Acceleration

Kpps Vs Quality (for each processor)
FST, window size 8 pixel, 1 step

Nios II/e (8)

Nios II/s (8)

Nios II/f (8)

0

10

20

30

40

50

60

70

80

no low medium high

K
p

p
s

Quality of Acceleration

Kpps Vs Quality (for each processor)
FST, window size 16 pixel, 1 step

0

10

20

30

40

50

60

70

80

no low medium high

K
p

p
s

Quality of Acceleration

Kpps Vs Quality (for each processor)
FST, window size 32 pixel, 1 step

0

10

20

30

40

50

60

70

80

no low medium high

K
p

p
s

Quality of Acceleration

Kpps Vs Quality (for each processor)
TSST, window size 8 pixel, 3 steps

Nios II/e (8)

Nios II/s (8)

Nios II/f (8)

0

10

20

30

40

50

60

70

80

no low medium high

K
p

p
s

Quality of Acceleration

Kpps Vs Quality (for each processor)
TSST, window size 16 pixel, 3 steps

0

10

20

30

40

50

60

70

80

no low medium high

K
p

p
s

Quality of Acceleration

Kpps Vs Quality (for each processor)
TSST, window size 32 pixel, 3 steps

0

10

20

30

40

50

60

70

80

no low medium high

K
p

p
s

Quality of Acceleration

Kpps Vs Quality (for each processor)
2DLOG, window size 8 pixel, 6 steps
Nios II/e
(8)
Nios II/s
(8)
Nios II/f
(8)

0

10

20

30

40

50

60

70

80

no low medium high

K
p

p
s

Quality of Acceleration

Kpps Vs Quality (for each processor)
2DLOG, window size 16 pixel, 6 steps

0

10

20

30

40

50

60

70

80

no low medium high

K
p

p
s

Quality of Acceleration

Kpps Vs Quality (for each processor)
2DLOG, window size 32 pixel, 6 steps

Sensors 2012, 12 13139

Focusing on high acceleration (Algorithms I or II or III and IV, V, VI together), we can appreciate a

different throughput regarding the windows size: Regarding FST (in the first column of Figure 9) and

fast architecture, a range from 61 to 72 kpps is delivered, depending on the window size used (from 8

to 32 pixels). This is a throughput for the system between 24.5 and 29 fps at a 50 × 50 pixel resolution,

enough for a small sensor camera. For configurations of standard and economic architecture, we obtain

a throughput range between 20 and 27 kpps (from 8 to 32 pixels), which is a range between 8 and

11 fps at 50 × 50 pixel resolution.

Focusing on TSST (in the second column of Figure 9) and regarding fast architecture, a range from

6.15 to 24.6 kpps is delivered, depending of the window size used (from 8 to 32 pixels). This means a

throughput for the system between 2 and 10 fps at a 50 × 50 pixel resolution. For configurations of

standard and economic architecture, we obtain a throughput range between 5 and 20 kpps (from 8 to

32 pixels) which means a range between 2 and 8 fps at a 50 × 50 pixel resolution.

The 2DLOG technique (in the third column of Figure 9) processes a range from 43.8 to 56.4 kpps

for fast architecture, again depending on the window size used (from 8 to 32 pixels), which means a

range of 17.5ï22.5 fps. For configurations of standard and economic architecture, we obtain a throughput

of approximately 10 kpps and 8 kpps, independent of the window range (from 8 to 32 pixels), which

means a range between 2 and 8 fps at a 50 × 50 pixel resolution.

Note that the size of the window is not always inversely proportional to the system throughput. For

example, the TSST restricts the calculation complexity by limiting the exhaustive search to three steps, so

accelerating all functions means a trade-off solution between pixel parallel level (the increment of the

window size involves less Macro Blocks) and Macro Block parallel level (when window size is decreased).

4.2. Used Resources

The hardware resources used are listed in Table 2 (Full acceleration) and Table 3 (no acceleration,

low acceleration, and medium acceleration) for different processor architectures, a window size of 32

pixels, and a set of different architectures.

Table 2. FPGA resources measured with a Quartus tool [19] with a window size of 32

pixels. Case ñhò (high quality acceleration). Processors ñeò and ñsò and ñfò mean NIOS II/

ñeconomicò, ñstandardò, and ñfastò.

Method

Logic

Cells

Method

Logic

Cells

Method

Logic

Cells

 (FST,TSST,2DLOG)

Processor/

Quality

EMs

(9 × 9)

Total

memory

bits

e/h

FST

11,637

(35%)

TSST

13,173

(40%)

2DLOG

13,056

(39%)

 23

(33%)

44,032

(9%)

s/h 12,382

(37%)

 14,023

(42%)

 13,955

(42%)

 27

(39%)

79,488

(16%)

f/h 13,090

(39%)

 14,755

(44%)

 14,678

(44%)

 27

(39%)

114,944

(24%)

Sensors 2012, 12 13140

Table 3. FPGA resources measured with a Quartus tool [19] with a window size of 32

pixels for either FS, TSST, or 2DLOG. Processor ñeò and ñsò and ñfò means NIOS II/

ñeconomicò, ñstandardò, and ñfastò. Case ñnò and ñlò and ñmò mean no, low, and medium

quality acceleration, respectively.

 Processor e Processor s Processor f

Quality
Logic

Cells

EMs

(9 × 9)

Total

memory

bits

Logic

Cells

EMs

(9 × 9)

Total

memory

bits

Logic

Cells

EMs

(9 × 9)

Total

memory

bits

n
2107

(6%)

0

(0%)

44032

(9%)

 3085

(9%)

4

(6%)

79488

(16%)

 3763

(11%)

4

(6%)

114944

(24%)

l
3363

(10%)

0

(0%)

44032

(9%)

 4147

(12%)

4

(6%)

79488

(16%)

 4889

(15%)

4

(6%)

114944

(24%)

m
5006

(15%)

12

(17%)

44032

(9%)

 5812

(17%)

16

(23%)

79488

(16%)

 6524

(20%)

16

(23%)

114944

(24%)

Recall the cache resources regarding the microprocessor: no cache (economic), only data cache

(standard), and both data and instruction cache (fast). The tables show the number of Logic Cells

(LCs) used, the number of embedded multipliers (9 × 9) needed, and the total number of bits.

High quality acceleration (all functions) requires a little bit less than 50% of the available logic cells

(35%ï39% for FST, 40%ï44% for TSST and 39%ï44% for 2DLOG). In this case, between 33% and

39% of embedded DSPs (9 × 9) are used and total memory Bits (Block Rams) are from 9% to 24%,

depending on the motion estimation technique considered.

Regarding low, medium, and no accelerations, note that the same resources are required for the three

techniques, although it depends on the processor configuration selected. Focusing on medium quality,

we obtain an increment from 15% to 20% of Logic Cells for NIOS II economic to NIOS II fast.

Regarding the multipliers, this increment is from 17% to 23% for NIOS II economic to NIOS II fast.

Finally, regarding the total memory bits, the increment covers from 9% to 24% for NIOS II economic

to NIOS II fast.

Focusing on low quality, the resources used are 10%ï15% (Logic Cells), 0%ï6% (Multipliers), and

9%ï24% (Total Memory bits). Regarding the no-acceleration, we obtain an increment 6%ï11%

(Logic Cells), 0%ï6% (Multipliers), and 9%ï24% (Total Memory bits). These two increments are

the same as the low quality; in other words, constant DSPs and Block Ram from the previous

configuration is maintained.

4.3. Resources vs. Performance

In order to compare used resources and performance, we show the kilopixels per second (kpps)

achieved versus the logic elements implied and the embedded multipliers implied for each design in

Figures 10 and 11.

Sensors 2012, 12 13141

Figure 10. Performance in kilopixels per second (kpps) versus logic elements applied

obtained using FST, TSST, 2DLOG with NIOS II (e/s/f). The four measures correspond to

the four types of acceleration (no, low, medium and high).

Figure 11. Performance in kilopixels per second (kpps) versus embedded multipliers using

FST, TSST, and 2DLOG with NIOS II (e/s/f). The four measures correspond to the four

types of acceleration (no, low, medium, and high).

