Sensors2012 12, 1312613149 doi:10.3390¢121013126

SENSOrs

ISSN 14248220
www.mdpi.com/journal/sensors

Article

A Low CostMatching Motion Estimation SensorBasedon
the NIOS II Microprocessor

Diego Gonzdez®, Guillermo Botella'*, Uwe Meyer-Baese?, Carlos Gara *, Concepcit Sanz’,
Manuel Prieto-Ma#is *and Francisco Tirado*

! Departmenbf Computer Architectureand Automaion, ComplutenseéJniversity of Madrid,

Madrid 2804Q Spain E-Mails: dgonzalez@grupobme.€3.G.); garsanca@dacya.ucmEG.),
csanzpineda@fdi.ucm.€8.S.);mpmatias@dacya.ucm.gd.P.M.); ptirado@dacya.ucm.€5.T.)
Departmenbf ElectricalandCompuer EngineeringFAMU-FSU Collegeof Engineering,
Tallahasseel-L 3231Q USA; E-Mail: umb@eng.fsu.edu

* Authorto whomcorrespondencghouldbe addressede-Mail: gbotella@fdi.ucm.es
Tel.: +34-91-394-4392 Fax:+34-91-394-7527.

Received27 July 2012;in revised form: 5 September 2012&ccepted1l September 2012
Published:27 September 2012

Abstract: This work presentthe implementation oA matchingbasedmotion estimation
sensor oraField Programmable Gate Array (FPG#)dNIOS Il microprocessoapplying
a C to Hardware(C2H) acceleration paradigmThe desig, which involves several
matching algorithmsis mapped usiny/ery Large Scaldntegration (VLSI) technology.
These algorithms, as well as thardware implementation, are presertedetogethemwith
an extensive analysis tiieresources needed atite throughputobtained. Tl developed
low-cost systemsi practicalfor reattime throughput and reduced power consumpéiod
is useful inrobotic applicationssuchas trackingnavigation us\g an unmanned vehicle
or aspart of a more complex system

Keywords: compugr vision optical flow; block matching algorithinNIOS 11; very large
scale integratioVLSI); FPGA embedded systems

mailto:gbotella@fdi.ucm.es

Sensor012 12 13127

1. Introduction

The field of multimedia information has progressesty rapidly; video coding standards have
become crucial when transmitting large amsuwfitvideo dataBy removing temporal redundancy of
video data for proper storage and transmission, motion estimation has bé&egnfer high
performance in video codingince 1980video codinghas focused orepresentatios of video data
for storage and transmissiparposeswith efficient reduction of the size of encoded video deting
the most challenging isstie manage.

The International Telecommunication Union (ITdgveloped aumber of video coding standards
for realtime transmission applicatiorfsuch as video conferencingdlhe first major ainof the ITU
was H.261 designed for transmission over ISDMNds with data ragan multiples of 64 Kits/s. ITU
has pulkikhed a series in thél.26X family, such as H.263+1,2]. As well, the International
Organization for StandardizationSQ) andthe International Electrgechnical CommissionlEC)
establishedhe Moving Picture Experts GroupPEG) in orderto set standals for audio, video
compressionand transmissiasuch as MPEA, MPEG2, and MPE&4 [3,4] (MPEG1 aims to
meetthe low complexity requirement)PEG-2 is meant for broadcagquality televisionand MPEG4
is especiallydesigned for low bitratapplication$. In 2001, The Joint Video Team (JVTjoined the
ITU-T Video Coding Experts Group (VCE&Nd ISO/IEC MPEG startetthe development cd new
video coding standard, H.264/AV[Gi 7], completed in 2003CommonlyknownasMPEG-4 Part 10
the stadard H.264/Advanced Video CodingAVC) provides good video quality with lower bitrate
thanprevious coding standardfiough at the expense wbtablyincreasing the design complexity.
earlier coding standards, such as H.261 and MBE@orking with one reference frame, H.264/AVC
supports multiple reference framesFagurel shows.

Motion estimation plays a very importanigan these vide@oding standards, widely adopted in
MPEGnN, H.26n. (n=1¢é 4) . Regarding motion estimati on,
strategies, and specific architecture implementations with Very Large Scale Integration (VLSI) [8,9]
systems. Gradient motion estimation families are based on a constamtésgassumption.

We have developed the sensor focusing on the matching motion estimation faraly wehwill
explain further as we consider each frame as divided into-8k@dMacroBlocks (MBs). The goal of
this process is to remove temporal redunayeexisting between adjacent frames by finding the Motion
Vector (MV), which points up to the best macro block prediction, according to any metric in the
Reference Frame (RF).

This process analyzes the blocks of a reference frame, in order to estienakes#st block to the
current one, as shown kigure 2 Hence, motion vector is an offset from the coordinate of the current
macro block to the corresponding macro block in the reference frame. The process of coding the frame
processed with motion estitnan in video is also known as intélame coding, which is applied to
control the navigation in flying robots such as in an unmanned aerial vehicle. Motion estimation is one
of the information channels to be integrated into compressed sensing in avionics.

Sensor012 12 13128

Figure 1. Different schemes of video compression between H.263 and Hi2@43

(2001) encodes the motion only one reference frame at a time. Nevertheless, H.264/AVC,
completed in 2004, uses multiple reference frames to encode the motion vectors as shown
in the figure. It is possible to appreciate the blocks from the previaone$ {4,t-3,t-2,t-1)
projected in frame.

MPEG-I, MPEG-2, H263 ONE REFERENCE FRAME

FRAME T-1 CURRENT FRAME FRAME T+1

B T S

H.264/AVC
MULTIPLE REFERENCE FRAMES
HOE2 ot

-

FRAME T+1

CURRENT FRAN [E/B

FRAME T-1

FRAME T-3

Figure 2. The FST scheme of the process.

SUM OF ABSOLUTE DIFFERENCES SMALLER

/

FRAME T FRAME T+

- | SEARCH WiNDOW

In the framework of redime computing sensors, there are other platfpgush as the work of
Deutschmanrj10] or Stocker 11,12]. Deutschmann provides an analggSI sensor that computes
reattime division of the temporal and spatial derivatives of the local light intensity. Stocker presents a
VLSI distributed visual processing sensor, with a network architecture applying an error correction
strategy which is abléo deliver the motion estimation components basethertdorn and Schunck
gradientmodel approachlf).

Sensor012 12 13129

Regarding the matching family used in the present contributiomef@eencehe work of Nitsuma
and Maruyamal4], who develope@ high performance systolic processor system using FST. Also the
University of Seoul 15 presenteda mathing family sensor using a NIOI® processor, although
neitheraccuracy data (PSNRpr throughput measures grevided Finally Guzmaret al. presented
an embedded sensor based on a commbreiaécialized smaitamera 16] which is able to operate at
176x 144 @ 10,000 fps and also useN&OS Il processor.

The contribution of this work ialow-costFPGA-based motion estimatiomissor which uses three
selected and verwell-known algorithms in theblock matching family{17]. This system is designed
by means of using NIOS Il softcore microprocess¢f8] andanALTERA DE2 board19].

The matchingmotion family used n this work & widely used for multimediaoding as stated
previously the system itself is customizabl@ith changingthe microprocessor architecture and the
motion search windovbeing possible, among other features. We haxeldped an analysis of the
accuracy and efficiay of the systenas we explain further

This paper is organized as follows: Section 1 describes the multimedia scope and the importance of the
motion estimation algorithms. Section 2 describes and specifically compares the algorithms used in the
sensor functionality. Section 3 shows the hardvwaachitecture and the primitive functions implemented
and accelerated in the hardware. Section 4 discusses the results in terms of throughput and resourc
consumed. A visual output is shown, and a comparison with existing sensors is also accomplished.
Finally, Section 5 contains the concluding remarks and future lines of this embedded system.

2. Matching Estimation Methodsfrom Multimedia Video Coding Inspired by Sensor Construction

We provide,in thefollowing paragraph, an overview of the matching algihms, focusing orthree
specific ones chosefor their peculiaritieswhile being implemented.The aim of Block-Matching
Methods (BMMs) is to estimateMotion Vectors for eactMacro Blockwithin a specific and fixed
search window in theeference fram¢17,20]. For examplethe Full Search @chnique(FST), also
denoted asan exhaustive search algorithis one of the most straightforward methods in BMNise
FST algorithmexhaustivelymatchesall Macro Blocks withina searchwindow in the reference frame
to estimate the optimal Btro Block;i.e., the one withthe minimum BlockMatching Eror (BME).
There are several defirots forBME, but the most used the Sum of Absolute Difference (SAD) of
all the pixels between an MB of the current frame and thathef reference framand theMean
Squared Error (MSE}his last metricbeing less conservative due to the square fadtlsually, the
huge amount of computations requiteccalculate the errdsy the FSTlimits its applicaility, turning
the developmentfefficient motion estimation search algorithms into a significant topic for video coding.

In order b reduce the computational weight, many enhanced search algorithms have been proposed
These methods can be organizedwo categories(1) the Search Reudlction (SR)of SAD and(2) the
CalculationReduction (CR) of SAD. SRlgorithms are based aedudng the search points within
a search window21i 24]. Examples b well-known algorithms belongingo this group arethe
ThreeStep Search 8chnique (TSST)25]; the New ThreéStep ®archTechnique(NTSST)[26,27];
the FourStep ®archTechnique(4SST)[28]; the BlockBased Gradient Descene&chTechnique
(BBGDST)[29]; the 2D Logarithm farchTechniqugLOGST)[30]; thecrosssearch algorithni31];
the dynamic search window adjustment algorithf82]; the Diamond 8arch (DS)[23]; and

Sensor012 12 13130

Hexagonbased 8arch (HS) algorithn{33]. These algorithms employ fixed patterns with/without
limited searching steps orderto locatethe MB with the minimum SAD. Many other varieties with
different pattern shapes motion estimation algorithms lads@been presente[84i 36]. In order to
accelerate the search process, assumehe target candidate posmtoward theinside of thelocal
optimum; therefore the quality of the results becomes worsewithrthe FST. Comparison of Fast
Search Techniques implemented in the presented sensor

Conversely algorithms categorized &R of SAD ty to reduce the computationSince SAD
is calculated ¥ addingthe differences oéach pixel, he computation of the partial SAD is simpler
than thecomputation of the total SAD betwedwo MBs. Because ofthis, a Partial Distortion
Search E&chnique (PDST) was first proposed to reduce compugationvector quantizatiof37].
Additionally, other techniquesot addressed in this papesvebeen found to reducthe calculation
number and improvehe estimationSeveral gamples of this approach atbke fast lossless PDS
algorithm[38] or the Normalized Partial iBtortion Search (NPDS) methoavhich rejecs the invalid
candidate MV$39,4Q] early.

2.1 Full Search Technique

The Full Search @chnique (FSTis the most straightforward Block Matching Method (BMM) and
also the most accuebne. FST matches all possible blocks within a search window in the reference
frame to find the blockvith the minimum Summation of Absolutdfi2rences (SAD)defined as:

N-1N 1

SAD(X Y u¥=-—5 8 A XY -Lil(x uy ¥ (1)
N x=0y ®

where | (X, y) represents the pixel value at the coordinate (x, y) ifrémee t andu, v) representshe
displacement of the Macro Block (MBandidate Thus, givena block withthe sizeN = 32, the FS
algorithm requires ,024 subtractions and@23 additions to calculate a SAD. The required number of
checking blocks is (* 2dY, while the sarch window is limited within ¢ pixels, usuallyby apower
of two.

As seen inFigure 2, one block from thdeft part of Fame Tis matched(using any metrierror,
suchasthe SAD)with the corresponding one frothe right part of Fame T+ 1 inside of the search
window. The displacement from frame T te+TL constitutes the estimated motion for this block.

2.2 Three Step Search Techniqd&SY) and (NSS)

The TSST [25] is the first BMM bas@& on a norexhaustive searchlhe TSST supports two
important contributions for motion estimation in terms of fixed search patéerth limited search
sters. Most ofthelater works stillincludethesecharacteristicto desigrthe algorithms.

The aim hereis to perform a multscale processapplying three stepm orderto find the most
similar MB within the search window of the reference framnethe first step the step size of the
search window iglesignated abkalf of the search area. Nine candidate points, including the center
point andeight checking points on the boundary of the search windewshavn in Figure 3(A), are
selected ireach step.

Sensor012 12 13131

The second step mes the search center forwdaadthe matching point with theimmum SAD of
the previous ste@nd the step size of the sedmtep is reduced by halds shown irFigure3(B). The
third step stops theearch proces3he step size of one pixel and the optimal MV witie minimum
SAD can now be obtained, as shownFigure 3(C). Using the same search window, 7 pixels, the
TSSTonly needs 25 search points in comparison with the FST algorithm, which néeds 2fe can
see in Table 1 FST uses more search points than TSST and 2DLog, but less search steps than these.

Figure 3. TSST. @) The first step.B) The second stepCj Thethird step.

e o o e o o o o ©
 dhdhd oo
o o o o oo e 0#%
eeoe oo
o o @ o o @ o & o
(4) 8) ()

Table 1. Comparison of Fast Search Techniques implemented in the presented sensor

Number of Search Points Number of Search Steps

Method MIN MAX MIN MAX
FULL SEARCH (EXHAUSTIVE) 225 225 1 1
THREESTEP SEARCH 25 25 3
2D-LOG SEARCH 13 26 2 8

The nav ThreeStep Search Technique NTS$A7] exploitsthe fact that the MVs of the frame with
slow motion aremostly found near the center of the search winddiis techniquananages a center
biased checking point pattern and a halfgtyp technique for stationary MBs to improve the
performance of the TSST. The process first checks the points of the pattern. If the centempains
theminimum SAD, the search is dorajt if the minimum SAD appears ase of the neighbors of the
center point, the NTSST checks five comar three edge points; after thibe search is over.
Otherwise, the search stepsiod NTSST are similar to thoséthe TSST (Figure 3).

2.3 Two DimensionalogarithmicSearch (2DLOG) and Mifications

An alternative to the techniques previously explaireethe Two Dimensional Logarithmibased
Search (2DLOG])41], which isfeasible to implement in hardwarghis approacluses gattern cross
search(+) in each stepwith aninitial stepsizeof d/4. The step size is reduced by half only when the
minimum point of the previous step is the center one or the current minimum point reaches the search
window boundarylf noneof thesetwo conditions isaccomplishedthe step size remains the same.

Sensor012 12 13132

As an example, two different search paths are showigure 4. When the step size is reduced to
1, all eight of thechecking points adjacent to the center checking point of that stepahedThe
bottom search pathway needs 2% + 3 + 2 + 3 + 2 + 8 checking pointshrough thesix stepsto
complete the processeverthelesghe top search pathway requires=19+ 3 + 3 + 8 checking points.

Figure 4. 2DLOG. Twosearch paths for the 2DLOG search algorithm.

=
L
i

*
—o—o—B—) ﬁ:

L 4
-

@ Fisisep ’ Fourlh step
B Secondsiep B Fitih siep
A Thid siep X siinstep

3. Hardware Implementation of the Sensor

An embeddedystem[42] is a computer systemhich perforns specific taskandcan be part of a
more complex system (mechanical, optiedt). Usuallythis designdepend on a set ofparameters
suchas data processing throughputs, efficiency, power consumption, reliability, configuyambiy
low cost, among othersSometimes due to the kind of application and the environment where the
sensor will be usedt is desirable to keep a good traafé solution betweemany of these parameters.
Nowadaysmanyembedded systenase associated withur routine workas part of complex sensors
such as video cameras, vehicular technology, security, sciemti§tumentation optics, industrial
inspectionand so on.

A Field Programmable Gate Array (FPGAB[44] contains millions of connections and logic cells
that can be configured to achieve a specific digital logic design. FPGAs can be programmegden a lar
variety of lowlevel and higHevel Hardware Description Languages (HDL45] Due to the
configurable capacity of the FPGA devices, a customized hardware can be designed to be included ir
any sensor. It is possible to design processor features, despdofalized hardware accelerators for
intensive computation tasks, and create custom input/output ports to be connected with other physica
parts of the sensor. These systems, built together in the same FPGA, are known today as@System
Programmable Gp (SoPC) f6]. Figure 5 shows a real example of FPGA devices.

Sensor012 12 13133

Figure 5. (Top) FPGA Chip and Prototyping Boarddttom) Cyclone 1l Archtecture
(Pictures extracted froid7]).

JALTERAR

c:_vt:loma,gTM b/ §

EP2C20F484C7N
K CBB9YO0807A
KOREA

Host computer

USB-Blaster
Reset_n Clock interface

ITAG Deb TAG UART St
o ccor JTAG: Debug TTAGE TR FPGA chi
Nios Il proce: module interface &
Avalon switch fabric
On-chip SDRAM Switches I.F‘.Ds
R eontroliar parallel input parallel output
= interface interface
SRR SW7 SWo LEDG7 LEDGO
N ch!‘p-

3.1. NIOSII SoftCore Processor

The NIOS Il [48] is a softcore processor based on RISC architecture. It is targeted for Altera
devices, allowing scalable development and flexibility since it can be customizedadditional
features depending gmerformance or costbjectives NIOS Il [48] is anenhancedversion which
offers higher performance and lower costthan theprevious16-bit softcore processor NIO$49].

This 32bit processor belongs to a threember family named Fast, Econgnaynd Standardvhere
each one is optimized for a specifidce and performance range. Each one of the three cores uses a
common 32bit Instruction Set Architecture (ISA), with 100% binary code compatibility between them.

The NOSII/f Fast CPU is optimized for maximum performanbanging performanceup toa 220
DMIPS in the Stratix 1I[50] family of FPGAs,which placesit squarely in the ARM 951] class of
processas. While this core idour times faster than the original NIGSPU, it is 40% smalledt has
4 K bytes of separateddata and instructio cache,an oscillator of 144MHz, and 20 embedded
multipliers of 9x 9 bits. Performancen systems based d¥lOS Il can scale to fit the applicatidoy
means ofcustom instructions, high bandwidth switch fabramd hardware acceleratork also
supports fixed ad variable cycle operationshe NIOS Il/fe Economy CPU is optimized fadhe lowest
cost, achieving a smaller FPGA footprint (less than 600 .LE$)as no data or instruction caglie

Sensor012 12 13134

hdf the size of the smallest NIO&re andincreasegperformance byour times Finally, the NIOS

ll/s Standard CPU is a traddf solution between processing performance and logic element usage. It
is 60% faster than the fastest NI@®U am smaller than the smallest NIG3U. It achieves over

120 DMIPS while consuming &n930 LEs (Stratix II).

3.2. Hardware Acceleration and Algorithms

For the current saor, the NIOS Il C2H Compiler [18] is used moving specific functions
which are criti@al for performancefrom running on the FPGA saoftore processof(Cyclone I
EP2C35F672C6)592] to optimized and pipelined hardware accelerators.clinentaccelerators have
direct access t o ,taigedy improving teesparallel dransactiensnto thg needed
number of buffers.

Usually the processors @te a single system bus with DMA channels and other master functions
limiting bus access to only one master. NI@Ssystems benefit from the smlled Avalon Switch
Fabric[53] that providesas showrfigure6 (right), a dedicated data path to each nastbowing all
masters to transfer data simultanglguwhichdeliversgreater system performance. This bus supports
a plethora of charadtstics, suchas address decoding, dynamic bus sizing, clock domain crossing,
off-chip intefaces and datapatimultiplexing. Large blocks of data can be processed concurrently
with CPU operation constructing applicatispecific hardware acceleratprsoosting the system
throughputdueto dedicated dapmths.The performance of the embedded system not depend on
the frequency or benchmarkatalso am the surrounding system.

Figure 6. C2H Integration and Avalon Switch Fabric Connecting Master and Slave in a
system Diagram extracted frorfd7]).

. . Software Hardware
=T

Description

accelerator_
driver.c

User setting:
Use accelerator
instead of original
software?

" Bi " Device
Binaj :
Execut?ble Pronga_:gmmg
I

Sensor012 12 13135

Figure 6. Cont.

System CPU
Masters (Master 1)

DSP 10 CPU
(Master 2) (Master 3)

Avalon Switch Fabric

Slaves n

Figure 6 (up) shows how the NIOS C2H Compiler integrates into the software build process in
the IDE. The left halbf the flowchart shows the standard C compilatiomafn.candaccelerator.¢
as it occurs without acceleration. The ridpiaind sideof the flowchart shows the hardwarempilation
process invoked when a function &tcelerator.cis accelerated. It also shows the generation and
selective linking of the accelerator driver into the executable file.

Altera claimsthat no restrictions on the bandwidth are imposed insidattritsf the accelerator
differentfrom the physical limitations of theoonected memories. When the NIOSC2H Compiler

creates hardware for a function, it generates sufficient master ports for pointer and array operations.

These master ports allow accéssnemory and other petiprals in the systeiand areableto operae
independently, in parallelt is also possibleto write data to output buffer and fetch data from input
buffers in parallel over the same clock cycle.

Next, the functionality of thealgorithms implemented in the sensetbriefly describec&nd shown
(Figures 7 and8). The three first Agorithms (I, Il, 1ll) correspondo the techniquesepresentedn
Figures 2 through .4Additionally, Algorithm IV moves data in memory; Algorithm §etsa specific
MacroBlock (MB) and finally, Algorithm VI delivers the accuracy of the motion estimation in the
sensor itself

1 Algorithm I. Full Search Technique (FSThhis function looks into the current frame for each
block situated in (x, y) in theeference frame. All the possibilities are tested, returning the
motion of the block in the current frame as explained in Section 2.Eigack?2.

1 Algorithm Il. Three Steps Search Technique (TS3hjs function performs three steps through
a limited searh step and using a fixed search pattern as explained in Section Figanes.

1 Algorithm Ill. 2D Log Technique (2DLOG)This function performs three steps betweesnd
8 times executing a logarithmic search using a fixed search pattern as expleSeation 2.3
andFigure4.

1 Algorithm IV. Copy do DMA.Thi s i s a simple function tha
Asourceo memory direction to the Adestinyo

Sensor012 12 13136

1 Algorithm V. Get_Block functionThis functionres | t s i n a c¢ op yblbolokok ,
t he par a seoeréceiving &sfparaameters the block size, the width, and the positiba of
block into the frame (X, y).

1 Algorithm VI. Get_Cost functionThis function returns the cost between the current block and
the reference block calculated according to a SAD metric, as shdvquation (1).

Figure 7. Flow Chart of Algorithms I, I, lll:FST Upper left): For a given block in a
current f ona soan Gl blopke betwedn a movement range on the reference

frame, and compare them with the given block for achieving the minimum T8S{T

(Upper right) : For a given block in a current fral
and around) in the ference frame, and compare them with the given block for achieving

the minimum cost. Then, the searching step is reduced to half, and the base position is
changed to the minimum cost block one. This process is repeated three2rh€x:

(Lower center): For a given bl ock in a current frar
(di amondds center and diamond6s corners) in
given block for achieving the minimum cost
the minimum ost block one or the searching step is reduced to half. This process is
repeated until the searching step converges to one.

Get current frame block at indicated position Get current frame block at indicated position

For each of three steps
Set valid movement range
Set valid movement range

For each position inside movement range . o
For nine positions inside movement range

Get reference frame block at position Get referenceframe block at position

inimun co
between

Is cost minimun
between blocks?

Update minimun (cost and block position)

Update minimun (cost and block position) Update position and reduce movement step to the half

Get current frame block at indicated position
While step not converged to one
For each diamond’s position
Set valid movement range

Get reference frame block at position

vViinimum co:
between

Update minimun (cost and block position)

Diamond center
minimum cost

GG

l Reduce movement step to the half

Update diamond center to the minimum cost position

Sensor012 12 13137

Figure 8. Flow Chart of Algorithms IV, V, VI: CopyDoDMAUpperleft) : Copy dAl eng!
bytes from the source address to testination address&etBlock Upper right): Copy

one frame block into the destination addreG&tCost Lower center): Return cost

between urrent block and reference block according to chosen metric.

Foreachbyte insourceaddress Foreachrow into blocksize

Copybyte from sourceaddressto destinationaddress CallDo DMAwith blockrow anddestinationaddress

NO .
Chosen metric equals
to SAD?

For each position inside current block

Current block
[position] > Reference
block [position]?

Cost = Cost + Current block [position] — Reference block [position]

Cost = Cost + Reference block [position] — Current block [position]

For each position inside current block

Cost = Cost + (Current block [position] — Reference block [position])*

4. Results Testing the Sensor

In this section, we present the results obtained applying different methods, different window
searches, different processors, and also different accelerated functions.

The quality of the acceleration code is organized into four categorieso,(dhere he entire code
is executed in the NIOS Il without acceleration; &y, which accelerates do_dma (Algorithm 1V);

(3) medium which accelerates do_dma and Get_Bl@&lgorithms IV & V); and (4)high, which
accelerates all the functions (Algorithms | ootllll and IV, V, VI).

Regarding the input sequence test, we have used mankmelh sequences 4 for measuring
matchingbased motion estimation systems, which will be commented upon later. The output sensor
shows its reference motion for each Madtock, the reference frame, and the cospressed
according to the error metric Sum of Absolute Differences or Mean Squared Error, this last metric
being less conservative, as remarked upon previously.

Sensor012 12 13138

4.1. Throughput Obtained

The throughput of the sensas representedas a function of thekilopixels per secondkpp9
delivered with the system. Every technique is implemented usiagge ofwindow searchsof 8, 16,
and 32 pixels as well aghe threedifferent architectures ahe NIOS Il microprocessoEconomic,
Standard andFast) asmentioned in Section.3

We first consideredin this preliminary analysis the behavior of the system from no code
accelerated, lgorithm 1V, and algorithm I1V+V;thus in other wordd no, low, and medium
configuratiors for each one of the three matching techniques considered (FST, TSST, 2DLOG).

The throughput of the whole system wittw or mediumaccelerationbehaves similarlywhen
comparingthe execution of the whole functioms embeddedsoftwae (no acceleration) undethe
NIOS Il and the FST technigugas shown inFigure 9. If we focus onthe TSST technique this
behaviorbecomedineal (whenconsideringno, low, and mediumacceleration)If we seethe 2DLOG
techniquethe linear response @nphasizeégain forno, low, andmediumacceleration, as well dse
fast architecture IIOS Il /f). Although every throughput for every architectudepends on the
window size (8, 16and32 pixels respectively)the lineartendency of thresponsesemains constant
for all sizes.We notice for instancethat by using onlymediumacceleratior(Algorithms IV and V)
the 2DLOG techniqueand fast architecturgNIOS Il /f) is obtained as throughput range betwé&én
and 21Frames per secondgb) ata50 x 50 pixel resolutionwhen using different windows sige

Figure 9. Throughput measured kilopixels per seconkpps obtained using FST, TS$ST

2DLOG with NIOS 1l (e/sff).fino0 runs the whole code in t
accel elwot i ammnc ed de rdantae s(Al g mediumhoh ma clcwe)l;erfat es d
and Get Bl ock (Alhglor iatchcnesl elrVataensd aM)l; fAiunct i o
or lll and 1V, V, VI togethey.

Kpps Vs Quality (for each processor) Kpps Vs Quality (for each processor) Kpps Vs Quality (for each processor)
u FST, window size 8 pixel, 1 step u TSST, window size 8 pixel, 3 steps 2DLOG, window size 8 pixel, 6 steps
o —4-Nios Ile (8) — 70— —+-Nios lle (8) ?g | —Noslle
w 80 _ — /|y w0 -mNisllis(®) o 8 alisiis
2 = -a-Nios Ils (8) S 50 sl - o
B E——T) e Yo o
P +—— 30 30
20 A 20 20
o ——— s —— = = . = —
no low medium high no low medium high no Jow medium high
Quality of Acceleration Quality of Acceleration Quality of Acceleration
Kpps Vs Quality (for each processor) Kpps Vs Quality (for each processor) Kpps Vs Quality (for each processor)
FST, window size 16 pixel, 1 step w TSST, window size 16 pixel, 3 steps " 2DLOG, window size 16 pixel, 6 steps
0 0 0
0w 60 0w 60 o 60
2 % 2 w0 2 %
X g X g X g
30 30 30
20 7 20 20—
10 = 10 = A 10 ¥ - ¥ = |
0 —— ; . 0 ————— 0 : : ;
no low medium high no low medium high no low medium high
Quality of Acceleration Quality of Acceleration Quality of Acceleration
Kpps Vs Quality (for each processor) Kpps Vs Quality (for each processor) Kpps Vs Quality (for each processor)
FST, window size 32 pixel, 1 step " TSST, window size 32 pixel, 3 steps 80 2DLOG, window size 32 pixel, 6 steps
70 70 70
o 60 n 60 n 60
g w0 S w0 2 %
) ¥ g X oy
30 30 30
A [
0 = 0 : o ; : ,
o — : 0 p———— 0 ; ; 7
no low medium high no low medium high no low medium high
Quality of Acceleration Quality of Acceleration Quality of Acceleration

Sensor012 12 13139

Focusing a high acceleratior{Algorithms | or 1l or Ill and IV,V, VI together) we can appreciate
different throughput regarding the windsgize Regarding=ST (in the irst column ofFigure9) and
fastarchitecturearange from 6%o 72kppsis delivered, depending dhe window sizeused(from 8
to 32 pixels) Thisis athroughput for the systefretween 24.5 ang fps ata 50 x 50 pixel resolution
enough for a small sensor camdtar configurations of standaeshd economiarchitecturewe obtain
a throughputangebetween 20 and 2kpps (from 8 to 32 pixels)which is a rangebetween 8and
11 fps at 50 50 pixel resolution

Focusing oniTSST (in the £cond column oFigure9) and regarding fast architectyueerange from
6.15 to24.6kppsis delivered, depending of the wind@rze used (from 8 to 32 pixels)his means a
throughput for the system between 2 andff® ata 50 x 50 pixel resolution. For configurations of
standard and economic architecture, we iobdathroughput range between 5 andkp@s (from 8 to
32 pixek) which means a range betweean®8 fps ata 50 x 50 pixel resolution.

The 2DLOG techniquéin the hird column ofFigure9) procesesa range fromt3.8to 56.4kpps
for fast architectureagaindepending on the windogizeused (from 8 to 32 pixelsyvhich meansa
range of 17.622.5 fps. For configurations of standard and economic architecture, we oltsanghput
of approximately 10 kpps and s, independent of the window range (from 8 to 32 pixelsjch
means a range betweem2d8 fps ata 50 x 50 pixelresolution.

Note that the size of the window is not always inversely proportional to the system throughput. For
example, the TSST restricts the calculation complexity by limiting the exhaustive search to three steps, sc
accelerating all functions meansradeoff solution between pixel parallel level (the increment of the
window size involves less Macro Blocks) and Macro Block parallel level (when window size is decreased).

4.2. Used Resources

The hardwareresources useare listedin Table2 (Full accelerationand Table 3 (no acceleration,
low accelerationand mediumacceleration¥or different processor architecturesywindow size of 32
pixels and a set oflifferentarchitecturs.

Table 2. FPGA resources measured with a Qus tool fLl9 with a window size of 32
pixels. Case Aho (high qualsiot wmnac didloe maetaino N

fecongdmitahamd didf ast 0O

(FST, TSST,2DLOG)
Total
. . , EMs

Processr/ Logic Logic Logic (9x9) memory
Quality Method Cells Method Cells Method Cells bits
eh 11,637 13173 13,056 23 44,032

(35%) (40%) (39%) (33%) (9%)
sh 12,382 14,023 2DLOG 13955 27 79,488

FST TSST

(37%) (42%) (42%) (39%) (16%)

f/h 13,090 14,755 14,678 27 114944

(39%) (44%) (44%) (39%) (24%)

Sensor012 12 13140

Table 3. FPGA resources easured with a Quartus todlq with a window size of 32

pi xels for either FS, TSST, fofro 2mMmdaOGs NIr@
fecondmitanamd doGaestfimo and Al o lowraddmddiond me an
guality acceleration, respectively

Processor e Processor s Processor f
) Total . Total) Total
Quality Logic EMs memory Logic EMs memory Logic EMs memory
Cells (9x9)) Cells (9x9) } Cells (9x9))
bits bits bits
0 2107 0 44032 3085 4 79488 3763 4 114944
(6%) (0%) (9%) (9%) (6%) (16%) (11%) (6%) (24%)
| 3363 0 44032 4147 4 79488 4889 4 114944
(10%) (0%) (9%) (12%) (6%) (16%) (15%) (6%) (24%)
m 5006 12 44032 5812 16 79488 6524 16 114944
(15%) (17%) (9%) (17%) (23%) (16%) (20%) (23%) (24%)

Recall the cache resources regarding the microprocessor: no cache (economic), only data cach
(standard), and both data and instruction cache (fast). The tables show the number of Logic Cells
(LCs) used, the number of embedded multipliers € needed, and the total number of bits.

High quality acceleration (all functions) requires a little bit less than 50% of the available logic cells
(35% 39% for FST, 40%44% for TSST and 39%44% for2DLOG). In this case, between 33% and
39% of embedded DSPs {9) are used and total memory Bits (Block Rams) are from 9% to 24%,
depending on the motion estimation technique considered.

Reaardinglow, medium andno acceleratios, note thathe sameesourcesire requiredor the three
techniguesalthoughit depends on the processor configuration selected. Focasimgdiumquality,
we obtainan increment from 15% to 20% of Logic Cells fdtOS Il economicto NIOS Il fast
Regarding the multiplierghis incrament is from 17% to 23% for NIOS dconomicto NIOSII fast
Finally, regardingthe total memory bitghe incremencovers from 9% to 24% for NIOB economic
to NIOSII fast

Focusing orlow quality, the resources used are 10%6 (Logic Cel), 0% 6% (Multipliers) and
9%i 24% (Total Memory bits). Regarding theo-acceleration we obtain an incremen®%i 11%

(Logic Cells), 09%6% (Multipliers) and 9% 24% (Total Memory bg). Thesetwo incrementsare
the same aghe low quality; in other words, constant DSPs and Block Ram from the previous
configurationis maintained

4.3 Resourcess. Performance

In order to compare used resources and pedace, we showhe kilopixels per secondkpps)
achieved versus the logic elements iiegland the embedded multipliers implied for each design
Figures 10 and11.

Sensor012 12 13141

Figure 10. Performance inkilopixels per second Kpp9 versus logic elements applied
obtained using FST, TSST, 2DLO@th NIOS 1l (e/s/f). The four measures correspond to
the four types of accelerationq, low, mediumandhigh).

Figure 11.Performance ikilopixels per seand (kops) versus embedded multipliers using
FST, TSST, and 2DLOG with NIOS Iefs/). The fourmeasures correspond to the four
types of acceleratiom, low, medium andhigh).

