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Abstract:  This work presents the implementation of a matching-based motion estimation 

sensor on a Field Programmable Gate Array (FPGA) and NIOS II microprocessor applying 

a C to Hardware (C2H) acceleration paradigm. The design, which involves several 

matching algorithms, is mapped using Very Large Scale Integration (VLSI) technology. 

These algorithms, as well as the hardware implementation, are presented here together with 

an extensive analysis of the resources needed and the throughput obtained. The developed 

low-cost system is practical for real-time throughput and reduced power consumption and 

is useful in robotic applications, such as tracking, navigation using an unmanned vehicle, 

or as part of a more complex system. 

Keywords: computer vision; optical flow; block matching algorithm; NIOS II; very large 

scale integration (VLSI); FPGA; embedded systems 
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1. Introduction  

The field of multimedia information has progressed very rapidly; video coding standards have 

become crucial when transmitting large amounts of video data. By removing temporal redundancy of 

video data for proper storage and transmission, motion estimation has become key for high 

performance in video coding. Since 1980, video coding has focused on representations of video data 

for storage and transmission purposes, with efficient reduction of the size of encoded video data being 

the most challenging issue to manage.  

The International Telecommunication Union (ITU) developed a number of video coding standards 

for real-time transmission applications (such as video conferencing). The first major aim of the ITU 

was H.261, designed for transmission over ISDN lines with data rates in multiples of 64 Kbits/s. ITU 

has published a series in the H.26X family, such as H.263+ [1,2]. As well, the International 

Organization for Standardization (ISO) and the International Electro-technical Commission (IEC) 

established the Moving Picture Experts Group (MPEG) in order to set standards for audio, video 

compression, and transmissions such as MPEG-1, MPEG-2, and MPEG-4 [3,4] (MPEG-1 aims to 

meet the low complexity requirement, MPEG-2 is meant for broadcast-quality television, and MPEG-4 

is especially designed for low bitrate applications). In 2001, The Joint Video Team (JVT) joined the  

ITU-T Video Coding Experts Group (VCEG), and ISO/IEC MPEG started the development of a new 

video coding standard, H.264/AVC [5ï7], completed in 2003. Commonly known as MPEG-4 Part 10, 

the standard H.264/ Advanced Video Coding (AVC) provides good video quality with lower bitrate 

than previous coding standards, though at the expense of notably increasing the design complexity. In 

earlier coding standards, such as H.261 and MPEG-1, working with one reference frame, H.264/AVC 

supports multiple reference frames, as Figure 1 shows. 

Motion estimation plays a very important role in these video-coding standards, widely adopted in 

MPEG-n, H.26n. (n = 1é4). Regarding motion estimation, there are many family algorithms, 

strategies, and specific architecture implementations with Very Large Scale Integration (VLSI) [8,9] 

systems. Gradient motion estimation families are based on a constant brightness assumption.  

We have developed the sensor focusing on the matching motion estimation family, which we will 

explain further as we consider each frame as divided into fixed-size MacroBlocks (MBs). The goal of 

this process is to remove temporal redundancy existing between adjacent frames by finding the Motion 

Vector (MV), which points up to the best macro block prediction, according to any metric in the 

Reference Frame (RF).  

This process analyzes the blocks of a reference frame, in order to estimate the closest block to the 

current one, as shown in Figure 2. Hence, motion vector is an offset from the coordinate of the current 

macro block to the corresponding macro block in the reference frame. The process of coding the frame 

processed with motion estimation in video is also known as inter-frame coding, which is applied to 

control the navigation in flying robots such as in an unmanned aerial vehicle. Motion estimation is one 

of the information channels to be integrated into compressed sensing in avionics.  
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Figure 1. Different schemes of video compression between H.263 and H.264. H.263 

(2001) encodes the motion only one reference frame at a time. Nevertheless, H.264/AVC, 

completed in 2004, uses multiple reference frames to encode the motion vectors as shown 

in the figure. It is possible to appreciate the blocks from the previous frames (t-4,t-3,t-2,t-1) 

projected in frame t.  

 

Figure 2. The FST scheme of the process. 

 

In the framework of real-time computing sensors, there are other platforms, such as the work of 

Deutschmann [10] or Stocker [11,12]. Deutschmann provides an analog VLSI sensor that computes 

real-time division of the temporal and spatial derivatives of the local light intensity. Stocker presents a 

VLSI distributed visual processing sensor, with a network architecture applying an error correction 

strategy which is able to deliver the motion estimation components based on the Horn and Schunck 

gradient-model approach [13].  



Sensors 2012, 12 13129 

 

 

Regarding the matching family used in the present contribution, we reference the work of Niitsuma 

and Maruyama [14], who developed a high performance systolic processor system using FST. Also the 

University of Seoul [15] presented a matching family sensor using a NIOS II processor, although 

neither accuracy data (PSNR) nor throughput measures are provided. Finally Guzman et al. presented 

an embedded sensor based on a commercially specialized smart-camera [16] which is able to operate at 

176 × 144 @ 10,000 fps and also uses a NIOS II processor.  

The contribution of this work is a low-cost FPGA-based motion estimation sensor, which uses three 

selected and very well-known algorithms in the block matching family [17]. This system is designed 

by means of using a NIOS II soft-core microprocessor [18] and an ALTERA DE2 board [19].  

The matching motion family used in this work is widely used for multimedia coding, as stated 

previously, the system itself is customizable, with changing the microprocessor architecture and the 

motion search window being possible, among other features. We have developed an analysis of the 

accuracy and efficiency of the system as we explain further.  

This paper is organized as follows: Section 1 describes the multimedia scope and the importance of the 

motion estimation algorithms. Section 2 describes and specifically compares the algorithms used in the 

sensor functionality. Section 3 shows the hardware architecture and the primitive functions implemented 

and accelerated in the hardware. Section 4 discusses the results in terms of throughput and resources 

consumed. A visual output is shown, and a comparison with existing sensors is also accomplished. 

Finally, Section 5 contains the concluding remarks and future lines of this embedded system.  

2. Matching Estimation Methods from Multimedia Video Coding Inspired by Sensor Construction 

We provide, in the following paragraphs, an overview of the matching algorithms, focusing on three 

specific ones chosen for their peculiarities while being implemented. The aim of Block-Matching 

Methods (BMMs) is to estimate Motion Vectors for each Macro Block within a specific and fixed 

search window in the reference frame [17,20]. For example, the Full Search Technique (FST), also 

denoted as an exhaustive search algorithm, is one of the most straightforward methods in BMMs. The 

FST algorithm exhaustively matches all Macro Blocks within a search window in the reference frame 

to estimate the optimal Macro Block; i.e., the one with the minimum Block-Matching Error (BME). 

There are several definitions for BME, but the most used is the Sum of Absolute Difference (SAD) of 

all the pixels between an MB of the current frame and that of the reference frame and the Mean 

Squared Error (MSE), this last metric being less conservative due to the square factor. Usually, the 

huge amount of computations required to calculate the error by the FST limits its applicability, turning 

the development of efficient motion estimation search algorithms into a significant topic for video coding. 

In order to reduce the computational weight, many enhanced search algorithms have been proposed. 

These methods can be organized in two categories: (1) the Search Reduction (SR) of SAD and (2) the 

Calculation Reduction (CR) of SAD. SR algorithms are based on reducing the search points within  

a search window [21ï24]. Examples of well-known algorithms belonging to this group are the  

Three-Step Search Technique (TSST) [25]; the New Three-Step Search Technique (NTSST) [26,27]; 

the Four-Step Search Technique (4SST) [28]; the Block-Based Gradient Descent Search Technique 

(BBGDST) [29]; the 2-D Logarithm Search Technique (LOGST) [30]; the cross-search algorithm [31]; 

the dynamic search window adjustment algorithm [32]; the Diamond Search (DS) [23]; and  
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Hexagon-based Search (HS) algorithm [33]. These algorithms employ fixed patterns with/without 

limited searching steps in order to locate the MB with the minimum SAD. Many other varieties with 

different pattern shapes motion estimation algorithms have also been presented [34ï36]. In order to 

accelerate the search process, we assume the target candidate points toward the inside of the local 

optimum; therefore the quality of the results becomes worse than with the FST. Comparison of Fast 

Search Techniques implemented in the presented sensor. 

Conversely, algorithms categorized as CR of SAD try to reduce the computations. Since SAD  

is calculated by adding the differences of each pixel, the computation of the partial SAD is simpler 

than the computation of the total SAD between two MBs. Because of this, a Partial Distortion  

Search Technique (PDST) was first proposed to reduce computations in vector quantization [37]. 

Additionally, other techniques not addressed in this paper have been found to reduce the calculation 

number and improve the estimation. Several examples of this approach are the fast lossless PDS 

algorithm [38] or the Normalized Partial Distortion Search (NPDS) method, which rejects the invalid 

candidate MVs [39,40] early.  

2.1. Full Search Technique 

The Full Search Technique (FST) is the most straightforward Block Matching Method (BMM) and 

also the most accurate one. FST matches all possible blocks within a search window in the reference 

frame to find the block with the minimum Summation of Absolute Differences (SAD), defined as:  

 (1) 

where It (x, y) represents the pixel value at the coordinate (x, y) in the frame t and (u, v) represents the 

displacement of the Macro Block (MB) candidate. Thus, given a block with the size N = 32, the FS 

algorithm requires 1,024 subtractions and 1,023 additions to calculate a SAD. The required number of 

checking blocks is (1 + 2d)
2
, while the search window is limited within ±d pixels, usually by a power  

of two.  

As seen in Figure 2, one block from the left part of Frame T is matched (using any metric error, 

such as the SAD) with the corresponding one from the right part of Frame T + 1 inside of the search 

window. The displacement from frame T to T + 1 constitutes the estimated motion for this block. 

2.2. Three Step Search Technique (TSST) and (NSST) 

The TSST [25] is the first BMM based on a non-exhaustive search. The TSST supports two 

important contributions for motion estimation in terms of fixed search patterns and limited search 

steps. Most of the later works still include these characteristics to design the algorithms.  

The aim here is to perform a multi-scale process, applying three steps in order to find the most 

similar MB within the search window of the reference frame. In the first step, the step size of the 

search window is designated as half of the search area. Nine candidate points, including the center 

point and eight checking points on the boundary of the search window, as shown in Figure 3(A), are 

selected in each step. 

1 1

12
0 0

1
( , ; , ) ( , ) ( , )

N N

t t

x y

SAD x y u v I x y I x u y v
N

- -

-

= =

= - + +ää



Sensors 2012, 12 13131 

 

 

The second step moves the search center forward to the matching point with the minimum SAD of 

the previous step; and the step size of the second step is reduced by half, as shown in Figure 3(B). The 

third step stops the search process. The step size of one pixel and the optimal MV with the minimum 

SAD can now be obtained, as shown in Figure 3(C). Using the same search window, ±7 pixels, the 

TSST only needs 25 search points in comparison with the FST algorithm, which needs 255. As we can 

see in Table 1 FST uses more search points than TSST and 2DLog, but less search steps than these. 

 

Figure 3. TSST. (A) The first step. (B) The second step. (C) The third step. 

 

 

 

Table 1. Comparison of Fast Search Techniques implemented in the presented sensor.  

 Number of Search Points  Number of Search Steps 

Method  MIN  MAX   MIN  MAX  

FULL SEARCH (EXHAUSTIVE) 225 225  1 1 

THREE-STEP SEARCH 25 25  3 3 

2D-LOG SEARCH  13 26  2 8 

The new Three-Step Search Technique NTSST [27] exploits the fact that the MVs of the frame with 

slow motion are mostly found near the center of the search window. This technique manages a center 

biased checking point pattern and a halfway-stop technique for stationary MBs to improve the 

performance of the TSST. The process first checks the points of the pattern. If the center point contains 

the minimum SAD, the search is done; but if the minimum SAD appears as one of the neighbors of the 

center point, the NTSST checks five corners or three edge points; after this, the search is over. 

Otherwise, the search steps of the NTSST are similar to those of the TSST (Figure 3). 

 

2.3. Two Dimensional Logarithmic Search (2DLOG) and Modifications  

 

An alternative to the techniques previously explained is the Two Dimensional Logarithmic-based 

Search (2DLOG) [41], which is feasible to implement in hardware. This approach uses a pattern cross 

search (+) in each step, with an initial step size of d/4. The step size is reduced by half only when the 

minimum point of the previous step is the center one or the current minimum point reaches the search 

window boundary. If none of these two conditions is accomplished, the step size remains the same.  
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As an example, two different search paths are shown in Figure 4. When the step size is reduced to 

1, all eight of the checking points adjacent to the center checking point of that step are searched. The 

bottom search pathway needs 23 = 5 + 3 + 2 + 3 + 2 + 8 checking points through the six steps to 

complete the process; nevertheless, the top search pathway requires 19 = 5 + 3 + 3 + 8 checking points. 

 

Figure 4. 2DLOG. Two search paths for the 2DLOG search algorithm.  

 

3. Hardware Implementation of the Sensor  

An embedded system [42] is a computer system which performs specific tasks and can be part of a 

more complex system (mechanical, optical, etc.). Usually this design depends on a set of parameters, 

such as data processing throughputs, efficiency, power consumption, reliability, configurability, and 

low cost, among others. Sometimes, due to the kind of application and the environment where the 

sensor will be used, it is desirable to keep a good trade-off solution between many of these parameters. 

Nowadays, many embedded systems are associated with our routine work as part of complex sensors, 

such as video cameras, vehicular technology, security, scientific instrumentation, optics, industrial 

inspection, and so on.  

A Field Programmable Gate Array (FPGA) [43,44] contains millions of connections and logic cells 

that can be configured to achieve a specific digital logic design. FPGAs can be programmed in a large 

variety of low-level and high-level Hardware Description Languages (HDL) [45]. Due to the 

configurable capacity of the FPGA devices, a customized hardware can be designed to be included in 

any sensor. It is possible to design processor features, develop specialized hardware accelerators for 

intensive computation tasks, and create custom input/output ports to be connected with other physical 

parts of the sensor. These systems, built together in the same FPGA, are known today as a System-on 

Programmable Chip (SoPC) [46]. Figure 5 shows a real example of FPGA devices. 
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Figure 5. (Top) FPGA Chip and Prototyping Board. (Bottom) Cyclone II Architecture 

(Pictures extracted from [47]). 

 

 

3.1. NIOS II Soft-Core Processor  

The NIOS II [ 48] is a soft-core processor based on RISC architecture. It is targeted for Altera 

devices, allowing scalable development and flexibility since it can be customized with additional 

features depending on performance or cost objectives. NIOS II [48] is an enhanced version, which 

offers higher performance and a lower cost than the previous 16-bit soft-core processor NIOS [49]. 

This 32-bit processor belongs to a three-member family named Fast, Economy, and Standard, where 

each one is optimized for a specific price and performance range. Each one of the three cores uses a 

common 32-bit Instruction Set Architecture (ISA), with 100% binary code compatibility between them. 

The NOS II/f Fast CPU is optimized for maximum performance, bringing performance up to a 220 

DMIPS in the Stratix II [50] family of FPGAs, which places it squarely in the ARM 9 [51] class of 

processors. While this core is four times faster than the original NIOS CPU, it is 40% smaller. It has  

4 K bytes of separated data and instruction cache, an oscillator of 144 MHz, and 20 embedded 

multipliers of 9 × 9 bits. Performance in systems based on NIOS II can scale to fit the application by 

means of custom instructions, high bandwidth switch fabric, and hardware accelerators. It also 

supports fixed and variable cycle operations. The NIOS II/e Economy CPU is optimized for the lowest 

cost, achieving a smaller FPGA footprint (less than 600 LEs). It has no data or instruction cache, is 
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half the size of the smallest NIOS core, and increases performance by four times. Finally, the NIOS 

II/s Standard CPU is a trade-off solution between processing performance and logic element usage. It 

is 60% faster than the fastest NIOS CPU and smaller than the smallest NIOS CPU. It achieves over 

120 DMIPS while consuming only 930 LEs (Stratix II). 

3.2. Hardware Acceleration and Algorithms  

For the current sensor, the NIOS II C2H Compiler [18] is used, moving specific functions,  

which are critical for performance, from running on the FPGA soft-core processor (Cyclone II 

EP2C35F672C6) [52] to optimized and pipelined hardware accelerators. The current accelerators have 

direct access to the processorôs memory, largely improving the parallel transactions to the needed 

number of buffers.  

Usually the processors share a single system bus with DMA channels and other master functions, 

limiting bus access to only one master. NIOS II systems benefit from the so-called Avalon Switch 

Fabric [53] that provides, as shown Figure 6 (right), a dedicated data path to each master, allowing all 

masters to transfer data simultaneously, which delivers greater system performance. This bus supports 

a plethora of characteristics, such as address decoding, dynamic bus sizing, clock domain crossing,  

off-chip interfaces, and datapath multiplexing. Large blocks of data can be processed concurrently  

with CPU operation constructing application-specific hardware accelerators, boosting the system 

throughput due to dedicated datapaths. The performance of the embedded system not only depends on 

the frequency or benchmarks but also on the surrounding system.  

Figure 6. C2H Integration and Avalon Switch Fabric Connecting Master and Slave in a 

system (Diagram extracted from [47]). 
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Figure 6. Cont. 

 

Figure 6 (up) shows how the NIOS II C2H Compiler integrates into the software build process in 

the IDE. The left half of the flowchart shows the standard C compilation of main.c and accelerator.c, 

as it occurs without acceleration. The right-hand side of the flowchart shows the hardware compilation 

process invoked when a function in accelerator.c is accelerated. It also shows the generation and 

selective linking of the accelerator driver into the executable file.  

Altera claims that no restrictions on the bandwidth are imposed inside/outside of the accelerator 

different from the physical limitations of the connected memories. When the NIOS II C2H Compiler 

creates hardware for a function, it generates sufficient master ports for pointer and array operations. 

These master ports allow access to memory and other peripherals in the system and are able to operate 

independently, in parallel. It is also possible to write data to output buffer and fetch data from input 

buffers in parallel over the same clock cycle. 

Next, the functionality of the algorithms implemented in the sensor is briefly described and shown 

(Figures 7 and 8). The three first Algorithms (I, II, III) correspond to the techniques represented in 

Figures 2 through 4. Additionally, Algorithm IV moves data in memory; Algorithm V gets a specific 

MacroBlock (MB); and, finally, Algorithm VI delivers the accuracy of the motion estimation in the 

sensor itself:  

¶ Algorithm I.  Full Search Technique (FST). This function looks into the current frame for each 

block situated in (x, y) in the reference frame. All the possibilities are tested, returning the 

motion of the block in the current frame as explained in Section 2.1 and Figure 2. 

¶ Algorithm II.  Three Steps Search Technique (TSST). This function performs three steps through 

a limited search step and using a fixed search pattern as explained in Section 2.2 and Figure 3. 

¶ Algorithm III.  2D Log Technique (2DLOG). This function performs three steps between 2 and 

8 times executing a logarithmic search using a fixed search pattern as explained in Section 2.3 

and Figure 4. 

¶ Algorithm IV.  Copy_do_DMA. This is a simple function that copies ñlengthò bytes from the 

ñsourceò memory direction to the ñdestinyò memory direction. It manages memory transfers. 
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¶ Algorithm V.  Get_Block function. This function results in a copy block, pointed by ñblockò, of 

the parameter ñframeò, receiving as parameters the block size, the width, and the position of the 

block into the frame (x, y). 

¶ Algorithm VI.  Get_Cost function. This function returns the cost between the current block and 

the reference block calculated according to a SAD metric, as shown in Equation (1).  

Figure 7. Flow Chart of Algorithms I, II, III: FST (Upper left): For a given block in a 

current frameôs position, scan all blocks between a movement range on the reference 

frame, and compare them with the given block for achieving the minimum cost. TSST 

(Upper right): For a given block in a current frameôs position, scan nine blocks (position 

and around) in the reference frame, and compare them with the given block for achieving 

the minimum cost. Then, the searching step is reduced to half, and the base position is 

changed to the minimum cost block one. This process is repeated three times. 2DLOG 

(Lower center): For a given block in a current frameôs position, scan five blocks 

(diamondôs center and diamondôs corners) in the reference frame, comparing them with the 

given block for achieving the minimum cost. Then, diamondôs center position is updated to 

the minimum cost block one or the searching step is reduced to half. This process is 

repeated until the searching step converges to one. 
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Figure 8. Flow Chart of Algorithms IV, V, VI: CopyDoDMA (Upper left): Copy ñlengthò 

bytes from the source address to the destination address. GetBlock (Upper right ): Copy 

one frame block into the destination address. GetCost (Lower center): Return cost 

between urrent block and reference block according to chosen metric.  

  

 

4. Results Testing the Sensor 

In this section, we present the results obtained applying different methods, different window 

searches, different processors, and also different accelerated functions.  

The quality of the acceleration code is organized into four categories: (1) no, where the entire code 

is executed in the NIOS II without acceleration; (2) low, which accelerates do_dma (Algorithm IV); 

(3) medium, which accelerates do_dma and Get_Block (Algorithms IV & V); and (4) high, which 

accelerates all the functions (Algorithms I or II or III and IV, V, VI).  

Regarding the input sequence test, we have used many well-known sequences [54] for measuring 

matching-based motion estimation systems, which will be commented upon later. The output sensor 

shows its reference motion for each Macro Block, the reference frame, and the cost expressed 

according to the error metric Sum of Absolute Differences or Mean Squared Error, this last metric 

being less conservative, as remarked upon previously.  

  

Foreachbyte in sourceaddress

Copybyte from sourceaddressto destinationaddress

Foreachrow into block size

CallDo DMA with block row and destinationaddress
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4.1. Throughput Obtained  

The throughput of the sensor is represented as a function of the kilopixels per second (kpps) 

delivered with the system. Every technique is implemented using a range of window searches of 8, 16, 

and 32 pixels, as well as the three different architectures of the NIOS II microprocessor (Economic, 

Standard, and Fast), as mentioned in Section 3.  

We first considered in this preliminary analysis the behavior of the system from no code 

accelerated, algorithm IV, and algorithm IV+V; thus, in other wordsðno, low, and medium 

configurations for each one of the three matching techniques considered (FST, TSST, 2DLOG).  

The throughput of the whole system with low or medium acceleration behaves similarly when 

comparing the execution of the whole functions in embedded software (no acceleration) under the 

NIOS II and the FST technique, as shown in Figure 9. If we focus on the TSST technique, this 

behavior becomes lineal (when considering no, low, and medium acceleration). If we see the 2DLOG 

technique, the linear response is emphasized again for no, low, and medium acceleration, as well as the 

fast architecture (NIOS II /f ). Although every throughput for every architecture depends on the 

window size (8, 16, and 32 pixels, respectively), the linear tendency of all responses remains constant 

for all sizes. We notice, for instance, that by using only medium acceleration (Algorithms IV and V), 

the 2DLOG technique and fast architecture (NIOS II /f)  is obtained as throughput range between 16 

and 21 Frames per second (Fps) at a 50 × 50 pixel resolution when using different windows sizes.  

Figure 9. Throughput measured in kilopixels per second (kpps) obtained using FST, TSST, 

2DLOG with NIOS II (e/s/f).: ñnoò runs the whole code in the NIOS II with no 

acceleration; ñlowò accelerates do_dma (Algorithm IV); ñmediumò accelerates do_dma 

and Get_Block (Algorithms IV and V); ñhighò accelerates all functions (Algorithms I or II 

or III and IV, V, VI together). 
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Focusing on high acceleration (Algorithms I or II or III and IV, V, VI together), we can appreciate a 

different throughput regarding the windows size: Regarding FST (in the first column of Figure 9) and 

fast architecture, a range from 61 to 72 kpps is delivered, depending on the window size used (from 8 

to 32 pixels). This is a throughput for the system between 24.5 and 29 fps at a 50 × 50 pixel resolution, 

enough for a small sensor camera. For configurations of standard and economic architecture, we obtain 

a throughput range between 20 and 27 kpps (from 8 to 32 pixels), which is a range between 8 and  

11 fps at 50 × 50 pixel resolution. 

Focusing on TSST (in the second column of Figure 9) and regarding fast architecture, a range from 

6.15 to 24.6 kpps is delivered, depending of the window size used (from 8 to 32 pixels). This means a 

throughput for the system between 2 and 10 fps at a 50 × 50 pixel resolution. For configurations of 

standard and economic architecture, we obtain a throughput range between 5 and 20 kpps (from 8 to 

32 pixels) which means a range between 2 and 8 fps at a 50 × 50 pixel resolution. 

The 2DLOG technique (in the third column of Figure 9) processes a range from 43.8 to 56.4 kpps 

for fast architecture, again depending on the window size used (from 8 to 32 pixels), which means a 

range of 17.5ï22.5 fps. For configurations of standard and economic architecture, we obtain a throughput 

of approximately 10 kpps and 8 kpps, independent of the window range (from 8 to 32 pixels), which 

means a range between 2 and 8 fps at a 50 × 50 pixel resolution. 

Note that the size of the window is not always inversely proportional to the system throughput. For 

example, the TSST restricts the calculation complexity by limiting the exhaustive search to three steps, so 

accelerating all functions means a trade-off solution between pixel parallel level (the increment of the 

window size involves less Macro Blocks) and Macro Block parallel level (when window size is decreased).  

4.2. Used Resources  

The hardware resources used are listed in Table 2 (Full acceleration) and Table 3 (no acceleration, 

low acceleration, and medium acceleration) for different processor architectures, a window size of 32 

pixels, and a set of different architectures.  

Table 2. FPGA resources measured with a Quartus tool [19] with a window size of 32 

pixels. Case ñhò (high quality acceleration). Processors ñeò and ñsò and ñfò mean NIOS II/ 

ñeconomicò, ñstandardò, and ñfastò. 

 

Method 

Logic 

Cells 

 

Method 

Logic 

Cells 

 

Method 

Logic 

Cells 

 (FST,TSST,2DLOG) 

Processor/ 

Quality  

   
EMs  

(9 × 9)  

Total 

memory 

bits 

e/h 

FST 

11,637 

(35%) 

 

TSST 

13,173 

(40%) 

 

2DLOG 

 

13,056 

(39%) 

 23 

(33%) 

44,032 

(9%) 

s/h 12,382 

(37%) 

 14,023 

(42%) 

 13,955 

(42%) 

 27 

(39%) 

79,488 

(16%) 

f/h 13,090 

(39%) 

 14,755 

(44%) 

 14,678 

(44%) 

 27 

(39%) 

114,944 

(24%) 
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Table 3. FPGA resources measured with a Quartus tool [19] with a window size of 32 

pixels for either FS, TSST, or 2DLOG. Processor ñeò and ñsò and ñfò means NIOS II/ 

ñeconomicò, ñstandardò, and ñfastò. Case ñnò and ñlò and ñmò mean no, low, and medium 

quality acceleration, respectively. 

 Processor e  Processor s  Processor f 

Quality  
Logic 

Cells 

EMs 

(9 × 9) 

Total 

memory 

bits 

 
Logic 

Cells 

EMs 

(9 × 9) 

Total 

memory 

bits 

 
Logic 

Cells 

EMs 

(9 × 9) 

Total 

memory 

bits 

n 
2107 

(6%) 

0 

(0%) 

44032 

(9%) 

 3085 

(9%) 

4 

(6%) 

79488 

(16%) 

 3763 

(11%) 

4 

(6%) 

114944 

(24%) 

l 
3363 

(10%) 

0 

(0%) 

44032 

(9%) 

 4147 

(12%) 

4 

(6%) 

79488 

(16%) 

 4889 

(15%) 

4 

(6%) 

114944 

(24%) 

m 
5006 

(15%) 

12 

(17%) 

44032 

(9%) 

 5812 

(17%) 

16 

(23%) 

79488 

(16%) 

 6524 

(20%) 

16 

(23%) 

114944 

(24%) 

Recall the cache resources regarding the microprocessor: no cache (economic), only data cache 

(standard), and both data and instruction cache (fast). The tables show the number of Logic Cells 

(LCs) used, the number of embedded multipliers (9 × 9) needed, and the total number of bits.  

High quality acceleration (all functions) requires a little bit less than 50% of the available logic cells 

(35%ï39% for FST, 40%ï44% for TSST and 39%ï44% for 2DLOG). In this case, between 33% and 

39% of embedded DSPs (9 × 9) are used and total memory Bits (Block Rams) are from 9% to 24%, 

depending on the motion estimation technique considered.  

Regarding low, medium, and no accelerations, note that the same resources are required for the three 

techniques, although it depends on the processor configuration selected. Focusing on medium quality, 

we obtain an increment from 15% to 20% of Logic Cells for NIOS II economic to NIOS II fast. 

Regarding the multipliers, this increment is from 17% to 23% for NIOS II economic to NIOS II fast. 

Finally, regarding the total memory bits, the increment covers from 9% to 24% for NIOS II economic 

to NIOS II fast. 

Focusing on low quality, the resources used are 10%ï15% (Logic Cells), 0%ï6% (Multipliers), and 

9%ï24% (Total Memory bits). Regarding the no-acceleration, we obtain an increment 6%ï11% 

(Logic Cells), 0%ï6% (Multipliers), and 9%ï24% (Total Memory bits). These two increments are  

the same as the low quality; in other words, constant DSPs and Block Ram from the previous 

configuration is maintained. 

4.3. Resources vs. Performance  

In order to compare used resources and performance, we show the kilopixels per second (kpps) 

achieved versus the logic elements implied and the embedded multipliers implied for each design in 

Figures 10 and 11. 
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Figure 10. Performance in kilopixels per second (kpps) versus logic elements applied 

obtained using FST, TSST, 2DLOG with NIOS II (e/s/f). The four measures correspond to 

the four types of acceleration (no, low, medium and high). 

 

Figure 11. Performance in kilopixels per second (kpps) versus embedded multipliers using 

FST, TSST, and 2DLOG with NIOS II (e/s/f). The four measures correspond to the four 

types of acceleration (no, low, medium, and high). 

 


