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Abstract: Many practical compressible signals like image signals or the networked data  

in wireless sensor networks have non-uniform support distribution in their sparse 

representation domain. Utilizing this prior information, a novel compressed sensing (CS) 

scheme with unequal protection capability is proposed in this paper by introducing  

a windowing strategy called expanding window compressed sensing (EW-CS). According 

to the importance of different parts of the signal, the signal is divided into several nested 

subsets, i.e., the expanding windows. Each window generates its own measurements using 

a random sensing matrix. The more significant elements are contained by more windows, 

so they are captured by more measurements. This design makes the EW-CS scheme have 

more convenient implementation and better overall recovery quality for non-uniform 

compressible signals than ordinary CS schemes. These advantages are theoretically 

analyzed and experimentally confirmed. Moreover, the EW-CS scheme is applied to the 

compressed acquisition of image signals and networked data where it also has superior 

performance than ordinary CS and the existing unequal protection CS schemes. 

Keywords: compressed sensing; image compression; networked data; non-uniform 

compressible signal; random projection; unequal protection 
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1. Introduction 

Compressed sensing (CS) [1,2] is an emerging technology that promises low-complexity signal 

acquisition which is especially important for energy-constrained devices or large data sets, e.g.,  

in high-resolution image signal processing, MRI imaging, etc. In the CS methodology, the signal 

which is sparse or compressible on a certain orthonormal basis can be successfully recovered from a 

highly incomplete set of samples, called measurements. Moreover, the measurements can be obtained 

by multiplying the signal by a randomly generated sensing matrix that is incoherent with most of  

the orthonormal basis. Thus, CS greatly improves the efficiency and decreases the complexity of  

signal compression. 

The compressible signal can be indicated by the index of the sparse non-zero components and the 

value of the non-zero components, where the index of the sparse non-zero components is called sparse 

support. The ordinary CS algorithms are designed without any constraint on the distribution of the 

support of the sparse signal. Actually, many natural signals do have special support structures. For 

example, the image signal is compressible in the discrete cosine transform (DCT) basis or discrete 

wavelet transform (DWT) basis. The transform coefficients constitute a non-uniform compressible 

signal where the significant coefficients mostly appear at lower frequency, as shown in Figure 1(a). 

Another example is the CS of networked data [3] in wireless sensor networks, also called compressive 

wireless sensing (CWS) [4]. A large number of sensors are distributed in the sensing area, as shown in 

Figure 1(b), whose data are regarded as elements of a signal, called networked data. When an event 

occurs, the sensors around it will collect more significant data, so this networked data is also a kind of 

non-uniform compressible signal whose significant elements are placed within a certain part of the signal. 

Figure 1. Examples of non-uniform compressible signals. (a) The DCT coefficients of the 

first 16 × 16 block in the first frame of “coastguard.qcif”. (b) The networked data scenario 

in wireless sensor networks. 

  

(a) (b) 

Considering these largely existing non-uniform compressible signals, if we can utilize the 

prior-knowledge of the support distribution to provide unequal protection for different parts of the 

signal, we can instinctively achieve better performance. In this paper, such a CS algorithm is proposed 

to improve the sensing and recovery efficiency for the non-uniform compressible signals, called the 

expanding window compressed sensing (EW-CS). The windowing method is inspired by the 
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expanding window fountain codes [5,6], where the concept of expanding window is used in the binary 

field. We explore how to utilize the support window in a real field. With the prior knowledge that 

some parts of the signal are more important than others, the signal is divided into several nested 

subsets called windows. The more important the part is, and there will be more windows containing 

this part. Each window generates their own measurements with CS’s random sensing matrix, so the 

more important part’s elements are sampled in more measurements to guarantee higher protection 

level. This design makes the EW-CS scheme have more convenient implementation. 

The proposed EW-CS scheme treats the different parts of the compressible signal discriminately to 

pursue the improved overall performance. The more attention on the more important parts is at the 

expense of the less important parts. Nevertheless, it is worthwhile to do this, because most of the 

energy or the useful information is contained in the more important parts. The overall performance 

improvement also has its prerequisite that is the prior knowledge of the rough non-uniform distribution 

of the significant elements. This prior information is not difficult to get in most cases. For image 

signals, the significant transform coefficients mostly appear at lower frequency. For networked data, 

the significant data is surrounding the emerging event. The above statements about the EW-CS are 

presented and proved from theoretical and numerical perspectives in our paper. Moreover, the EW-CS 

is applied to image signals and networked data, and shown to provide better performance than the 

ordinary CS and the existing unequal protection CS schemes. 

The rest of this paper is organized as follows: in Section 2, the key issues of CS are briefly 

reviewed, and the related existing CS algorithms considering non-uniform compressible signals are 

presented and compared with our EW-CS algorithm. The details of the EW-CS scheme are introduced 

in Section 3. Section 4 is devoted to analyze the recovery error upper bounds of the proposed EW-CS 

to compare with the ordinary CS. In Section 5, the variation of basic EW-CS algorithm is discussed. 

The experimental results are shown and analyzed in Section 6. Section 7 concludes this paper and 

gives some directions for future work.  

2. Related Work 

2.1. Basics of Compressed Sensing 

A signal X     is said to be sparse, if the transform coefficient vector { , 1,2, , }i i N  , of X 

in an orthogonal basis ΨN×N are mostly zero. The sparse support of   (or X) is defined as  

S = {i: θi ≠ 0, i = 1,2,…,N}, and the length of S is the sparsity K = |S|, K   N, so signal X is called as 

K-sparse signal. We consider a linear sparse case that K = αN, 0 < α   1 is a constant. If the most 

coefficients are not exactly zero but with small magnitude, signal X is called compressible signal. The 

elements with larger absolute value are regarded as significant. CS theory [1,2] states that  

M measurements of compressible signal X is enough for exact recovery where M < N. The sensing 

matrix ФM×N should be incoherent with the representation basis ΨN×N to guarantee the successful 

recovery. Fortunately, random matrices are largely incoherent with any fixed basis ΨN×N. Thus, the 

measurements usually are called random projections when a random matrix is used in CS encoding. 

The CS encoding is quite simple that: 

 (1)  M NY X 
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where Y     is the measurement vector. The sensing rate is R = M/N. The reconstruction of CS is 

performed by solving the following constrained optimization problem: 

( ) 
 

 (2)  

Although (l0) can give the unique solution with only M > 2K measurements, it is a NP hard 

problem. A relaxation of (l0) is the linear programming problem, also known as basis pursuit [7]: 

( )
 

 (3)  

The restricted isometriy property (RIP) [8] is a sufficient condition for guarantee the equivalence of 

the (l0) and (l1) solutions with overwhelming probability. Let δk be a smallest positive number such that: 

 
(4)  

holds for all k-sparse signals, we say sensing matrix Ф satisfies the RIP with δk. Random generated 

sensing matrixes satisfy RIP with high probability [9]. When the measurements are polluted by noise, 

i.e., Y = ФX + e, where e     , the (l1) can be further improved by solving the Lasso [10], or basis 

pursuit denoising [7]:  

(Lasso)  (5)  

where  bounds the amount of noise e. The (Lasso) is again a convex programming problem that  

can be solved with many classical algorithms, e.g., gradient projection for sparse reconstruction 

(GPSR) [11] etc. Besides the convex optimization methods, CS recovery can be implemented by some 

iterative greedy algorithms, e.g., orthogonal matching pursuit (OMP) [12].  

2.2. Compressed Sensing with Non-Uniform Compressible Signals 

The investigation of utilizing compressible signals’ statistic characteristics has already attracted a 

lot of interest. The most influential one is the Bayesian compressive sensing (BCS) [13] which 

recovers the signal by estimating its posterior density function. With different signal models, there are 

several BCS schemes. The sparse Bayesian learning algorithm in [13] invokes a hierarchical prior to 

simplify the Laplace prior of compressible signal. The authors in [14] also use Laplace priors. The 

BCS via belief propagation is proposed in [15] by assuming that the compressible signal obeys the 

mixture Gaussian model. In [16] the authors combine the belief propagation and Bayesian learning 

algorithms together to provide a more universal and low-complexity BCS scheme.  

However, these compressible signal probability density functions are still based on the assumption 

that the significant elements are uniformly distributed. Considering the image signals with  

non-uniform distribution, the wavelet tree model is introduced in BCS in [17]. Besides BCS, the prior 

information of compressible signal is also used in other ways. In [18], a new weighted rule for the 

iterative reweighted l1-norm minimization algorithm is integrated by explore the hidden Markov tree 

model of the wavelet coefficients. In [19], a weighted sampling scheme is proposed according to the 

statistics of image signals, where the weight matrix is determined by parameters of the direct-current 

and alternating-current components’ distributions. The authors of [20] and [21] design unequal 

protection of the wavelet sub-bands in different scales by sampling with different random Gaussian 

matrices, and their difference is the measurement allocation strategy.  

0 0min || || . .s t Y X     

1 1min || || . .s t Y X     

   
2 2 2

2 2 2
1 1k kX X X     

1
2

min || || . .s t Y X     
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Compared with the unequal protection methods like the hidden Markov tree model in [18]. which 

uses an extra training process to estimate the exact statistics feature of the signal, the proposed EW-CS 

scheme firstly only need a coarse sparse support distribution trend as the prior knowledge, e.g., the 

well-known fact that the significant DCT or DWT coefficients appear at the low frequency. This 

makes the EW-CS scheme be widely used and easily implemented. From this point, the EW-CS is 

similar to the schemes presented in [20] and [21]. Nevertheless, the unequal protection mechanism of 

our scheme is quite different from theirs. They treat each sub-band (or parts with different importance) 

separately, but we provide nested windows to exploit the combined effect of different parts. With this 

design, the protection of the significant elements is further enhanced such that the overall performance 

of the EW-CS outperforms that of [21]. 

3. Proposed EW-CS Scheme 

The proposed EW-CS scheme is detailed in this section. First, the non-uniform compressible signal 

is formularized. Then, the general EW-CS encoding and decoding algorithms are presented. Finally, 

we simplify the EW-CS to a two-window case which is quite important for applications and analysis.  

3.1. Non-Uniform Compressible Signal 

In the proposed EW-CS scheme, for clearer explanation, we assume that the signal  

X = {xi | i = 1,2,…N}
T
 is compressible in the canonical basis, i.e., the orthogonal basis ΨN×N = I. The 

scheme can be directly applied to other basis. A more tractable definition of the compressible signal X 

is using the power law that the k-th largest entry of the signal obeys |x(k)| ≤ Cp·k
−1/p

, where Cp > 0 and  

0 <p <1. Cp represents the energy of the signal which is a constant depending on p, and p is the speed 

of decay. The sparsity is defined as K when there are K significant elements containing the most 

energy of the compressible signal, i.e., the first K largest elements |x(k)|, k = 1,…K. 

The non-uniform compressible signal means that the distribution of the significant elements in the 

sparse support is non-uniform, that is, the support distribution has some structured characteristics. 

We use importance classes to describe this distribution. From the sparsity perspective, the importance 

of a class is corresponding to how many significant elements it contains. The compressible signal X is 

divided into W non-overlapped importance classes. The size of the w-th class is defined by sw so that 

N =    
   w, w = 1, 2, …, W, 0 ≤ sw ≤ N. We further assume that the importance of a class decreases 

with the class’s index, i.e., the w -th class is more important than the (w + 1)-th class. The division can 

be described using a generating polynomial (GP) Π =  Π    
   , where the parameter 

Π                 is the ratio of the elements in the importance class w  to all the N  elements. 

The sparsity distribution is given as Λ(x) =  Λ    
   , where 0 ≤ Λw ≤ 1 is the proportional factor 

representing the number of significant elements placed in the w-th class. 

3.2. General EW-CS 

3.2.1. Encoding 

The importance class determines a sequence of strictly increasing subsets of the signal’s elements, 

which we call windows. The w-th window consists of all the first w  classes, so the size of the window 
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is, nw =    
 
    w = 1, 2, …, W; thus, the last window contains all the signal’s elements with nw = N. 

The structure of the EW-CS is shown in Figure 2. 

Figure 2. Expanding window compressed sensing. 

…… ……

… …

w-th class of measurements

w-th window of elements

1      2         …         n1            …      n2                …                 nw           …          nW=N

 

In the classical CS algorithm, one method to generate the random sensing matrix is by picking the 

entries from Gaussian distribution N (0,1). Given the overall sensing rate R, the number of the random 

projections is M = RN. The measurements allocated for each window can also be given by a measuring 

polynomial (MP) Ω(x) =       
   , where 0 ≤ Ωw ≤ 1 denotes the ratio of measurements assigned 

for the w-th window to all the measurements. It means that we generate mw = ΩwM random projections 

(the w-th class of measurements as shown in Figure 2) for the nw elements of the w-th window, and 

   
 
    = M. So the sensing matrix Ф

w
 is a mw × nw random Gaussian matrix. The measurement 

vector of w-th window is calculated as Yw =       
 X(w), where X(w) is the vector of the elements in  

w-th window, and X(w) = X. 

It can be noticed from Figure 2 that the w-th importance class belongs to the w-th window and all its 

subsequent windows, so the elements of w-th importance class are sampled by the w-th and all the 

subsequent classes of measurements. For example, the first importance class (also the first window) is 

sampled in all M measurements, and the last importance class is sampled only in ΩwM measurements. 

Therefore, the elements in importance class with smaller index corresponding to more measurements 

obtain more protection. 

Although the classes of measurements are described to be generated sequentially in Figure 2, we 

can use a random selection strategy to introduce diversity. Each measurement is randomly assigned to 

a window according to a designed window selection distribution Γ(x) =       
   , where Γw is the 

probability that the w-th window is chosen. Encoding with the window selection distribution may 

bring uncertain sensing rate, but it can be roughly regarded that mw = ΓwM. As in a CS system each 

measurement is actually the inner product of the corresponding row of the sensing matrix and the 

signal vector, it can be calculated separately. For instance, if one measurement   
   

, k = 1, 2, …, mw,  

j = 1, 2, …, M is the k-th measurement assigned to the w-th window, we get   
   

 = (  
   

)
T
X(w), where 

  
   

 is a random Gaussian vector with length nk and (  
   

)
T
 can be regarded as the k-th row of the 

sensing matrix        
 . This random window selection design may bring the robustness to the 

degradation caused by burst loss of measurements. 
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3.2.2. Decoding 

The encoding strategy of the EW-CS is presented class by class. This is sometimes necessary for 

constrained encoder or distributed coding scenarios, but it is usually more efficient to use joint 

decoder, which combines the measurements together, and recovers the original X simultaneously 

through CS reconstruction method. If we use the sequential generation method, the joint sensing 

matrix ФM×N can be written as a combination of all the window sensing matrix Ф
w
, as shown in  

Figure 3. The blank blocks are all zeros. Comparing with the ordinary CS sensing matrix, the 

constructed sensing matrix in Figure 3 is sparser so that the encoding computational complexity of our 

scheme is lower than that of ordinary CS. If we use the random window selection method, the sensing 

matrix is written as 1 2{ ; ; ; ; ; }T T T T
M N j M     .  

Figure 3. Joint sensing matrix for the general EW-CS. 
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Thus, the joint decoding can be implemented using this joint sensing matrix. At the decoder side,  

all the received random projections compose a measurement vector { | 1,2, , }T
jY y j M  

{ | 1,2, , }T T
wY w W  which is generated by the sensing matrix ФM×N, i.e., Y = ФM×NX. Thus, the signal 

X can be recovered using ordinary CS recovery algorithms mentioned in Section 2.  

3.3. EW-CS with Two Windows 

In the previous subsection, we described the proposed EW-CS scheme in general format. 

Nevertheless, the most common situation is that the significant elements of a natural compressible 

signal are concentrated at a certain part of the signal. Therefore, two importance classes are enough for 

the usual non-uniform compressible signal. The first importance class consists of more large elements 

than the second importance class. The first importance class is also the first window, and the entire 

signal is the second window. The two-window EW-CS has wider application prospects; thus, this 

special case of the EW-CS is discussed in detail below.  

In the two-window EW-CS, the GP is 2
1 1( ) (1 )x x x     which is determined by only one 

coefficient 1 [0,1]  . Similarly, the sparsity distribution can be written as 2
1 1( ) (1 )x x x    . If 

the first class really has more significant elements, 0.5 < Λ1 ≤ 1; otherwise 0 < Λ1 ≤ 0.5. For 

clarification, we adopt the sequential generation as shown in Figure 2, so the MP is  

Ω(x) = Ω1x + (1−Ω1)x
2
. By increasing Ω1, we progressively increase the protection of the first 

importance class. The extreme cases of Π1 = M1 = 0 and Π1 = M1 = 0 are the ordinary CS problems.  
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Based on above definitions, the joint sensing matrix is given as: 

,  and  (6)  

where 1 1

1
m n  is the sensing matrix for the first window (using Ф1 for short form), and 

 2 2 12 2 2 1 ( )
2 2,1 2,2

m n nm n m n        is the sensing matrix for the second window (using Ф2 = (Ф2,1 Ф2,2) for 

short form). Then the encoding procedure can be given as: 

 (7)  

where Y1 and Y2 denote the measurement vectors for the two windows respectively. The encoding can 

also be written in joint coding format that: 

 
(8)  

It must be noted that X1 and X2 denote the signal elements of the two importance classes not the two 

windows, which are defined as different from X(1) and X(2). The joint coding format is necessary for 

facilitating the performance analysis of the EW-CS and contrast with the ordinary CS in the next section. 

4. Recovery Error Upper Bounds Analysis of the EW-CS 

In this section, the reconstruction error upper bounds of the EW-CS is analyzed and contrasted with 

the ordinary CS scheme (using CS for short). The simple two-window EW-CS is firstly discussed, and 

then the results are further extended to the general EW-CS.  

4.1. EW-CS with Two Windows 

The l2-norm recovery error defined as ||X −   ||l2 is adopted to judge the recovery performance. The 

performance analysis is presented by contrasting between the CS and the EW-CS. According to the 

joint coding format of the EW-CS in Subsection 3.3, the CS problem is also formulated by 

correspondingly divided the signal vector X, the measurement vector Y and the sensing matrix Ф into 

different parts. It is given as: 

 
(9)  

The most direct relationship between the CS and the EW-CS can be obtained by replacing the  

sub-matrix Ф1,2 with all zero matrix of the same size, and then the CS problem becomes the EW-CS as 

shown in Equation (8). In CS, the measurement vectors of two windows are calculated as:  

 
(10)  

while in the EW-CS they are: 

 
(11)  

1 1

2 2 12 1

1

( )
2,1 2,2

0m n

M N m n nm n



  

 
   

  
1 2M m m  2N n

1 1 (1) 2 2 (2) 2 1 2, , [ ]T T TY X Y X X Y Y Y      

1 1 1

2 2,1 2,2 2

0Y X
Y X

Y X
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1,1 1,2 11

2,1 2,2 22

CS

CS

CS
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Y X

XY

     
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    

1,1 1 1,2 21

2,1 1 2,2 22
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Y X X

Y X X

 

 
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
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It can be found that the only difference between the CS and the EW-CS is the different generation 

of the first class of measurements, i.e., Y1
CS

 and Y1
EW

. However, the joint recovery algorithms for the 

CS and the EW-CS use both of the two classes of measurements, so we need a joint coding 

representation to reveal the difference shown in Equations (10) and (11). Firstly, the compressible 

signal X can be written as 1 2X X X   . The N dimensional vector   
  is identical to the vector X for 

the first n1 elements, and the remaining (n2 − n1) elements of 1X   are set to zero. Similarly, the vector  

  
  is identical to X for the last (n2 − n1) elements, and the remaining elements of   

  are set to zero. 

Then, the encoding of CS is given as: 

 
(12)  

while the encoding of the EW-CS is rewritten as: 

 
(13)  

For analyzing the discriminational protection of different importance classes, we should consider X1 

and X2 separately. This is equal to considering   
  and   

 . If the joint recovery is regarded for 

recovering   
  only, the Equations (12) and (13) are further rewritten as: 

, where  (14)  

, where  (15)  

The first terms on the right hand of Equations (14) and (15) are the same according to Equations (8) 

and (9), so the difference between the CS and the EW-CS is the noise on the   
 ’s measurements. It is 

obvious that the energy of the noise in the CS scheme is larger than that in the EW-CS scheme. 

Intuitively, the recovery quality of   
  in the EW-CS is better than in the CS. 

This result can also be proved with the aid of mathematical formulae. From the Theorem 2 in [22], 

the l2-norm recovery error from inaccurate measurements have the upper bound as: 

 
(16)  

where fs denotes the truncated vector corresponding to the S largest values of compressible signal f  

(in absolute value). S  is chosen such that δ3S + 3δ4S < 2, and f’s sparsity K ≤ S.  is the maximum  

l2-norm of the noise e, i.e., 
2

e  . The constants C1,S and C2,S depend on the reasonable value of δ4S. 

The second term on the right hand side of Equation (16) is the approximation error in noiseless case 

which dominates the recovery error when the noise is small. It is obvious that this term becomes zero 

when the signal is exactly sparse. This upper bound is based on the assumption that the measurements 

are sufficient so that the signal is perfectly recovered.  

For the   
 , all the measurements contribute to the recovery, so we can assume that the 

measurements are enough. Based on the result in Equation (16), the error upper bounds for the CS and 

the EW-CS respectively are given as: 

1 1

1 2

2 2

0 0

0 0
CS CS CS CS CS CS CS

X X
Y X X X

X X

        
                   

        

1 1

1 2

2 2
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0 0
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(17)  

 
(18)  

Note that the second terms on the right side of Equations (17) and (18) are the same for the same 

  
 . The only difference of the recovery performance of   

  between the CS and the EW-CS is on the 

noise error. According to Equations (14) and (15), the noise energy of the CS and the EW-CS has the 

relation as below: 

 
(19)  

and the equality holds when 2X  is all zero vector. Based on Equation (19), it can be considered that 

1 1
EW CS . It means that the upper bound of the EW-CS for   

  is lower than CS, and it reflects the 

higher recovery quality in all probability. Therefore, the more important part of signal X, i.e., the 

subset of elements in   
 , is indeed better protected using the EW-CS. Next, if the joint recovery is 

regarded for   
  only, the formulae (12) and (13) are rewritten as: 

, where  (20)  

, where  (21)  

Comparing with Equations (14) and (15), the information term and the noise term are exchanged, so 

in this case it is found that the noise for the CS and the EW-CS is the same, while the measurements of 

  
  are different. It can be predicted from Equation (16) that the recovery error upper bounds for   

  of 

the CS and the EW-CS vary on the approximation error term. However, the approximation error term 

in Equation (16) is based on the assumption that the measurements are enough for best recovery. The 

measurements for   
  constitute only (1 − Ω1) percentage of all the measurements, so they may not 

guarantee the best recovery. Oher looser bounds for approximation error are introduced here for 

analyzing   
 . Of cause, the looser bounds can also be substituted into Equations (17) and (18) for 

analyzing   
 , and results are also the same as we’ve already given.  

For compressible signals obeying the power law, there is an earlier result in [1] and [2] which states 

that the estimation from accurate measurements with minimal l1-norm obeys the following result with 

overwhelming probability: 

 

(22)  

where M ≥ logN is the number of measurements, and N is the length of signal f. , ,p p pC C C    is a 

constant depending only on the signal energy Cp, the fixed decay speed p and α. The parameter α is a 

sufficiently small positive number to ensure Equation (22) is behaved with high probability. The bound 
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in Equation (22) also holds for the compressible signal with 
1|| ||f R  and p = 1 when , ,p pC C R   . 

By substituting Equation (22) into Equation (16), we get the upper bound as: 

 

(23)  

This is a looser one than Equation (16), for there is a probability of failure although it is quite 

trivial. If we assume that the component signal 2X   is still a compressible signal obeying the power 

law, the recovery error upper bounds of 2X   for the CS and the EW-CS then can be given as: 

 

(24)  

 

(25)  

where M2 is the number of effectual measurements for   
 . From Equations (20) and (21) we know that 

the noise error terms of Equations (24) and (25) are the same, i.e., 2 2 2
EW CS  ; nevertheless, 

2
CSM M  for ordinary CS, and 12 (1 )EWM M   , where 1  is defined in previous section as the 

ratio of number of measurements assigned to the first window (i.e., the more important part X1). 

Obviously, 2 2
EW CSM M , so weighing the recovery quality of   

  in the CS and the EW-CS cases 

against each other depends on the value of p2. It is easy to find that when 0 < p2 < 2, the CS’s bound is 

lower than the EW-CS’s; when p2 = 2, they are equal; when p2 > 2, the EW-CS’s bound is lower than 

CS’s in return. However, the error bound is behaved for compressible signal usually with 0 < p2 < 1 or 

with 0 < p2 < 2 [2] in the broadest sense. So the aforementioned comparison leads to the result that the 

recovery quality of 2X 
 in the EW-CS is worse than that in CS with high probability.  

Now, the comparison between the CS and the EW-CS for the entire signal X is discussed. The 

square error of signal X is given as: 

 
(26)  

Thus, the overall recovery error upper bounds for X using the CS and the EW-CS can be derived by 

substituting Equations (17), (18), (24) and (25) into Equation (26) such that: 

 

(27)  

 

(28)  
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We assume that 
2 2

2 2ˆ ˆ|| || || ||CS EWX X . From the analysis above, we’ve known that the first term in 

right hand side of Equation (28) is smaller than Equation (27) but the second term is larger, so the 

comparison between Equation (27) and Equation (28) is undetermined. With the same settings, the 

difference between the upper bounds of the CS and the EW-CS is a function depending only on 1  and 

M2 which are determined by sparsity distribution and MP, i.e., the parameters 1  and 1 . However, if 

there are really more significant elements placed in   
 , i.e., 0.5 < Λ1 ≤ 1, the first term will dominate 

the overall error upper bounds; otherwise, the second term will do so. Thus, the EW-CS is superior to 

the CS for a non-uniform compressible signal with proper importance classes assignment.  

4.2. General EW-CS 

Based on the ana1ysis of the two-window EW-CS, the results are easily extended to W ≥ 3 windows 

case. The encoding of the W-window EW-CS is written as: 

 

(29)  

Note that the EW-CS’s sensing matrix     is a lower triangular matrix. We only consider one 

importance class N
wX    at a time, and assume that it is compressible obeying the power law; thus, 

the looser bound in Equation (23) is used. So the recovery error upper bound of the elements in this 

class is: 
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(31)  

Comparing with the conventional CS, only for the first importance class vector   
 , the second terms 

on the right hand sides of Equations (30) and (31) are the same, so the first class is always better 

protected in the EW-CS than in the CS. For the last importance class vector   
 , the first terms are the 

same, and the second term of the EW-CS has high probability to be larger than the CS; thus, the last 
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importance class is usually sacrificed. For other importance classes, the two terms on the right hand 

side are both different from the CS, so it is hard to judge the protection level comparing with the CS. 

However, it can be instinctively known that the smaller w is, the w-th importance class has better 

recovery quality. Finally, the overall error upper bound for the EW-CS is given as: 

 
(32)  

5. Variations of the EW-CS 

During the introduction of the EW-CS scheme in Section 3, there may be a question that what 

happens if the importance of classes doesn’t decrease with the class index as we assumed. From the 

analysis in last section, we know that the performance of the EW-CS degraded badly when the more 

important class doesn’t contain more significant elements, i.e., 0.5 < Λ1 ≤ 1 in the two-window case. 

Thus, the extension of the EW-CS is necessary for this case. The two basic variations are shown in 

Figure 4 that the window design can changed according to the location of the important class. If the 

significant elements concentrate in several parts of the signal, the same class of window can also be 

divided into several parts to match. Nevertheless, the benefit of using the EW-CS in this case will be 

not worth the complexity it causes; thus, it may be better to use other methods or the CS.  

Figure 4. The variations of the expanding windows. (a) The most important class is in the 

middle. (b) The most important class is at the back. 
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It doesn’t mean that the EW-CS can only be used in the simple cases where the significant elements 

concentrate in the front, in the middle or at the back of the signal. It has an even more complicated 

variation in a certain case. Recall that we have designed a window selection distribution such that each 

measurement can select the window it belongs to. Similarly, the signal element can also choose the 

window that it belongs to. It looks a little abnormal in our usual practice, for the signal element may 

not know its own importance or even do the selection. However, it can be realized in certain case, the 

wireless sensor network scenarios. 

Let us consider the CWS [4] problem. The N  sensors’ data is regarded as a compressible signal  

X = {xi | i = 1, 2, …, N}, where xi is the data of the i-th sensor. Using ordinary CS, each sensor send  

yij = φjixi to the sink node, and then the sink can collect all the received data to generate one 
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measurement yj =       
 
   . Repeat this process for several times until the sink get enough 

measurements to recover the compressible signal X. This mechanism assumes that all the sensors’ data 

are equal importance, but it is a common situation in wireless sensor networks that a warning line is set 

a priori for the temperature, pressure or gas strength detection systems. In this case, the EW-CS 

scheme can be used to simplify this collection process. Each sensor can decide its sensed data is 

important or not according to the warning line, and then choose the window it belongs to. With one 

warning line, the two-window EW-CS is applied. If the sensor’s data is beyond the warning line, it is 

in the first window and sends its yji for M times. If its data is within the security region, it is in the 

second window and sends its yji for only m2 < M times. This leads to the better recovery quality for the 

warning sensor’s data, and resaves the transmission energy for the safe sensors. 

6. Experimental Results 

6.1. Simulation Results for Synthetical Signals 

In our simulation, the l2-norm of the recovery error, i.e., 2
ˆ|| ||X X , is used to evaluate the 

performance of the proposed EW-CS algorithm. A compressible signal X     is generated obeying 

the power law with the parameters Cp = 10 and p = 1 The length of the signal is N = 512, and the 

sparsity is set as K = 50. The two-window EW-CS is used to compare with the ordinary CS. For 

constructing the signal in a non-uniform format, the randomly selected Λ1K elements from the first K 

K largest elements are placed in the first importance class, and the rest (1−Λ1)K elements are placed in 

the second importance class. Other (N−K) smaller elements are distributed randomly. The parameters 

defining the size of the first importance class and its corresponding number of measurements are fixed 

as Π1 = 0.3 and Ω1 = 0.5. 

The overall sensing rate is R, and the total number of measurements is M. The sensing matrix Ф
EW

 

is constructed by first creating a M × N matrix, i.e., the sensing matrix Ф
CS

, with i.i.d. draws of a 

Gaussian distribution N(0,1), then the right upper Ω1M × (1−Π1)N sub-matrix is replaced by all zero 

matrix with the same size. The recovery algorithm we used is the l1 based method which is 

implemented by using a package for specifying and solving convex programs [23,24]. 

In the first example, we consider a compressible signal with Λ1 = 0.8 and R = 0.4. The original 

signal and its recovered version are plotted in Figure 5. The l2-norm error for the component signals 

1X   and 2X   are 4.9488 and 11.2609 respectively, and the l2-norm error for the signal X is 1.1808. Note 

that the significant elements of the signal are almost well recovered and the elements in the first 

importance class have better recovery quality than that in the second class.  

For various choices of Λ1, the l2-norm error of the signal X and the component signals 1X   and 2X   

using the proposed EW-CS and ordinary CS is shown in Figure 6. We ran each value 100 times, and 

simulations are presented for overall sensing rates R = 0.2 and R = 0.4. The results indicate that the 

performance of the EW-CS varies with the ratio 1 , while the ordinary CS is not impacted by Λ1. With 

the increase of Λ1, the recovery error of the EW-CS decreases. Roughly speaking, when 0 ≤ Λ1 ≤ 0.5, the 

CS outperforms the EW-CS. This because that the first importance class is not the really most 

important one. It means that using the EW-CS with wrong matched window settings will introduce 

more errors. 
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Figure 5. The non-uniform compressible signal X and its reconstruction using the EW-CS. 

 

Figure 6. The l2-norm recovery error with different Λ1. (a) R = 0.2, (b) R = 0.4. 

  

(a) (b) 

Nevertheless, when 0.5 ≤ Λ1 ≤ 1, the EW-CS begins to outperform the CS. In this case, the window 

settings match the signal’s features, so the superiority of the EW-CS is demonstrated. It can also be 

noticed that the performance for the component signal  in the EW-CS is always superior to that in 

the CS. It verifies the theoretical result proved in Subsection 4.1 that the elements in the first class are 

better protected. However, the performance for the component signal  in the EW-CS is worse than 

that in the CS. This also agrees with our analysis. 

6.2. Simulation Results for Natural Images 

For testing the practical performance of the proposed EW-CS, instead of using artificially generated 

signals, we used real-world non-uniform compressible signals. The image signals’ DCT or DWT 

coefficients constitute non-uniform compressible signals. With this prior knowledge, the random 

sensing with the EW-CS can be accomplished. The 512 × 512 test gray images with different features, 
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i.e., “Lena”, “Boat”, “Peppers” and “Aerial”, are used for simulation. The images are divided into  

32 × 32 blocks for computational facility.  

The M-CS scheme in [21] is simulated here for comparison. M-CS needs to do 2-D DWT at the 

encoder for exploiting the frequency bands feature of wavelet coefficients. Then they used the l1 based 

method to recover the wavelet coefficients, and did the inverse wavelet transform to recover the 

original image. In our simulation, the three level DWT is used in M-CS with the measurement 

allocation rule in [21]. The level-3 (the lowest band) is assigned 60 measurements, and the number of 

measurements of level-1 is approximately four times of level-2.  

Although the importance class design in the EW-CS can also directly use the sub-bands of 2-D DWT 

coefficients, the additional transform process is not willing to do. Thus, we choose 1-D DCT as the 

sparse representation basis which will be used only at the decoder so that the low-complexity encoder 

is guaranteed. The ordinary CS is also simulated with the 1-D DCT.  

Firstly, we use the two-window EW-CS with the parameters Π1 = 0.3 and Ω1 = 0.5. The visual 

quality comparison for “Lena” is given in Figure 7 and the PSNR performances with different sensing 

rates of the four images are further shown in Figure 8. It is obvious that the proposed EW-CS scheme 

outperforms the other methods expect for a small number of low sensing rates. The significant 

coefficients of image signal really appear in the first window of the EW-CS such that they are well 

recovered. Thus, the EW-CS achieves better overall performance than the ordinary CS. 

In M-CS, the significant coefficients are only sampled by the measurements allocated to the 

sub-band they belong, not all the measurements, so its performance is worse than the EW-CS at most 

sensing rates. At low sensing rate, the number of measurements for the most significant coefficients in 

the M-CS is fixed to guarantee successful recovery, and these measurements are noiseless. However, 

the EW-CS cannot recover the elements in the first importance class from the noisy measurements 

even though they are more. When the sensing rate increases, this problem will not exist. 

In the second simulation, we reconstruct the images from the noisy measurements which are 

transmitted through an AWGN channel. The sensing rate is fixed as R = 0.4. In order to compare the 

PSNR performance of the original CS method and the EW-CS method, we fix the signal power, and 

compensate the power of the all zero matrix      to the      to enlarge the signal power of the most 

significant class. The PSNR performances with different signal-to-noise ratio (SNR) for the four 

images are shown in Figure 9. 

We can observe that the EW-CS is worse than the CS at lower SNR, but outperforms the CS when 

the SNR increases. The M-CS’s PSNR is lowest at the same SNR, but its decay speed is similar to the 

CS and is slower than the EW-CS. When the channel noise energy gets greater, the advantage of 

recovery the first importance class of the EW-CS is weaken, and the recovery quality of the second 

importance class degrades further. Thus, the EW-CS algorithm is more applicable to the mild 

transmission environments. 
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Figure 7. Visual quality comparisons at sensing rate R = 0.2 and R = 0.4 for 512 × 512 

“Lena” using the proposed EW-CS, the M-CS [21] and the CS. (a) M-CS, R = 0.2,  

(b) Ordinary CS, R = 0.2, (c) EW-CS, R = 0.2, (d) M-CS, R = 0.4, (e) Ordinary CS, R = 0.4, 

(f) EW-CS, R = 0.4. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 8. The PSNR performances with different sensing rates. (a) “Aerial”, (b) “Boat”,  

(c) “Lena”, (d) “Peppers”. 
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Figure 8. Cont. 

  

(c) (d) 

Figure 9. The PSNR performances with different SNR (dB). (a) “Aerial”, (b) “Boat”,  

(c) “Lena”, (d) “Peppers”. 
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window design must follow a basic rule that the rank of the joint sensing matrix of the EW-CS must be 

larger than the total number of measurements, or the convex programming problem is an unsolved one. 

So the ranges of Π1 for different measurement allocation parameters Ω1 will be different. That’s why 

the x axis for each curve in Figure 10 is different. For a fixed Ω1, there is a optimal first window size, 

but the general trend is the first window should not be too large. 

Figure 10. The PSNR performance with different first window size. 

 

We also evaluate the PSNR performance of the EW-CS with different Ω1 when Π1 = 0.2, Π1 = 0.3 

and Π1 = 0.4. The available ranges of Ω1 for different Π1 are different according to the design rule of 

the joint sensing matrix. The simulation results are plotted in Figure 11. It can be found that for the 

fixed first window size with Π1 = 0.2 and Π1 = 0.3, there is an optimal number of measurements that 

should be assigned to it. For Π1 = 0.4, however, the more measurements, the better. 

Figure 11. The PSNR performance with different number of measurements for the first window. 
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and Ω(x) = 0.1x + 0.2x
2
 + 0.3x

3
 + 0.4x

4
. The five-window EW-CS is designed with  

Π(x) = 0.1x + 0.1x
2
 + 0.1x

3
 + 0.2x

4
 + 0.5x

5
 and Ω(x) = 0.1x + 0.1x

2
 + 0.3x

3
 + 0.2x

4
 + 0.3x

5
. The PSNR 

performance for different window designs for image “Lena” is shown in Figure 12. The differences 

among the four different window designs are trivial. It means that the simple EW-CS with two 

windows is competent in most image signal compression applications.  

Figure 12. The PSNR performances for different number of windows. 
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Figure 13. The random sensor network with three events (denoted by red stars) and two 

windows. The sensors in the first window are denoted by blue circles, and the other sensors 

are denoted by green nodes. 

 

Figure 14. The networked data and its recovery signal. 

 

Figure 15. The l2-norm recovery error with different transmission rate. 
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Figure 16. The l2-norm recovery error with different SNR. 

 

Finally, the performance of the EW-CS with changing first window size is shown in Figure 17, 

where Ω1 = 0.5 and the transmission channel is noiseless. The EW-CS in CWS case has the feature that 

the Π1N elements in the first window are expected to be the first Π1N largest ones. With the same ratio 

Ω1, the smaller the first window is, the more measurements are assigned to the most largest or 

significant elements, so the overall performance is inversely proportional to the size of the first 

window as shown in Figure 17. When the first window size approaches the entire network data, the 

EW-CS’s performance gets closer to the ordinary CS. 

Figure 17. The l2-norm recovery error with size of the first window. 

 

7. Conclusions 
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networked data, to verify its superior performance. However, its noise-resilient performance is not 

very good, which is the problem we decided to solve in future work. The adaptive version of the 

proposed scheme that can optimize the parameters of designed windows is also an interesting direction 

to be investigated.  
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