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Abstract: It is well known tlat the electronic nosean be used to identify differences
between human health and disease for a range of disorders. We presehistugyldo
investigate if the electronicose and a newer technology, FAIMS (Field Asymmetric lon
Mobility Spectrometry)can be used to identify and help inform the treatment pathway for
patients receiving pelvic radiotherapy, which frequently causes gastrointestineffeas,

severe in somdsrom a larger groy®3 radiotherapy patients were selected where half had
the highest levels of toxicity and the others the lowest. Stool samples were obtained before
and four weeks after radiotherapy and the volatiles and gases emitted analysed by both
methods; these chemicals are products of fermentation caused by gut micRsflaripal
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component analysis of théeetronicnose data and wavelet transform followed by Fisher
discriminant analysis of FAIMS data indicated that it was possible to separate patients
after treatment by their toxicity levels. More interestingly, déferes were also identified

in their pretreatment samples. We believe these patterns arise from differences in gut
microflora where some combinations of bacteria result to give this olfactory signature.

In thefuture our approach may result in a technigue at  wi | | hel p i dentif
risko evenbefore radiationtreatmenis started.

Keywords: electronic nose; FAIMS; fermentome; gastrointestinal toxicity; gut permeability;
pelvic radiotherapy

1. Introduction

The electronic nose {@ose) was first conceived in the early 1980s [1] and has undergone
continuous refinement ever since. Developed as a means of replicating the biological olfactory system,
it does not identify specific chemicals within a complex migt(@spossiblewith, for example, gas
chromatograpy and/or mass spectromedyGCMS), but analyses the sample as a whole to create an
Aol factory signatureo. Such instruments have ©
for food and beveragguality, perfumes and process contrgBJ2Of increasing importance has been
the application of this technology to the medical domain. The possibility of using the electronic nose
for the identification and monitoring of disease has shown considenairiese. The detection of gas
phase biemarkers from human biological output, be it breath, sweat, blood, urine or faecal matter, has
been shown to identify a disease stat@oBe technology is close to reahe, can be operated without
special gases, abom temperature and pressure, is-mvasive and could be produced at a financially
acceptable cost for the medical profession. The range of diseasesntisd technology has been
applied to is considerable, ranging from lung cancer, brain cancer elathama to inflammatory
bowel disease and even schizophreni®]4

A more recent technological development is thafielfl-asymmetric ion mobility spectrometry
(FAIMS) for monitoring complex odours. As with the electronic nose, FAIMS can be used for the
reaktime analysis of complex chemical components, looking at the total chemical composition of a
sample. Such instruments use differences in the mobility of ionised molecules in high electric fields to
provide a fAmobil ity si grhiaimabilitg ignatufe isain ncaoynwayse X
comparable to the olfactory signature created by the array of chemical sensors-nogiee EAIMS
instruments have found widespread use within the security sector [10], as they can detect large volatile
molecules aextremely low concentratiore(g.,explosives), but it has not as yet been used extensively
within the medical field.

One medical area yet to receive attention by eitheose or FAIMS technology is that of pelvic
cancer patients, undergoing radiotherapiie pelvis is a confined area bounded by bone and thick
muscle, leaving only a fairly small central cavity. This is packed (from front to back) with the bladder,
ovaries, uterus/cervix, the rectum, sigmoid colon (the lower part of the large bowel)vanidtde
number of small bowel loops. As a result, pelvic irradiation for a tumour affecting an organ inevitably



Sensor012, 12 13004

injures the others. Almost all patients experience changes in bowes dabitg their five to seven

week course of radiotherapy. Up to 90% paitients report abnormal gastrointestinal symptoms of
varying severity, t er mel@). Aweath of data nowasdppaats theoview d i
that acute radiotherappduced damage is characterised by inflammatory processes. Maximum
damage tadhe gastrointestinal mucosa occurs about two weeks into treatment [13]. However, whilst
acute mucosal damage may then improve, the prevalence of moderate or severe chronic side effect
can be as high as 50%314]. Despite increasingly sophisticated rald@vapy planning and delivery,

those patients who are at most risk of severe late problems cannot be predicted using normal medice
measures. There is evidence that this high level of susceptibility may be due to differences in the
composition and treatmemduced change of their gut bacterial populations,1@5 Directly
measuring the composition of thgsepulations is incredibly difficult due to their location and huge
variation in bacterial types, but we believe information in regard to its overall composition could be
attained by looking at the gaseous emissions of bacteria waaialfsamples. Thus an attempt to
evaluate if it i s porsissikbd ep attoi eindesnt iwey htahvees eu
evaluate if either a traditionalrese or a FAIMS instrument can identify differences in faecal gas
emissions. Here we have taken saspbefore and after treatment from patients who have had a high
toxicity and low toxcity response after treatment to investigate if there is a difference in these gas
emissions. If feasible, it may be possible in the future to warn the clinician oftpatiahare likely to
become seriously ill, thereby indicating who requires closer monitoring and/or possibly to be
considered for an alternative treatment pathway. Such a ptilemed approach offers a potential
route towards minimising morbidity assated with this treatment.

2. Material and Methods

To undertake this study an-irouse traditional electronic nose and a commercial FAIMS instrument
has been used to analyse faecal samples from pelvic radiation patients.

2.1 ElectronicNose

Electronic noses are instruments that attempt to replicate the biological olfactory system, by
investigatinggas phassamples as a whole, instead of identifying specific chemicals within a complex
gas mixtureIn an electronic nose, the air above the sample (alsbeae) is drawn into the electronic
nose and is passed across an array of chemical sensors. The size of the array varies, but most a
betweensix and 32 sensors. Each sensor of the array is broadly tuned to a chemical group, with
overlapping sensitivitybut importantly is different in some wagrom the rest of the array. As each
sensor igissimilar, the interaction between the sensor and the complex sample is unique within the
array. Thus, an olfactory signature of this complex odour can be creat@dstrapplications, some
form of pattern recognition algorithm is applied to learn this olfactory signature and, when presented
with the same profile, is able to recognize the odour.

The electronic nose used in this study is ahaose instrument develeg at Warwick University.

It contains an array of six metal oxide based sensors (high temperature resistive sensors), as well as s
electrochemical sensors, a pellister (catalytic sensor), and an NDIR sensor (optical, to monitor
CO,). A list of sensors and manufacturers is given in Table 1. These different sensor technologies
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were chosen for two reasons. First, it provides considerable diversity to the information that can be
gathered from the array. Second, the sensors were selected rmably buned to gases and vapours
that we believe malge important products in the normal metabolic activity of the gut.

Table 1. Sensors deployed within the electronic nose, with descriptibiosnber is
brackets is sensor number within the instrument

Metal Oxide Sensors Electrochemical Sensors Others
(Figaro Jpn) (Alphasense/Sensors Direct, UK) (Alphasense, UK)

TGS813d Low pressure gas (1) NO,-A1d Nitrogen dioxide (8) IRC-A16 Carbon dioxide (7)

TGS82DH Hydrogen (2) NO-A1d Nitrous oxide (9) CH-A306 Flammablegases (13)
TGS823 Organic solvents (3) H,SA1d Hydrogensulphide (10)

TGS824 Ammonia (4) CO-A18 Carbon monoxide (11)
TGS82% Hydrogen sulphide (5) S0O,-A18 Sulphur dioxide (12)
TGS88® Volatile vapours (6) S+H,0 Hydrogen (14)

Due to the different types of sensors deployed within the instrument, it is useful to transduce each of
the sensor outputs into a common férin this case voltage. The six metalide sensors were driven
with a constant current source (100 pA) and the agdt across the sensor then amplified and
monitored. The electrochemical sensors were attained with transmitter boards, containing a
potentiostat and drive circuit to give 820 mA output. This current was converted ta @@V signal
(note that the boardand sensors were calibrated for the gas concentration operating ranges defined by
the manufacturer). The NDIR was also supplied with a transmitter board, giving0amA output,
which again was converted to 1D V. Finally, for the pellister a bridge cumit was manufactured with
a differential output stage. Here the offset was trimmed to be zero in laboratory air and the differential
output stage gain set to 20. The output voltage of all these sensors was measured using two Natione
Instruments (USA) USHEO009 boards. The electronic nose was also fitted with a temperature and
humidity sensor (Sensirion SHI5, Staefa Switzerland) to monitor the input sample. In addition to
the sensors, the electronic nose was fitted with a pump with flow sensors, champerature
control, valves and dedicated software interface (written in LabVIEW 8.6, National Instruments,
Woburn, MA USA).

2.2 FAIMS Instrumentation

For this study a commercial FAIMS instrument was used, specifically a Lonestar (Owlstone, UK).
FAIMS is a fairly recent technological development whereby separation occurs due to ionised
molecules having different mobilities in high and low electric fie®lsch instruments have a number
of advantages, for example, they can use scrubbed air as the gasijieyperate at room pressure
(or above), and so no vacuum pump is required.

In a FAIMS instrument the gas phase chemical input is first ionised (in our case usi6g adiice).

These ionisednolecules then enter an oscillating high electric field, whereby moleculeagigetween

two plates to which this electric field is applied. This waveforifiasymmetrio, thus a high positive
voltage is applied for a short period of time and a low tegaoltage is applied for a longer period.
However, the integral of the voltage over a time period is zero. The waveform is stepped through a
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series of magnitudes and is called fildespersion field (DF). Below 200 V/cm the ions, on average,
simply moveback and forth between the plates but do not gni&ferentiallytowardseither one

At higher voltagesin contrast for example ®00 V/cm or more, some ions within the complex
mixture, on average move more time direction of one platelf an ion contats the plate it loses its
charge and is not detected as it exits the plates. Thus a balancing voltage (knowiCamfiensation
Voltaged or ACVQ) is applied, which counteracts this drift. This compensation voltage can be set
whereby only the drift frona specific ion is compensated for and will be detected. Thus by sweeping
through a range of dispersion fields and compensation voltages a complex mixture of gases can be
separated by their differences in mobility in high and low eledieicls [17]. Figure 1 gives an
example of the applied waveform for FAIMS and the separation of ions by the field plates.

Figure 1. (a) Asymmetric waveform applied in FAIMS arfd) ions being separated by an
asymmetric waveform
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2.3 Patients

Patients were recruited from a larger cohort undergoing long course (radical) radiotherapy with
different end points and will be reported independently. Two groups were selected and stool samples
from these patients were used for this study. The onlyriomtefor inclusion was the degree of
gastrointestinal disturbance between baseline and after four weeks of radiotherapy. This was measure
by the IBDQB score (described below). The first group selected (group 1) were patients who had
minimal toxicity as mdicated by the least fall in the score; patients in the second group (group 2) were
those who experienced the greatest fall in the score. Scientific and ethical approval was obtained fromr
local Research Ethics and Scientific Committees of the Royal MarBé¢S Foundation Trust,
London. Written informed consent was obtained from all patients who participated in the study.
Previous studies examining the potential for identifying patients at risk of developing severe
gastrointestinal toxicity during long ca@ pelvic radiotherapy treatment have employed similar
methodologies and patient numbers [15].

2.4. Samples

All data and samples were collected prospectively. Faecal samples (between 10 andwsremL
collected within 12 h of evacuation and immediately stored28t°C. Gastrointestinal toxicity was
recorded using the validated IBBE&) which has beedeveloped for use in monitoring disease activity
in Ul cerative Col i t81l9. TherndBDQEIs thé bolved spé&ificspara af ¢the [ 1
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guestionnaire, which is a 10 question subset of the IBDQ. A maximum of seven points per question
can be attained indicating no bowel toxicity (totaling a maximum score of 70) and a minimum score of
1 point pe question (minimum score of 10 points showing most severe symptoms). A decline in score
therefore represents increasing severity or frequency of symptoms. A decrease of more than six point:
has been shown to be clinically significant in a variety of regs(i20,21]. Stool samples and I1BDQ
guestionnaires were collected from all patients immediately before the start of radiotherapy (indicated
as the baseline measurement) and after four weeks of treatment.

2.4. AnalysisMethodology

Stool samples were thawewernight to room temperature and then heated to 40 £0.in a
dri-block™ heater for 1 h before the experimehénmL of sample was aliquoted to a 2% rsterilin
bottle and 5 rh of deionizedwater added and manually shaken to homogenize the sample. Here, each
sample was divided into two aliquots, one famase, the other for FAIMS. Due to limited volume of
sample, in some cases there was only enough sample for one aliquot. In these ddSearfal\lsis
was prioritized over -@ose. The sterilin bottle lids were also modified to take pipe fittings for 3 mm
PTFE tubing.

For enose experiments, laboratory air was used as the carrier gas with a measured humidity of
20 £ 2% r.h. (relative humidity Before each experiment, laboratory air was pumped through the
e-noseat a flow rate of 500 'min for 450 s to create a stable baseline. The stool sample line was
then switched in and the headspace from the stool sampl@agasd into the instrume(dso at
500 ni/min for 450 s) with a further 450 s of laboratory air to allow the sensors to recacdr tb
their original baselineEach sample was analysada random sequence and run twice. The sample
humidity was measured for all experiments at 49 +5% r.h. with a random distribution between groups.

Figure 2. Typical output of thed) Electronic Nosand(b) Owlstone FAIMS instrument
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Figure 2. Cont.
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For the FAIMS instrument, a similar approach was taken, though here, clean scrubbed compressec
air was used as the carrier. The flow rate over the sample was 2 L/min, with the dispersion field
scanned between 0 and 90% in 51 steps and the osatpn voltage fromn 6V to 6V in 512 steps.

Each analysis took typically 180 s and each sample was analysed twice. Figure 2 shows both a typica
e-nose response (without legend for simplicity) and a FAIMS response to a stool sample.

E-nose feature extraction was performed using Multisens Analyzer (dibeVations,Tibingen,
Germany). Enose analysis used the change in voltage (delta V) as the input feature for analysis.
Before exploratory analysis was performed, the data waprpoessed with a standardization routine,
built into the Multisens software. Here the mean value of all the features was subtracted from all the
features. Additionally, the features were then divided by the standard deviation of the features. This
was done fortwo reasons, the first process allows only the differences between features to be
evaluated, thus the absolute feature value (normally associated with intensity) was not considered. The
second process ensures that each feature will receive equal weigtttiegexploratory analysis. This
method has been applied due to the very different sensor technologies used within the electronic nose
This datawasthen analysed by two different methods, Principal Component Analysis (PCA) and by
Linear Discriminant Anlysis (LDA). For PCA, the samples were analysed as a single group and then
postcategorizedwhereas for LDA the samples were joaegorised according to clinical outcome
(low and high toxicity). Principal component analysis is a method to convert raidgpkor responses
from a group of observations (here patients) into a smaller number of artificial variables called
principal components, where the total number of principal components is less that the number of
sensors. This transformation produces tesmherebythe first principal component accounts for the
largest variability in the data as possible. The succeeding principal components, in order, have the nex
highest variability and so on. These additional components are constrained in that thdye must
orthogonal to i(e., uncorrelated to) the proceeding components. Thus, the results produced by this
transformation are unclassified, but also show if the different observations produce the most
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differences in the sensor responses. LDA is in some wayfaisto PCA, but in this case, LDA
attempts to find theoptimum combination of sensors that best separates the differences between
sample groups. So unlike PCA, which analyses sanalesd on the maximum difference, LDA looks
for similarities within graps of samples.

FAIMS data was processed in Matlab (Mathworks INatick, MA, USA). As stated earlier, for
each FAIMS measurement, the dispersion field was scanned between 0 to 90% and the compensatio
voltage betweein 6 V and 6V. This produces 26,11@ata points (as shown Fgure 1). In addition,
both positive and negative ion counts were measured separately. Thus, the total number of data point
was 52,254. To prprocess this data, a wavelet transform was applied (Daubechies D4). Wavelet
transformsare a method used most commonly as a way of conditioning a signal into a more reduced
form, before data compression. In simple terms, it projects the data on to a basis set of short
waveforms (or wawets). Where the projections are large, this givegjueacy and location
information of this part of the original signal. Such techniques are incredibly good at separating signal
information from noise. This is a natural method of-precessing as the FAIMS output is a series of
overlapping peaks, where omeak arises from molecules with a specific mobility. The wavelet
transform gives information about this molecule, but also aids in discovering any additional molecules
with similar, but not identical mobilities, by looking for differences in the frequeocgponents on
the signal. Figure 3, gives a section of the data after a wavelet transform had been applied. This wa:s
for a low toxicity patient, before treatment.

Figure 3. Wavelet transform of a low toxicity patient for elements 1,608
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For analysis both the positive and negative ion count matrices from each sample were concatenate
into a single 1D array 52,224 elements in length and then the wavelet transform applied. This producec
a new 1D array, again 52,224 elements in size. Duleetdarge size of the dataset, it was required to
identify elements that are suitable/useful in discriminating the different samples. To achieve this,
thresholds were set for the within groupe(, low toxicity/high toxicity, pre and post treatment,
thusfourgroupy s c a t)taerrd: t(hEl bet we el (g loideptifysimensionefor:  (
selectiobhe(8tandard deviation of the dwasthensi o
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standard deviation of the means of the dimension under test between classes). The exponents chan
the form to reflect that employed in Fisher Discriminant Analysis (FDA). FDA is almost identical to
LDA, except that it does not make some of theuagptions used in LDA (such as normal distributed
classes). It was discovered that this gave better discrimination for the methods and data capturec
by FAIMS.

This approach gave a two dimensional input parameter space to control the separation algorithm.
This space was explored as follows. For each point in the input space 20 test sets (each containing
one high toxicity response anane low) was reclassified. These test sets were not used in the
identification of dimensions or the implementation of theAFDhis exploration identified regions in
the parameter space whereclassification exceeded the 65.8% that would be expectedridom
re-classification (two standard deviations from the mean), and for which the successastifeeation
was robusto perturbation in the parameters while changing the number of dimensions identified.

3. Results and Discussion

In total, 23 patients were investigated, 11 in the low toxicity group and 12 in the high toxicity
group. The sample number, age, male/femaligo raadiotherapy dose and symptom burden
(IBDQ-B score)analyzed by ose and FAIMS is shown in Table 2. The patients were of a similar
age in both groups and had a similar dose of radiotherapy, including fractionation and duration of
treatment (data nathown). By selection, the fall in the IBDB score was only slight in the low
toxicity group, but was marked and significant in the high toxicity. Numbers of samples per instrument
differs slightly due to available volume of biological matter. Figureaishthe average-eose sensor
responses to the four groups fromable 2 (Figure 4a)d raw values andrigure 4b)d normalized
before averaggdHere, only one set of data was used for these figures, even though the samples were
run twice. This was done as we have previously noticed sample depletion with running samples using &
dynamic sampling approach, thus the sensors are exposed to diftesqmbfiles between tests.

Table 2 Baseline demographic characteristics and treatment features: Groups 1 (low
toxicity) and 2 (High toxicity)

Feature Electronic Nose Analysis FAIMS Analysis

Least Toxicity: Pretreatment Posttreatment Pretreatment Posttreatment
Number of patients N=11 N=8 N=11 N =10
(Male:Female) (9:2) (7:1) (9:2) (8:2)
Mean Age §.d.): 71.9 (4.8) 70.9 (5.1) 71.9 (4.8) 71.3 (4.5)
Mean Radiotherapy dose 61.8 63.3 61.8 61.0
Mean IBDQ Scores (s.d.) 67.4 (2.6) 67.5 (2.7) 67.4 (2.6) 67.3 (2.7)
High Toxicity: Pretreatment Posttreatment Pretreatment Posttreatment
Number of patients N=12 N=11 N=12 N =10
(Male:Female) (9:3) (8:3) (9:3) (8:2)
Mean Age (s.d.): 69.8 (11.3) 69.1 (11.1) 69.8 (11.3) 71.8 (7.3)
Mean Radiotherapy dose 60.4 59.5 60.4 61

Mean IBDQ Scores (s.d.)  68.8 (1.7) 48.5 (7.4) 68.8 (1.7) 49.8 (6.2)
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Figure 4. (a) Averaged enose sensor responses for different sample groups (axis is change
in output voltagejnd(b) Normalized responses.
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Samples after radiotherapy were analysed, fasthe differences betweethesegroups were likely
to be greatest. Figure(d shows the PCA of the two groups after treatment; there was a clear
separation between the low and high toxicity groups. Fig(beshows the loadings of this analysis,
indicating that a large number of sensors contributed to the variability. LDA was also pertbanhed
again showed clear separation between the two groups (hence the results not shown here).
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Figure 5. (a) PCA results from @ose data an(b) loadings for samples takdéaur weeks
after treatment referenced Table 1
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Analysis of the prdreatment samples by PCA Figur@pand by loadings Figurgl® indicated a
difference between those who ultimately went ohdge high or low toxicity. The differences, though
statistically significant, were less striking.
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Figure 6. (a) PCA results from -@ose data andb] loadings for samples taken before
treatment; categorized on their postatment toxicity referenced Table 1
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Finally, LDA was undertaken for all four groups. Though LDA could clearly separate high and low
toxicity, pre and post treatment, it could not separate all four groups when analyzed together, as showr
in Figure 7. What it does suggastthat there is a significant difference between those susceptible to
radiation damage to those who are less so.

Although the sample numbers were small, a KNNn@arest neighbour) algorithm was applied to
the electronic nose data to evaluate if it wassible to classify each sample correctly. Usiriglnas
the training set (where n is the number of samples), it was possible to correctly classify 22 out of
23 samplegorrectly (pretreatment). When 10 samples were moved at random from the reference set
to the test set, it was still able to correctly classify 80% of the samples consistently.
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Figure 7. (a) LDA of all four groups using the-eose andk) loading plot associated with
LDA referenced tdable 1
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FAIMS analysis was done first frorpost radiotherapy samples as geeatlifferences were
expectedthen on the préreatmentsamplesand finally as alsampledogether. It was discovered that
FDA could separate the different groups in all three cases. Fi¢greh®ws the FDA result frorthe
FAIMS datafrom all the samplesThresholds of 0.16 on the between class scatter and 0.12 on the
within class scatter were imposed for the selection of dimensions. This identified 23 dimensions which
were used for the FDA. Taking one sample oui (f) and reperforming the FDA, the accuracy
of reclassification was in excess of 90% for both groups. Fig(lse shows the components of
the projection vector identified and indicate that a large number contribute significantly to

the classification.
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Figure 8. (a) FDA of FAIMS data to all four groupand b) loading plot associated with
FDA using dimensions created in the analysis described earlier.
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3.1 Discussion

Pelvic radiotherapy is a highly invasive procedure that frequently cgasesintestinal sideffectsas
a result of tissue damage. Currently there is no reliable means of identifying those patients who will
have a severe reaction. Our results indicate that the difference in odour profiles distinguishes patients
severely affeted from those with milder symptomssing the patients themselves as the control group
for this pilot study Furthermore, this difference may be measured before treatment. As shown in the
loading plotFigures 5(b) and6(b) volatiles and gases obtained from stools collected before and after
radiotherapy activate different sets of sensars)ear indication of a change in the gas chemical
profile. The gaseous outputs reflect the pattern of chemicals released by thedsomeftundigested



