
Sensors 2012, 12, 13002-13018; doi:10.3390/s121013002 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

The Detection of Patients at Risk of Gastrointestinal Toxicity 

during Pelvic Radiotherapy by Electronic Nose and FAIMS :  

A Pilot Study 

James A. Covington 
1,
*, Linda Wedlake 

2
, Jervoise Andreyev 

2
, Nathalie Ouaret 

1
,  

Matthew G. Thomas 
1,3

, Chuka U. Nwokolo 
4
, Karna D. Bardhan 

5,6
 and  

Ramesh P. Arasaradnam 
4,6

 

1
 School of Engineering, University of Warwick, Coventry CV4 7AL, UK;  

E-Mails: N.Ouaret@warwick.ac.uk (N.O.); M.G.Thomas@warwick.ac.uk (M.G.T.) 
2 

Department of Nutrition and Dietetics and the GI Unit, The Royal Marsden NHS Foundation Trust, 

Fulham Road, London SW3 6JJ, UK; E-Mails: box46@statacom.net (L.W.); 

J@andreyev.demon.co.uk (J.A.); R.Arasaradnam@warwick.ac.uk (R.P.A.) 
3 

MOAC Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, UK 
4
 University Hospital Coventry & Warwickshire, Coventry CV2 2DX, UK;  

E-Mail: chuka.nwokolo@uhcw.nhs.uk  
5
 Department of Gastroenterology, Rotherham General Hospital, Rotherham S60 2UD, UK;  

E-Mail: bardhan.sec@rothgen.nhs.uk 
6 

Clinical Sciences Research Institute, University of Warwick, Coventry CV2 2DX, UK 

*  Author to whom correspondence should be addressed; E-Mail: J.A.Covington@warwick.ac.uk; 

Tel.: +44-24-7657-4494; Fax: +44-24-7641-8922.  

Received: 21 July 2012; in revised form: 10 September 2012 / Accepted: 10 September 2012 /  

Published: 26 September 2012 

 

Abstract:  It is well known that the electronic nose can be used to identify differences 

between human health and disease for a range of disorders. We present a pilot study to 

investigate if the electronic nose and a newer technology, FAIMS (Field Asymmetric Ion 

Mobility Spectrometry), can be used to identify and help inform the treatment pathway for 

patients receiving pelvic radiotherapy, which frequently causes gastrointestinal side-effects, 

severe in some. From a larger group, 23 radiotherapy patients were selected where half had 

the highest levels of toxicity and the others the lowest. Stool samples were obtained before 

and four weeks after radiotherapy and the volatiles and gases emitted analysed by both 

methods; these chemicals are products of fermentation caused by gut microflora. Principal 
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component analysis of the electronic nose data and wavelet transform followed by Fisher 

discriminant analysis of FAIMS data indicated that it was possible to separate patients  

after treatment by their toxicity levels. More interestingly, differences were also identified 

in their pre-treatment samples. We believe these patterns arise from differences in gut 

microflora where some combinations of bacteria result to give this olfactory signature. 

In the future our approach may result in a technique that will help identify patients at ñhigh 

riskò even before radiation treatment is started. 

Keywords: electronic nose; FAIMS; fermentome; gastrointestinal toxicity; gut permeability; 

pelvic radiotherapy 

 

1. Introduction  

The electronic nose (e-nose) was first conceived in the early 1980s [1] and has undergone 

continuous refinement ever since. Developed as a means of replicating the biological olfactory system, 

it does not identify specific chemicals within a complex mixture (as possible with, for example, gas 

chromatography and/or mass spectrometryðGCMS), but analyses the sample as a whole to create an 

ñolfactory signatureò. Such instruments have been applied widely in commerce and research, including 

for food and beverage quality, perfumes and process control [2,3]. Of increasing importance has been 

the application of this technology to the medical domain. The possibility of using the electronic nose 

for the identification and monitoring of disease has shown considerable promise. The detection of gas 

phase bio-markers from human biological output, be it breath, sweat, blood, urine or faecal matter, has 

been shown to identify a disease state. E-nose technology is close to real-time, can be operated without 

special gases, at room temperature and pressure, is non-invasive and could be produced at a financially 

acceptable cost for the medical profession. The range of diseases that e-nose technology has been 

applied to is considerable, ranging from lung cancer, brain cancer and melanoma to inflammatory 

bowel disease and even schizophrenia [4ï9]. 

A more recent technological development is that of field-asymmetric ion mobility spectrometry 

(FAIMS) for monitoring complex odours. As with the electronic nose, FAIMS can be used for the 

real-time analysis of complex chemical components, looking at the total chemical composition of a 

sample. Such instruments use differences in the mobility of ionised molecules in high electric fields to 

provide a ñmobility signatureò of a complex sample. This mobility signature is in many ways 

comparable to the olfactory signature created by the array of chemical sensors in the e-nose. FAIMS 

instruments have found widespread use within the security sector [10], as they can detect large volatile 

molecules at extremely low concentration (e.g., explosives), but it has not as yet been used extensively 

within the medical field. 

One medical area yet to receive attention by either e-nose or FAIMS technology is that of pelvic 

cancer patients, undergoing radiotherapy. The pelvis is a confined area bounded by bone and thick 

muscle, leaving only a fairly small central cavity. This is packed (from front to back) with the bladder, 

ovaries, uterus/cervix, the rectum, sigmoid colon (the lower part of the large bowel) and a variable 

number of small bowel loops. As a result, pelvic irradiation for a tumour affecting an organ inevitably 
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injures the others. Almost all patients experience changes in bowel habits during their five to seven 

week course of radiotherapy. Up to 90% of patients report abnormal gastrointestinal symptoms of 

varying severity, termed ñpelvic radiation diseaseò [11,12]. A wealth of data now supports the view 

that acute radiotherapy-induced damage is characterised by inflammatory processes. Maximum 

damage to the gastrointestinal mucosa occurs about two weeks into treatment [13]. However, whilst 

acute mucosal damage may then improve, the prevalence of moderate or severe chronic side effects 

can be as high as 50% [13,14]. Despite increasingly sophisticated radiotherapy planning and delivery, 

those patients who are at most risk of severe late problems cannot be predicted using normal medical 

measures. There is evidence that this high level of susceptibility may be due to differences in the 

composition and treatment-induced change of their gut bacterial populations [15,16]. Directly 

measuring the composition of these populations is incredibly difficult due to their location and huge 

variation in bacterial types, but we believe information in regard to its overall composition could be 

attained by looking at the gaseous emissions of bacteria within faecal samples. Thus, in an attempt to 

evaluate if it is possible to identify these ñhigh-riskò patients, we have undertaken a pilot study to 

evaluate if either a traditional e-nose or a FAIMS instrument can identify differences in faecal gas 

emissions. Here we have taken samples before and after treatment from patients who have had a high 

toxicity and low toxicity response after treatment to investigate if there is a difference in these gas 

emissions. If feasible, it may be possible in the future to warn the clinician of patients that are likely to 

become seriously ill, thereby indicating who requires closer monitoring and/or possibly to be 

considered for an alternative treatment pathway. Such a patient-tailored approach offers a potential 

route towards minimising morbidity associated with this treatment.  

2. Material and Methods  

To undertake this study an in-house traditional electronic nose and a commercial FAIMS instrument 

has been used to analyse faecal samples from pelvic radiation patients.  

2.1. Electronic Nose 

Electronic noses are instruments that attempt to replicate the biological olfactory system, by 

investigating gas phase samples as a whole, instead of identifying specific chemicals within a complex 

gas mixture. In an electronic nose, the air above the sample (or headspace) is drawn into the electronic 

nose and is passed across an array of chemical sensors. The size of the array varies, but most are 

between six and 32 sensors. Each sensor of the array is broadly tuned to a chemical group, with 

overlapping sensitivity, but importantly, is different in some way from the rest of the array. As each 

sensor is dissimilar, the interaction between the sensor and the complex sample is unique within the 

array. Thus, an olfactory signature of this complex odour can be created. In most applications, some 

form of pattern recognition algorithm is applied to learn this olfactory signature and, when presented 

with the same profile, is able to recognize the odour.  

The electronic nose used in this study is an in-house instrument developed at Warwick University. 

It contains an array of six metal oxide based sensors (high temperature resistive sensors), as well as six 

electrochemical sensors, a pellister (catalytic sensor), and an NDIR sensor (optical, to monitor 

CO2). A list of sensors and manufacturers is given in Table 1. These different sensor technologies 
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were chosen for two reasons. First, it provides considerable diversity to the information that can be 

gathered from the array. Second, the sensors were selected to be broadly tuned to gases and vapours 

that we believe may be important products in the normal metabolic activity of the gut.  

Table 1. Sensors deployed within the electronic nose, with descriptions. Number is 

brackets is sensor number within the instrument.  

Metal Oxide Sensors 

(Figaro Jpn) 

Electrochemical Sensors 

(Alphasense/Sensors Direct, UK) 

Others 

(Alphasense, UK) 

TGS813ðLow pressure gas (1) NO2-A1ðNitrogen dioxide (8) IRC-A1ðCarbon dioxide (7) 

TGS821ðHydrogen (2) NO-A1ðNitrous oxide (9) CH-A3ðFlammable gases (13) 

TGS822ðOrganic solvents (3) H2S-A1ðHydrogen sulphide (10)  

TGS824ðAmmonia (4) CO-A1ðCarbon monoxide (11)  

TGS825ðHydrogen sulphide (5) SO2-A1ðSulphur dioxide (12)  

TGS880ðVolatile vapours (6) S+H2ðHydrogen (14)  

Due to the different types of sensors deployed within the instrument, it is useful to transduce each of 

the sensor outputs into a common formðin this case voltage. The six metal-oxide sensors were driven 

with a constant current source (100 µA) and the voltage across the sensor then amplified and 

monitored. The electrochemical sensors were attained with transmitter boards, containing a 

potentiostat and drive circuit to give a 4ï20 mA output. This current was converted to a 0ï10 V signal 

(note that the boards and sensors were calibrated for the gas concentration operating ranges defined by 

the manufacturer). The NDIR was also supplied with a transmitter board, giving a 4ï20 mA output, 

which again was converted to 0ï10 V. Finally, for the pellister a bridge circuit was manufactured with 

a differential output stage. Here the offset was trimmed to be zero in laboratory air and the differential 

output stage gain set to 20. The output voltage of all these sensors was measured using two National 

Instruments (USA) USB-6009 boards. The electronic nose was also fitted with a temperature and 

humidity sensor (Sensirion SHT-15, Staefa, Switzerland) to monitor the input sample. In addition to 

the sensors, the electronic nose was fitted with a pump with flow sensors, chamber temperature 

control, valves and dedicated software interface (written in LabVIEW 8.6, National Instruments, 

Woburn, MA, USA). 

2.2. FAIMS Instrumentation 

For this study a commercial FAIMS instrument was used, specifically a Lonestar (Owlstone, UK). 

FAIMS is a fairly recent technological development whereby separation occurs due to ionised 

molecules having different mobilities in high and low electric fields. Such instruments have a number 

of advantages, for example, they can use scrubbed air as the carrier gas, operate at room pressure  

(or above), and so no vacuum pump is required.  

In a FAIMS instrument the gas phase chemical input is first ionised (in our case using a Ni-63 source). 

These ionised molecules then enter an oscillating high electric field, whereby molecules zig-zag between 

two plates to which this electric field is applied. This waveform is ñasymmetricò, thus a high positive 

voltage is applied for a short period of time and a low negative voltage is applied for a longer period. 

However, the integral of the voltage over a time period is zero. The waveform is stepped through a 
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series of magnitudes and is called the ñdispersion fieldò (DF). Below 200 V/cm the ions, on average, 

simply move back and forth between the plates but do not drift preferentially towards either one. 

At higher voltages in contrast, for example 5,000 V/cm or more, some ions within the complex 

mixture, on average move more in the direction of one plate. If an ion contacts the plate it loses its 

charge and is not detected as it exits the plates. Thus a balancing voltage (known as the ñCompensation 

Voltageò or ñCVò) is applied, which counteracts this drift. This compensation voltage can be set 

whereby only the drift from a specific ion is compensated for and will be detected. Thus by sweeping 

through a range of dispersion fields and compensation voltages a complex mixture of gases can be 

separated by their differences in mobility in high and low electric fields [17]. Figure 1 gives an 

example of the applied waveform for FAIMS and the separation of ions by the field plates. 

Figure 1. (a) Asymmetric waveform applied in FAIMS and (b) ions being separated by an 

asymmetric waveform.  

 

(a)             (b) 

2.3. Patients 

Patients were recruited from a larger cohort undergoing long course (radical) radiotherapy with 

different end points and will be reported independently. Two groups were selected and stool samples 

from these patients were used for this study. The only criterion for inclusion was the degree of 

gastrointestinal disturbance between baseline and after four weeks of radiotherapy. This was measured 

by the IBDQ-B score (described below). The first group selected (group 1) were patients who had 

minimal toxicity as indicated by the least fall in the score; patients in the second group (group 2) were 

those who experienced the greatest fall in the score. Scientific and ethical approval was obtained from 

local Research Ethics and Scientific Committees of the Royal Marsden NHS Foundation Trust, 

London. Written informed consent was obtained from all patients who participated in the study. 

Previous studies examining the potential for identifying patients at risk of developing severe 

gastrointestinal toxicity during long course pelvic radiotherapy treatment have employed similar 

methodologies and patient numbers [15].  

2.4. Samples 

All data and samples were collected prospectively. Faecal samples (between 10 and 50 mL) were 

collected within 12 h of evacuation and immediately stored at ī20 °C. Gastrointestinal toxicity was 

recorded using the validated IBDQ-B, which has been developed for use in monitoring disease activity 

in Ulcerative Colitis and Crohnôs Disease [18,19]. The IBDQ-B is the bowel specific part of the 
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questionnaire, which is a 10 question subset of the IBDQ. A maximum of seven points per question 

can be attained indicating no bowel toxicity (totaling a maximum score of 70) and a minimum score of 

1 point per question (minimum score of 10 points showing most severe symptoms). A decline in score 

therefore represents increasing severity or frequency of symptoms. A decrease of more than six points 

has been shown to be clinically significant in a variety of settings [20,21]. Stool samples and IBDQ 

questionnaires were collected from all patients immediately before the start of radiotherapy (indicated 

as the baseline measurement) and after four weeks of treatment. 

2.4. Analysis Methodology 

Stool samples were thawed overnight to room temperature and then heated to 40 ± 0.1 °C in a 

dri-block
TM

 heater for 1 h before the experiment. Ten mL of sample was aliquoted to a 25 mL sterilin 

bottle and 5 mL of deionized water added and manually shaken to homogenize the sample. Here, each 

sample was divided into two aliquots, one for e-nose, the other for FAIMS. Due to limited volume of 

sample, in some cases there was only enough sample for one aliquot. In these cases FAIMS analysis 

was prioritized over e-nose. The sterilin bottle lids were also modified to take pipe fittings for 3 mm 

PTFE tubing.  

For e-nose experiments, laboratory air was used as the carrier gas with a measured humidity of 

20 ± 2% r.h. (relative humidity). Before each experiment, laboratory air was pumped through the 

e-nose at a flow rate of 500 mL/min for 450 s to create a stable baseline. The stool sample line was 

then switched in and the headspace from the stool sample was passed into the instrument (also at 

500 mL/min for 450 s), with a further 450 s of laboratory air to allow the sensors to recover back to 

their original baseline. Each sample was analysed in a random sequence and run twice. The sample 

humidity was measured for all experiments at 49 ± 5% r.h. with a random distribution between groups. 

Figure 2. Typical output of the (a) Electronic Nose and (b) Owlstone FAIMS instrument. 

 

(a) 
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Figure 2. Cont. 

 

(b) 

For the FAIMS instrument, a similar approach was taken, though here, clean scrubbed compressed 

air was used as the carrier. The flow rate over the sample was 2 L/min, with the dispersion field 

scanned between 0 and 90% in 51 steps and the compensation voltage from ī6 V to 6 V in 512 steps. 

Each analysis took typically 180 s and each sample was analysed twice. Figure 2 shows both a typical 

e-nose response (without legend for simplicity) and a FAIMS response to a stool sample. 

E-nose feature extraction was performed using Multisens Analyzer (JLM Innovations, Tübingen, 

Germany). E-nose analysis used the change in voltage (delta V) as the input feature for analysis. 

Before exploratory analysis was performed, the data was pre-processed with a standardization routine, 

built into the Multisens software. Here the mean value of all the features was subtracted from all the 

features. Additionally, the features were then divided by the standard deviation of the features. This 

was done for two reasons, the first process allows only the differences between features to be 

evaluated, thus the absolute feature value (normally associated with intensity) was not considered. The 

second process ensures that each feature will receive equal weighting in the exploratory analysis. This 

method has been applied due to the very different sensor technologies used within the electronic nose. 

This data was then analysed by two different methods, Principal Component Analysis (PCA) and by 

Linear Discriminant Analysis (LDA). For PCA, the samples were analysed as a single group and then 

post-categorized, whereas for LDA the samples were pre-categorised according to clinical outcome 

(low and high toxicity). Principal component analysis is a method to convert multiple sensor responses 

from a group of observations (here patients) into a smaller number of artificial variables called 

principal components, where the total number of principal components is less that the number of 

sensors. This transformation produces results whereby the first principal component accounts for the 

largest variability in the data as possible. The succeeding principal components, in order, have the next 

highest variability and so on. These additional components are constrained in that they must be 

orthogonal to (i.e., uncorrelated to) the proceeding components. Thus, the results produced by this 

transformation are unclassified, but also show if the different observations produce the most 



Sensors 2012, 12 13009 

 

 

differences in the sensor responses. LDA is in some ways similar to PCA, but in this case, LDA 

attempts to find the optimum combination of sensors that best separates the differences between 

sample groups. So unlike PCA, which analyses samples based on the maximum difference, LDA looks 

for similarities within groups of samples.  

FAIMS data was processed in Matlab (Mathworks Inc., Natick, MA, USA). As stated earlier, for 

each FAIMS measurement, the dispersion field was scanned between 0 to 90% and the compensation 

voltage between ī6 V and 6 V. This produces 26,112 data points (as shown in Figure 1). In addition, 

both positive and negative ion counts were measured separately. Thus, the total number of data points 

was 52,254. To pre-process this data, a wavelet transform was applied (Daubechies D4). Wavelet 

transforms are a method used most commonly as a way of conditioning a signal into a more reduced 

form, before data compression. In simple terms, it projects the data on to a basis set of short 

waveforms (or wave-lets). Where the projections are large, this gives frequency and location 

information of this part of the original signal. Such techniques are incredibly good at separating signal 

information from noise. This is a natural method of pre-processing as the FAIMS output is a series of 

overlapping peaks, where one peak arises from molecules with a specific mobility. The wavelet 

transform gives information about this molecule, but also aids in discovering any additional molecules 

with similar, but not identical mobilities, by looking for differences in the frequency components on 

the signal. Figure 3, gives a section of the data after a wavelet transform had been applied. This was 

for a low toxicity patient, before treatment. 

Figure 3. Wavelet transform of a low toxicity patient for elements 1 to 5,000. 

 

For analysis both the positive and negative ion count matrices from each sample were concatenated 

into a single 1D array 52,224 elements in length and then the wavelet transform applied. This produced 

a new 1D array, again 52,224 elements in size. Due to the large size of the dataset, it was required to 

identify elements that are suitable/useful in discriminating the different samples. To achieve this, 

thresholds were set for the within group (i.e., low toxicity/high toxicity, pre and post treatment, 

thus four groups) scatter: (Ɇůi)
2
 and the between group scatter: (ůɛ)

2
/(Ɇůi)

2
, to identify dimensions for 

selection (ůi: the standard deviation of the dimension in question within the group i, and ůɛ was the 
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standard deviation of the means of the dimension under test between classes). The exponents change 

the form to reflect that employed in Fisher Discriminant Analysis (FDA). FDA is almost identical to 

LDA, except that it does not make some of the assumptions used in LDA (such as normal distributed 

classes). It was discovered that this gave better discrimination for the methods and data captured  

by FAIMS. 

This approach gave a two dimensional input parameter space to control the separation algorithm. 

This space was explored as follows. For each point in the input space 20 test sets (each containing 

one high toxicity response and one low) was re-classified. These test sets were not used in the 

identification of dimensions or the implementation of the FDA. This exploration identified regions in 

the parameter space where re-classification exceeded the 65.8% that would be expected for random 

re-classification (two standard deviations from the mean), and for which the success of re-classification 

was robust to perturbation in the parameters while changing the number of dimensions identified.  

3. Results and Discussion 

In total, 23 patients were investigated, 11 in the low toxicity group and 12 in the high toxicity 

group. The sample number, age, male/female ratio, radiotherapy dose and symptom burden 

(IBDQ-B score) analyzed by e-nose and FAIMS is shown in Table 2. The patients were of a similar 

age in both groups and had a similar dose of radiotherapy, including fractionation and duration of 

treatment (data not shown). By selection, the fall in the IBDQ-B score was only slight in the low 

toxicity group, but was marked and significant in the high toxicity. Numbers of samples per instrument 

differs slightly due to available volume of biological matter. Figure 4 shows the average e-nose sensor 

responses to the four groups from Table 2 (Figure 4(a)ðraw values and Figure 4(b)ðnormalized 

before averaged). Here, only one set of data was used for these figures, even though the samples were 

run twice. This was done as we have previously noticed sample depletion with running samples using a 

dynamic sampling approach, thus the sensors are exposed to different gas profiles between tests.  

Table 2. Baseline demographic characteristics and treatment features: Groups 1 (low 

toxicity) and 2 (High toxicity). 

Feature Electronic Nose Analysis FAIMS Analysis 

Least Toxicity: 

Number of patients 

(Male:Female) 

Mean Age (s.d.): 

Mean Radiotherapy dose 

Mean IBDQ Scores (s.d.) 

Pre-treatment 

N = 11 

(9:2) 

71.9 (4.8) 

61.8 

67.4 (2.6) 

Post-treatment 

N = 8 

(7:1) 

70.9 (5.1) 

63.3 

67.5 (2.7) 

Pre-treatment 

N = 11 

(9:2) 

71.9 (4.8) 

61.8 

67.4 (2.6) 

Post-treatment 

N = 10 

(8:2) 

71.3 (4.5) 

61.0 

67.3 (2.7) 

High Toxicity: 

Number of patients 

(Male:Female) 

Mean Age (s.d.): 

Mean Radiotherapy dose 

Mean IBDQ Scores (s.d.) 

Pre-treatment 

N = 12 

(9:3) 

69.8 (11.3) 

60.4 

68.8 (1.7) 

Post-treatment 

N = 11 

(8:3) 

69.1 (11.1) 

59.5 

48.5 (7.4) 

Pre-treatment 

N = 12 

(9:3) 

69.8 (11.3) 

60.4 

68.8 (1.7) 

Post-treatment 

N = 10 

(8:2) 

71.8 (7.3) 

61 

49.8 (6.2) 
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Figure 4. (a) Averaged e-nose sensor responses for different sample groups (axis is change 

in output voltage) and (b) Normalized responses. 

 

(a) 

 

(b) 

Samples after radiotherapy were analysed first, as the differences between these groups were likely 

to be greatest. Figure 5(a) shows the PCA of the two groups after treatment; there was a clear 

separation between the low and high toxicity groups. Figure 5(b) shows the loadings of this analysis, 

indicating that a large number of sensors contributed to the variability. LDA was also performed that 

again showed clear separation between the two groups (hence the results not shown here). 
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Figure 5. (a) PCA results from e-nose data and (b) loadings for samples taken four weeks 

after treatment referenced to Table 1. 

 

(a) 

 

(b) 

Analysis of the pre-treatment samples by PCA Figure 6(a) and by loadings Figure 6(b) indicated a 

difference between those who ultimately went on to have high or low toxicity. The differences, though 

statistically significant, were less striking. 
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Figure 6. (a) PCA results from e-nose data and (b) loadings for samples taken before 

treatment; categorized on their post-treatment toxicity referenced to Table 1. 

 

(a) 

 

(b) 

Finally, LDA was undertaken for all four groups. Though LDA could clearly separate high and low 

toxicity, pre and post treatment, it could not separate all four groups when analyzed together, as shown 

in Figure 7. What it does suggest is that there is a significant difference between those susceptible to 

radiation damage to those who are less so.  

Although the sample numbers were small, a KNN (K-nearest neighbour) algorithm was applied to 

the electronic nose data to evaluate if it was possible to classify each sample correctly. Using n ī 1 as 

the training set (where n is the number of samples), it was possible to correctly classify 22 out of 

23 samples correctly (pre-treatment). When 10 samples were moved at random from the reference set 

to the test set, it was still able to correctly classify 80% of the samples consistently. 
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Figure 7. (a) LDA of all four groups using the e-nose and (b) loading plot associated with 

LDA referenced to Table 1. 

 

(a) 

 

(b) 

FAIMS analysis was done first from post radiotherapy samples as greater differences were 

expected, then on the pre-treatment samples and finally as all samples together. It was discovered that 

FDA could separate the different groups in all three cases. Figure 8(a) shows the FDA result from the 

FAIMS data from all the samples. Thresholds of 0.16 on the between class scatter and 0.12 on the 

within class scatter were imposed for the selection of dimensions. This identified 23 dimensions which 

were used for the FDA. Taking one sample out (n ī 1) and re-performing the FDA, the accuracy  

of reclassification was in excess of 90% for both groups. Figure 8(b) shows the components of  

the projection vector identified and indicate that a large number contribute significantly to  

the classification.  
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Figure 8. (a) FDA of FAIMS data to all four groups and (b) loading plot associated with 

FDA using dimensions created in the analysis described earlier. 

 

(a) 

 

(b) 

3.1. Discussion 

Pelvic radiotherapy is a highly invasive procedure that frequently causes gastrointestinal side-effects as 

a result of tissue damage. Currently there is no reliable means of identifying those patients who will 

have a severe reaction. Our results indicate that the difference in odour profiles distinguishes patients 

severely affected from those with milder symptoms, using the patients themselves as the control group 

for this pilot study. Furthermore, this difference may be measured before treatment. As shown in the 

loading plot Figures 5(b) and 6(b) volatiles and gases obtained from stools collected before and after 

radiotherapy activate different sets of sensors, a clear indication of a change in the gas chemical 

profile. The gaseous outputs reflect the pattern of chemicals released by the fermentation of undigested 


