
Sensors 2012, 12, 954-971; doi:10.3390/s120100954 
 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 
Article 

Sap Flow Sensors: Construction, Quality Control and 
Comparison 

Tyler W. Davis 1, Chen-Min Kuo 1,2, Xu Liang 1,* and Pao-Shan Yu 2 

1 Department of Civil and Environmental Engineering, University of Pittsburgh, 3700 O’Hara Street 
941 Benedum Engineering Hall, Pittsburgh, PA 15261, USA; E-Mails: twd2@pitt.edu (T.D.); 
jemkuo@mail.ncku.edu.tw (C.-M.K.) 

2 Department of Hydraulic and Ocean Engineering, National Cheng Kung University,  
Tainan City, Taiwan; E-Mail: yups@mail.ncku.edu.tw 

* Author to whom correspondence should be addressed; E-Mail: xuliang@pitt.edu;  
Tel.: +1-412-624-9872; Fax: +1-412-624-0135. 

Received: 1 December 2011; in revised form: 11 January 2012 / Accepted: 12 January 2012 /  
Published: 16 January 2012 
 

Abstract: This work provides a design for two types of sensors, based on the thermal 
dissipation and heat ratio methods of sap flow calculation, for moderate to large scale 
deployments for the purpose of monitoring tree transpiration. These designs include a 
procedure for making these sensors, a quality control method for the final products, and a 
complete list of components with vendors and pricing information. Both sensor designs 
were field tested alongside a commercial sap flow sensor to assess their performance and 
show the importance for quality controlling the sensor outputs. Results show that for 
roughly 2% of the cost of commercial sensors, self-made sap flow sensors can provide 
acceptable estimates of the sap flow measurements compared to the commercial sensors.  
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1. Introduction 

The heat ratio [1], heat balance [2], and thermal dissipation [3] sap flow methods make up the three 
main sensor types that are used today for estimating plant transpiration. With respect to certain tree 
sizes (>25 cm diameter), only the heat ratio method (HRM) and the thermal dissipation method (TDM) 
are applicable [4]. Both of these methods use cylindrical thermocouple and heater probes inserted into 
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the tree xylem. While the installation and methodology of using these sensors are different, the 
fundamental mechanics and operation of the probes are similar. Reference [4] suggests that a 
combination of both pulsed and thermal dissipation sap flow measurement methods would be the most 
cost effective solution for long-term studies. In addition, the high cost associated with commercial 
brand sensors of the same types, i.e., TDM and HRM, diminishes the ability for researchers to make 
large-scale deployments. Therefore, this study describes the design of both a HRM and TDM sap flow 
sensor utilizing inexpensive parts for the purpose of estimating tree sap flow.  

To accompany the design of these two sensors, a quality control checking method is also presented. 
Due to the inconsistencies that may arise when producing handmade sap flow sensors, it is important to 
calibrate each probe’s output to a standard measure. This paper presents a simple method to do so and 
the results from calibrating 24 temperature and heater probes’ output (measured in voltage) to a 
standardized temperature (measured in degrees). This accounts for the variations in individual sensors 
by applying a linear conversion equation to the sensor probes’ output.  

To demonstrate the sensor’s performance, results from a field study using both HRM and TDM 
handmade sensors are also presented. For further comparison, a commercial sap flow sensor, Dynamax 
Inc.’s TDP30, was field tested alongside the handmade sensors. Five consecutive days’ results from all 
three sensors are presented. Simultaneous measurements from three different sensor types measuring at 
three different locations in the same tree cannot present the same quantitative results due to 
heterogeneities present in the thermal properties of the tree’s sap-conducting wood [5]. Therefore, only 
a qualitative comparison is made. 

The remainder of this paper is organized as follows: Section 2 overviews the background 
information regarding the two sap flow sensor methodologies and their existing sensor designs. This 
includes the motivation for building self-made sensors as opposed to purchasing commercially. Section 3 
covers the methods for building both sap flow sensor types and the materials and pricing for the sensor 
parts. The results and conclusions based on the field tests of both sensors are given in Section 4 with a 
comparison against a commercially purchased TDM sensor. A discussion is provided in Section 5.  

2. Background and Motivation 

2.1. Overview of Sap Flow Methodologies 

The TDM was first introduced by [3]. This method is based on the assumption that the heat input by 
the sensor under steady sap flow conditions is equal to the heat dissipation (via convection and 
conduction) along the interface between the sensor and the tree when the sensor and the tree are in 
thermal equilibrium. Daily fluctuations in the heat dissipated from the sensor probe are compared to 
the unheated temperature of the tree sap and wood. To measure the heated and reference temperatures, 
two probes, vertically aligned, are inserted radially into the sapwood of a tree. The downstream probe 
consists of a coiled metal wire, which supplies the heat via the Joule effect, and a thermo-junction, 
which measures the temperature via the Seebeck effect. A constant voltage is added to the coiled metal 
wire to power the heater while the thermo-junction measures the temperature of the heat source. The 
upstream probe consists of only a thermo-junction for measuring the unheated reference temperature at 
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a fixed distance away from the heater probe. Daily temperature difference measurements are used to 
calculate the sap flux density from an empirical equation developed by [6]:  
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where ΔT is the temperature difference between the upper and lower probes (°C), ΔTo is the maximum 
daily value of ΔT which corresponds to zero sap flow (°C), and Qs is the sap flux density  
(m3·m−2·s−1) [7]. Reference [8] outlines the various research papers that have reported calibrating the 
Granier-style sensor on a variety of tree species and porous media. 

The HRM is an improved heat-pulse method developed by [1] in response to the limitations of the 
compensation heat-pulse method (CHPM) first introduced by [9] and later developed by [10] and [11]. 
This method uses the relative temperature increases following a heat pulse measured at equal distances 
upstream and downstream from the source to determine the convective velocity of the heat pulse which 
can then be compensated by the tree’s physical characteristics, i.e., a weighted average of the 
stationary wood and flowing sap, to the sap velocity. In this method, three probes are inserted radially 
into the tree sapwood. The middle probe generates a heat pulse and the temperature changes are 
measured by the other two probes at locations equidistant upstream and downstream from the heater. 
The heat pulse velocity is calculated according to [10]: 
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where vh is the heat pulse velocity (mm·s−1) [7]; k is the thermal diffusivity of sapwood (mm2·s−1); x is 
the distance between the heat pulse probe and the temperature probes (mm); v1/v2 is the ratio of  
time-dependent temperature differences, v(t) = T(t) − T(0), measured at the downstream and upstream 
probes, respectively. The times, t, during which measurements are made should be between  
60–100 s following the generation of the heat pulse when v1/v2 is effectively linear with respect to  
time [1]. The sap velocity is then calculated based on the methodology of [12]: 
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where vs is the sap velocity (mm·s−1) [7]; ρsm and csm are the density (kg·m−3) and specific heat 
(J·kg−1·°C−1) of the sap in a woody matrix; and ρs and cs are the density (kg·m−3) and specific heat 
(J·kg−1·°C−1) of the sap. The heat pulse velocity in Equation (2) can be corrected for sensor 
misalignment and tree wounding effects which can affect the sap flow measurements [1]. Results of 
either Equation (1) or (3) can be multiplied by the cross-sectional area of conducting sapwood to 
convert sap flux density (Qs) or sap velocity (vs) to sap flow (Q). 

2.2. Existing Measurement Technologies 

The means for measuring sap flow have been designed and sensors for the HRM and TDM are 
commercially available. Reference [8] lists three major companies as distributers of the Granier-style 
sap flow sensors, including UP Gmbh (Germany), PlantSensors (Australia), and Dynamax (USA). 
Others include Ecomatik (Germany) and ICT International (Australia). ICT International is the only 
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known supplier of a sensor specifically for the HRM. These sensors, however, are expensive and often 
times packaged with proprietary data collection equipment and software which can also be expensive 
and limited in functionality. 

The fundamental principles of these sap flow sensors are based on the thermo-electric and Joule 
heating laws. Using these principles, temperature and heater probes can be created for the HRM and 
TDM similar to those described in their respective works or those sold by commercial sap flow sensor 
retailers. In their design of a variable length TDM sensor, Reference [13] states the inexpensive nature 
and simplicity of manufacturing and using self-made sap flow sensors. It is the intention of this work 
to exemplify this with simple sensor designs, quality control measures and an example application 
comparing the self-made sensors to their commercial counterparts. 

Self-made sap flow sensors have been presented in numerous other works, e.g., [13–16], but most 
fail in describing at least one of the following: the process in which the sensors were made, the 
materials used, or the quality assurance of each sensor. This work details each of these key points. 

2.3. Benefits of Using Self-Made Sap Flow Sensors 

There are many benefits to making sap flow sensors rather than purchasing them commercially. 
These benefits are mainly due to the selection and pricing of materials used for the sensor building. 
The time and experience necessary to make the sensors may be offset as an educational cost.  

The parts for making the probes comprised in the sensor design for both the HRM and TDM sap 
flow sensors are the same, only in different quantities. Therefore, researchers can take advantage of 
using both sensor designs in their study which has been suggested for improving the quality of 
measurements [4]. Purchasing the sensor parts also allows for custom fitting the sensors to the specific 
application. This can include the probe length (to account for various sapwood depths), probe spacing 
(especially for the TDM where distance between the heater and reference temperature probes may 
affect results [8]), and wire connection type (to work with various data logger or collection systems). 

The price of self-made sensors, when considering both time and materials, is much less than their 
commercial counterparts for large deployments. For small deployments, however, the trade-off between 
the quality and price between self-made and commercial sensors may not be as justifiable. However, 
large deployments allow researchers to install a greater number of sensors over larger areas and species 
types. This can help reduce errors in transpiration estimation made by single point measurements. It is 
well known that the TDM is prone to errors due to variations of sap flow along the sensor length, 
improper probe placement, disruption to conducting cells during installation, improper probe spacing 
and temperature gradients within the sap wood [17]. To help accommodate for this, it is recommended 
that multiple sensor types be deployed together. Because both the TDM and HRM sap flow sensors 
share the same parts, they can be built and deployed together for a dual perspective of sap flow.  

Time and effort are necessary to assemble sap flow sensors. The experience of the worker will 
affect the quality of the sap flow sensors produced. The time spent on sensor production may delay 
deployment, however, the experience gained from making sensors is valuable. The practice of building 
sap flow sensors has proven to be a successful hands-on training tool and an effective learning 
experience for undergraduate student education.  Making sap flow sensors, while time consuming and 
repetitive, does not require specialized skill sets outside an undergraduate student’s capabilities. 
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Therefore by providing this as an opportunity for undergraduate work, the additional cost of making 
the sensors is avoided.  

3. Methods and Materials 

This section presents two sensor designs for the TDM and HRM sap flow calculation methods. The 
designs for building the sap flow sensors are based on [18,19]. The principal components of these two 
sensors have been reduced to three probe designs. From these three probes, both the TDM and HRM 
sap flow sensors can be constructed. The TDM and HRM sap flow sensor designs both utilize a 
temperature probe (for the reference temperature in the TDM and the equidistant temperature 
measurements upstream and downstream in the HRM). The difference between these two sap flow 
sensors are their heater probes. The TDM utilizes a constant heater probe, consisting of both a heater 
and a temperature measurement, while the HRM utilizes a heat pulse probe, consisting of only a heater. 

To supply the constant heat required by the TDM, a design for a voltage regulator is necessary and 
is included in this paper. Unlike the HRM, which uses a short but high power heat pulse, the TDM 
delivers a steady and constant power output which in this design is controlled via a voltage regulator. 

To control the quality of these probes, their measurements (measured in mV) are calibrated to  
a standardized thermocouple (measured in °C). The testing procedure and results from two tests  
are presented below.  

3.1. Construction and Quality Control 

3.1.1. Temperature Probe 

The temperature probe used by both the HRM and TDM consists of a thermocouple junction, or 
thermo-junction, inside of a metal needle. Traditionally, a copper-constantan (Type T) thermocouple is 
used. In this design, the thermocouple type was changed to a chromium-constantan (Type E) to increase 
the voltage output. Figure 1 shows the comparison between Type T and Type E thermocouples. The 
thermocouples’ voltage response to a given temperature can be represented by a polynomial (of order 
seven and nine for Type T and E thermocouples, respectively) and have a nearly linear response curve 
in the temperature range expected for sap flow monitoring conditions. However, the Type E 
thermocouples produce over 50% higher voltage response than Type T for a given temperature (e.g., 
1.4 mV compared to 0.9 mV at 23 °C for Type E and T thermocouples, respectively). Reference [20] 
shows that the TDM sap flux density can be directly calculated from the voltage measurements as 
opposed to the temperature, due to the cancellation of the conversion factor (Seebeck coefficient) in 
the numerator and denominator. Based on the ratio of time-dependent temperature differences in 
Equation (2), the same is also true for the HRM calculation. Therefore using a thermocouple with a 
higher Seebeck coefficient will not change the results in the calculation. Instead, for the same 
temperature measurement the Type E thermocouple will produce a higher voltage that can be more 
easily resolved by instrumentation. 

The construction of the temperature probe begins with 36 gauge (0.127 mm diameter) chromel and 
constantan thermocouple wire. The wires are soldered to form a thermo-junction and inserted into a  
41 mm long, 0.556 mm inner-diameter glass micropipette. The chromel wire is insulated with a PFA 
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copolymer resin to prohibit short-circuits. The thermo-junction is glued into place inside the 
micropipette using a cyanoacrylate adhesive. The location of the thermo-junction in the micropipette 
determines the depth temperature measurements will be taken inside the tree. For this design, the 
thermo-junction is located at half the length of the micropipette. At this point, the thermocouple inside 
the micropipette can be tested using a multimeter to measure the resistance between the exposed leads 
to ensure the soldered joint was not damaged during installation. Depending on the quality of the 
soldered joint, resistance measurements typically are between 1–4 Ω. If resistance measurements are 
found to vary greatly from the expected, the thermocouple is discarded. Type T extension wires,  
20 gauge (0.8128 mm diameter), are wrapped and soldered to their respective thin leads of 
thermocouple wire (Figure 2(a)). The connections are insulated with polytetrafluoroethylene (PTFE) 
tape. The micropipette is carefully inserted into an 18 gauge (0.965 mm inner-diameter) 38.1 mm long 
stainless steel dispensing needle (Figure 2(b)). It should be noted that the needle size was chosen to 
closely match that of the Dynamax TDP30 commercial sap flow sensor. The micropipette and needle 
size may be changed to match other designs. The tip of the steel needle is sealed with solder to restrict 
water from reaching the wiring. To hold the assembly together, heat shrink tubing is tightened around 
the needle hub and thermocouple extension wire. For additional water protection, the seam around the 
heat shrink tubing is glued (Figure 2(c)).  

Figure 1. (a) Type T thermocouple voltage to temperature conversion plot. (b) Type E 
thermocouple voltage to temperature conversion plot. The polynomial voltage (V) to 
temperature (°C) conversion equation coefficients, Seebeck coefficients for the near linear 
temperature range shown and voltage responses at 23 °C are given for both thermocouple 
types. 
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Figure 2. (a) Temperature probe schematic of thermo-junction location inside the 
micropipette and connection to Type E thermocouple extension wire (constantan/chromel). 
(b) Temperature probe schematic showing micropipette located inside the steel dispensing 
needle. (c) Temperature probe schematic of the heat shrink tubing and glue used to secure 
the thermocouple extension wire to the plastic hub of the needle. 

 

3.1.2. Constant Heat Probe 

The constant heat probe used by the TDM is a modification of the temperature probe described in 
Section 3.1.1. To provide the constant heat source required by the TDM, a heater wire is wrapped around 
the outside of the temperature probe’s needle. To reduce the potential for short circuiting the heater wire, 
the metal needle is first insulated with PTFE tape (see Figure 3(a)). Nickel-chromium wire (also known 
as Nichrome 60 and Chromel C) is then wrapped around the insulated needle (see Figure 3(b)). Note that 
the wire coil is not drawn to scale. At this point, the heater wire can be tested using a multimeter to 
measure the resistance between the two leads. If the resistance measured varies greatly from the 
expected, the wire is discarded. Positive and negative leads are attached to either end of the heater wire 
and are connected to a voltage regulator. For additional security against wire breakage, the heater leads 
can be tied to the thermocouple extension wire with electrician’s tape or by other means. 

The 36 gauge (0.127 mm diameter) nickel-chromium wire has an approximate resistance of  
88.6 Ω·m−1. Reference [3] calibrated the heater at 10 Ω and used a current of 0.141 A resulting in a  
0.2 W powered probe. It is important to note that the calibration of this sensor depends on the heat 
field created by the probe (characterized by its size and shape) and the heating power used [8]. For this 
design, the heater resistance is set to approximately 45 Ω, therefore to maintain the 0.2 W power 
requirement of this sensor design, a 3.0 V power supply is required. It should be noted that the heater 
resistance and power voltage were decided based on the comparison with the Dynamax TDP30 sap 
flow sensor provided later. It is assumed that the heater resistance and power voltage can be adjusted 
to various combinations so long as the output power of 0.2 W is maintained.  
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Figure 3. (a) TDM heater probe schematic of insulated tape covering the temperature 
probe’s steel dispensing needle. (b) TDM heater probe schematic of heater wire coiled 
around the insulated tape and connection to the positive and negative voltage extension wire. 

 

The PTFE tape provides some support in holding the heater wire in place during installation. In 
Granier’s original design, the heater was placed into an aluminum sheath. The extent in which the 
aluminum sheath improves the thermal contact between the heater and the wood is unknown. Most 
installations today use wax or grease to improve thermal contact between the heater and wood in lieu 
of the aluminum sheath.  

3.1.3. Heat Pulse Probe 

The HRM heat pulse probe, unlike that used by the TDM, does not measure temperature. Therefore 
the wire heater can be placed inside the probe needle where the thermo-junction was located in the 
temperature probe from Section 3.1.1. To reduce the potential for short circuiting the heater, the wire 
coil is placed inside a micropipette which is then inserted into the steel needle of the probe. The 
positive end of the heater wire is attached to heater extension wire, while the negative end of the heater 
wire is either also attached to the extension wire or soldered directly to the steel needle. In the latter 
case, negative extension wire is also soldered to the metal needle. The steel needle tip is sealed with 
solder to hold the negative end of the heater wire in place and prevent water intrusion. For quality 
assurance, the resistance of the heater probe between the positive and negative leads can be measured 
using a multimeter. If the resistance varies greatly from the expected, the heater probe is discarded.  

The heater (Figure 4) is made of 36 gauge nickel-chromium (Nichrome 60/Chromel C) wire. To 
increase the temperature enough for detection in the upper and lower temperature probes during the 
short heat pulse, the resistance in this design was set at 20.1 Ω. Using a 12 V battery source, the probe 
delivers over 7.0 W of power. 
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Figure 4. (a) HRM heater probe schematic of heater wire coil inside the micropipette 
connected to the positive voltage extension wire. (b) HRM heater probe schematic of 
micropipette located inside the steel dispensing needle, connection of the negative voltage 
extension wire to the heater wire, and heat shrink tubing and glue securing the positive 
voltage extension wire to the needle’s plastic hub. 

 

3.1.4. Voltage Regulator 

The TDM requires a steady constant power supply. Based on the TDM sensor design, the voltage 
that is required to maintain 0.2 W of power to the heater probe is approximately 3 V. To achieve this, a 
voltage regulator was designed which can reduce and split a single 12 V power source into two  
1.25–11 V variable outputs. Each regulator requires only five components: an LM317 voltage 
regulator, a 240 Ω resistor, a 0–2.5 kΩ potentiometer, and two 0.1 μF capacitors. The dual design, 
given here, splits the 12 V input power in parallel to two regulators that are located on the same circuit 
board. This allows regulated voltage output to two separate constant heat probes. This design may be 
reduced to a single voltage regulator if desired. Figure 5 shows the layout of the components and a 
general wiring scheme.  

Figure 5. (a) Voltage dual regulator general wiring schematic. (b) Voltage dual regulator 
component locations and wiring schematic. 
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3.1.5. Sensor Output Calibration 

Both the temperature probes and the TDM heater probes were tested for their response and accuracy 
to temperature measurements. This was to make certain that errors were not introduced into the probe 
temperature measurements due to variances in the craftsmanship. The testing consisted of comparing 
the temperature readings made by the sensor probes to a standardized thermo-junction. Each pair of 
measurements was recorded simultaneously in a series of three different water temperatures. The  
three water temperatures were: hot (~40 °C), warm (~25 °C), and cold (~10 °C). A testing pattern of  
cold → warm → hot → cold → hot → warm was used such that each sensor probe was tested at each 
temperature twice. 

Individual tests took three minutes (30 s for each temperature) and captured a gradual heating 
response, a rapid cooling response, a rapid heating response, and a gradual cooling response. The water 
temperature was measured and recorded every second using an Omega thermometer and temperature 
monitoring program (180 data points).  

The TDM heater probes were also tested against the standardized thermocouple. Due to the 
insulation around the probe needle for the heater wire, each of the temperatures were tested for twice 
as long, resulting in a six minute total test time for each heater probe (360 data points). 

3.2. Parts and Pricing 

Table 1 shows the quantities for the various parts comprising the sap flow sensor probes and voltage 
regulator. The prices in Table 2 were taken from five commercial wholesale vendors for the year 2011. 
Table 2 shows the vendor and part numbers for all the materials listed in Table 1. 

Table 1. Material quantities for a temperature probe, constant heat probe, heat pulse probe 
and voltage regulator. 

Item Temp. Probe Const. Heat 
Probe 

Heat Pulse 
Probe 

Voltage 
Regulator 

Pipette (10 μL) 1 ea. 1 ea. 1 ea. — 
Heat shrink tubing 2 cm 2 cm 2 cm — 
Stainless steel needle 1 ea. 1 ea. 1 ea. — 
Cyanoacrylate 0.015 mL 0.015 mL 0.005 mL — 
PTFE tape 5 cm 15 cm 5 cm — 
Chromel TC wire 5.5 cm 5.5 cm — — 
Constantan TC wire 5.5 cm 5.5 cm — — 
Type E TC extend wire 10 cm 10 cm — — 
NiCr heater wire — 50.8 cm 22.7 cm — 
Heater extend wire — 12 cm 12 cm — 
Electrical tape — 5 cm 5 cm — 
Resistor (240 Ω) — — — 2 ea. 
Capacitor (0.1 μF) — — — 4 ea. 
Voltage reg. (LM317) — — — 2 ea. 
Potentiometer — — — 2 ea. 
Dual pc board — — — 0.5 ea. 
Extend wire — — — 20 cm 
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Table 2. Commercial vendor 2011 part numbers and pricing for sap flow probe and 
voltage regulator materials. 

Item Vendor Part No. Price/unit 
Pipette (10 μL) Cole-Parmer EW-07950-20 $13.50/100 pc. 
Heat shrink tubing DigiKey A014B-4-ND $1.69/1.22 m 
Capacitor (0.1 μF) DigiKey P984-ND $0.26 ea. 
Resistor (240 Ω) DigiKey 240QBK-ND $0.07 ea. 
Voltage reg. (LM317) DigiKey LM317TFS-ND $0.68 ea. 
Potentiometer DigiKey CT2263-ND $1.55 ea. 
Stainless steel needle McMaster-Carr 75165A75A $14.41/50 pc. 
NiCr heater wire McMaster-Carr 8880K85 $25.01/487.68 m 
Heater extend wire McMaster-Carr 9697T1 $35.00/76.20 m 
Extend wire McMaster-Carr 7587K911 $6.56/30.48 m 
Electrical tape McMaster-Carr 76455A22 $4.33/20.12 m 
Cyanoacrylate McMaster-Carr 74555A44 $4.92/0.1 oz. 
PTFE tape McMaster-Carr 4591K12 $1.74/15.24 m 
Chromel TC wire Omega TFCH-005-50 $16.00/15.24 m 
Constantan TC wire Omega TFCC-005-50 $16.00/15.24 m 
Type E TC extend wire Omega EXTT-E-20-50 $72.00/15.24 m 
Dual pc board RadioShack 276-148 $1.99 ea. 

4. Results  

Based on the three probe designs, the HRM and TDM sap flow sensors can be constructed. From 
the quantities given in Table 1 and the bulk pricings shown in Table 2, the temperature probe costs 
approximately $1.07, the constant heat probe costs approximately $1.17 and the heat pulse probe costs 
approximately $0.54. The HRM sap flow sensor, which is comprised of two temperature probes and 
one heat pulse probe, costs approximately $6.71 including three meters of extension wire. The TDM 
sap flow sensor, which is comprised of one reference temperature probe and one constant heater probe, 
costs approximately $6.27, which includes three meters of extension wire. The dual voltage regulator 
for the TDM costs approximately $6.68. The 2010 price guide from Dynamax lists the TDP30 sap 
velocity probes with 10 feet of extension wire at $330 each and the Dynamax Dual-Adjustable Voltage 
Regulator is priced at $340 each.  

The TDM sensor designed for the field experiment was closely matched to the Dynamax TDP30 
sensor. However, it should be noted that there are some minor differences between the TDM and 
Dynamax sensors. These included the thermo-junction type and the probe needle dimensions. The 
Dynamax TDP30 sap flow sensor uses Type T thermo-junctions and has a metal probe with a 30 mm 
length and a 1.27 mm outer diameter. The thermo-junction type was changed to Type E in the  
self-made design. As for the needle probe, the closest length available with a 1.27 mm outer diameter 
was 38.1 mm. Even though a longer needle is used for the self-made probes, the measurement length 
was found not to be a problem since the location at which the thermo-junction is positioned inside the 
probe can be placed to match that of the commercial sensor. 
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Figure 6. (a) Linear regression of a typical temperature probe’s output to the standard 
temperature. (b) Regression residuals from the temperature conversion equation and their 
standard deviation. 

 

Figure 7. (a) Linear regression of a typical heater probe’s output to the standard 
temperature. (b) Regression residuals from the temperature conversion equation and their 
standard deviation. 

 

Figures 6(a) and 7(a) show the calibration results from testing the sensor response of typical 
temperature and constant heat probes to a standard thermocouple temperature, respectively.  
Figures 6(b) and 7(b) show the residuals based on the regression between the probe output (measured 
in mV) and the standard temperature (measured in °C). The mean of the residuals of 24 temperature 
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probes tested is 0.0276 °C, and the mean of the standard deviations of the residuals is 2.15 °C. For the 
constant heat probe, the insulation around the needle tends to cause underestimation of the actual 
temperatures (Figure 7(a)). Lag times for the rapid heating and cooling periods caused more outliers in 
the datasets, hence the longer test time. The mean of the residuals of 24 heater probes is 0.0315 °C, 
and the mean of the standard deviations of the residuals is 2.50 °C. In both cases, the mean of the 
residuals is close to zero and the mean of the standard deviations is small, indicating the stability and 
quality of the self-made temperature probes. However, the values are slightly larger for the constant 
heat probe compared to the self-made temperature probes. 

The field measurements were made using both the self-made TDM and HRM sap flow sensors 
alongside the commercially available Dynamax TDP30 transpiration sensor. All three sensors were 
tested in a maple tree, which is approximately 40 centimeters in diameter, over a period of five days 
near the end of August 2008. Data was collected on a Campbell Scientific CR-1000 data logger at a  
1-s sampling interval. Sap flow rates and pulse velocities were calculated every 15 min. Based on the 
observed minimum sap flow rates, the 24-h period for determining the maximum temperature difference 
for the TDM calculations was set to start at 06:00:00. Corrections for the temperature and constant heat 
probes, as described in Section 3.1.5, were applied to both sets of self-made sap flow sensors. The 
correction equations for the TDM constant heat probe (HP) and reference temperature probe (TP) are: 

( ) 4742.1)(1065.1 −⋅= rawHPcorrectedHP temptemp  (4) 

( ) ( ) 8209.20539.1 −⋅= rawTPcorrectedTP temptemp  (5) 

The correction equations for the HRM downstream (DP) and upstream (UP) temperature probes, 
respectively, are: 

( ) ( ) 6328.20532.1 −⋅= rawDPcorrectedDP temptemp  (6) 

( ) ( ) 5195.20451.1 −⋅= rawUPcorrectedUP temptemp  (7) 

The results of these measurements are shown in Figure 8. Due to the complexities in determining 
the dynamic in situ thermal properties of the tree’s woody matrix, only the heat pulse velocity for the 
HRM sensor is plotted.  

Based on the general shape of the diurnal cycle and magnitude of the measurements (for the TDM), 
Figure 8 suggests that the self-made sensors are capable of adequately capturing daily sap flows. It can 
be seen that the self-made TDM sensor results in higher sap flow values compared to the Dynamax 
TDP30 sensor for all five days of measurements. The magnitude differences are not substantially 
different given that the measurements were made in different locations on the tree. Notice that the peak 
sap flow occurs near the same time of day on each of the five days for the self-made TDM sensor. The 
spike in sap flow for the self-made TDM sensor occurs between 15:00 and 15:30 each day. The 
commercial TDP30 sensor peaks sometime between 13:00 and 15:00 except for the first day where it 
peaks closer to 12:45. The morning and evening sap flow trends are similar in slope and time of 
occurrence for both the self-made TDM and commercial TDP30 sensors. 
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Figure 8. 21–26 August 2008 comparison of Dynamax TDP30 sap flow sensor (solid red 
line) to self-made TDM (dashed blue line) and HRM (dotted green line) sensors in a maple 
tree.  

 

Figure 8 shows that the HRM sensor results are in good agreement with the self-made TDM sensor. 
The onset of positive sap flow in the HRM sensor occurs at the same time for both the self-made TDM 
and commercial TDP30 sensors. The high variability during times of peak sap flow rates makes it 
difficult to compare the time of peak sap flow occurrence. Note that the HRM calculations are for the 
heat pulse velocity, not the sap velocity, so the magnitudes of the HRM results cannot be directly 
compared to the results of the self-made TDM or commercial TDP30 sensors. While the self-made 
TDM and commercial TDP30 sensors show a lagging tail to the day’s sap flow measurements, the 
HRM sensor is quick to measure the end of the day’s positive sap flow and immediately begins to 
measure reverse sap flow rates. The negative sap flow rates in the HRM curve correspond to reverse 
sap flow (downward movement) that the HRM sensor design measures. The magnitude of the reverse 
rates are close to others reported using the HRM method with measurements showing reverse sap flow 
around 25 mm·h−1 for tap roots in Eucalyptus camaldulensis [21] and approximately 100 mm·h−1 in the 
main stem of Eucalyptus salmonophloia [22]. It is interesting to note that the magnitude of the 
nighttime HRM sap velocities is approximately one-third of the daytime rates.  

TDM sap flow calculations were also made based on the raw temperature measurements from the 
self-made sap flow probes. Due to the calculation method for the HRM, the pulse velocity calculations 
were not significantly affected by the uncorrected temperature data (maximum deviation was  
1.16 mm·h−1). The TDM, however, showed a significant difference in sap flow velocities between the 
corrected and uncorrected temperature calculations. Deviations between the corrected and uncorrected 
temperature calculations were in excess of 90 mm·h−1 near peak hours, as shown in Figure 9. 



Sensors 2012, 12              
 

968

Figure 9. Comparison of sap flow calculations between the Dynamax TDP30 sensor (solid 
red line), temperature-corrected self-made TDM sensor (dashed blue line) and uncorrected 
self-made TDM senor (dotted purple line). 

 

5. Discussions and Conclusions 

There are some important considerations that need to be noted when comparing the results of the 
self-made and commercial TDM sensors. The first consideration is with the method used for setting 
the constant heat input of both sensors. The heat input level of the self-made and commercial sensor 
was based in this research on matching the maximum temperature difference, ΔTo in Equation (1), 
similar to that of [13] as described in [8]. Adjusting the heat input in this way may alter the heat field 
around the sensor probe such that Granier’s empirical equation used to estimate the sap flow may no 
longer be completely valid. There is yet to be a study that examines the effects of adjusting the heat 
field on TDM sensor measurements. The second concern is with the circumferential variations in sap 
flow. The measurements shown in Figure 8 were made simultaneously on the same tree. The two sap 
flow sensors were located approximately 90o apart from one another and at slightly different elevations 
(approximately 12 cm separation). Numerous studies have shown and reported circumferential sap 
flow variations with fluctuations as high as 50% [5,13,23,24]. Lastly, there have been suspicions that 
the Dynamax TDP sap flow sensor systematically underestimates transpiration [8,25]. Currently there 
is no information regarding the calibration of the Dynamax TDP sap flow sensor with regards to 
Granier’s original empirical equation. These concerns may account for the apparent over-estimation in 
sap flow results given by the self-made sensors compared to their commercial counterparts. 
Considering these factors and the general shapes of the diurnal patterns (see Figure 8) of the self-made 
sap flow sensors, it is encouraging to see that the self-made TDM sensors can provide acceptable sap 
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flow measurements compared to the commercial ones (Dynamax TDP30) with roughly only 2% of the 
cost of the commercial sensors.  

It should be noted that calibrating Equation (1) for the TDM to specific tree species is important. 
The sensor design given in this paper does not correct nor address the validation of Equation (1) for 
individual trees. Therefore, the researcher must exercise caution when analyzing sap flow 
measurements made on tree species that have not been properly calibrated for the TDM.  

The large fluctuations present in the peak sap flow values shown in Figure 8 for the self-made TDM 
and HRM and in the nighttime sap flow rates for the self-made HRM can be attributed to the method 
used to calculate these sap flow values. The 1-s dataset collected for the TDM measurements was 
sampled at every 15-min value. Given the variance in the measurement values, it is possible that the 
measurements made at the 15 min time stamps were not the best representative values for the 
calculations. If the sap flow was instead calculated at the 1-s time interval and averaged over each  
15 min period, this would smooth the fluctuations observed in the self-made data. This suggests that the 
variance in the commercial sensor is much lower than that with the self-made sensors. The HRM 
calculation averages over 40 data points for each 15 min sap flow value, i.e., measurements from  
60–100 s. If either v1 or v2 are found to be negative or zero, then their ratio, v1/v2, is assumed zero. This 
was chosen to avoid holes in the dataset. Therefore, sensor fluctuation could cause zero values within 
the 40 data points which would affect the average for that period.  

The costs of the self-made sensors are considerably small, although this may be compensated by the 
time and effort required to build and test them. One set of sap flow probes can be built on average in 
approximately one hour. This is based on moderate to large scale production where many sensors are 
made at the same time. This method of construction increases efficiency and improves the craftsmanship 
by repeating the same procedure over and over again. While the quality checks and output calibration 
add additional time to the procedure, it is important to identify and eliminate as many errors as early in 
the deployment as possible. Figure 9 shows the potential problems that improper temperature correction 
can cause when using the TDM. It may be assumed that all sap flow sensors made by the same person 
under the same conditions will behave similarly. This may reduce the need for testing every individual 
sensor probe’s measurement output. Therefore, for self-made sensor applications, it may be better to 
use the HRM which is less susceptible to individual probe variations if one does not have time to 
calibrate individual probes.  

In summary, (1) the most cost-effective method for sap flow monitoring is a combination of pulsed 
and thermal dissipation methods; (2) HRM and TDM sap flow sensors can be constructed based on 
three probe designs; (3) utilizing common parts from wholesale vendors saves money for large 
productions; (4) time and effort building sap flow sensors provides a unique educational experience for 
undergraduate students; (5) field tests show that careful quality control of sensor output is more 
important for the TDM sensor than the HRM sensor; (6) compared to the Dynamax TDP30 sap flow 
sensor, both the HRM and TDM self-made sensors provide an acceptable alternative to commercial 
sensors at a fraction of the price. 
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