Sensors 2012, 12, 585-611; doi:10.3390/s120100585

SensSors

ISSN 1424-8220
www.mdpi.com/journal/sensors

Article

FPGA Implementation for Real-Time Background Subtraction
Based on Horprasert Model

Rafael Rodriguez-Gomez, Enrique J. Fernandez-Sanchez *, Javier Diaz and Eduardo Ros

Department of Computer Architecture and Technology, ETS Computer Engineering and
Telecommunications, University of Granada, C/ Periodista Daniel Saucedo s/n, E18071 Granada,
Spain; E-Mails: rrodriguez@atc.ugr.es (R.R.-G.); jdiaz@atc.ugr.es (J.D.); eduardo@atc.ugr.es (E.R.)

* Author to whom correspondence should be addressed; E-Mail: efernandez @atc.ugr.es.

Received: 10 December 2011; in revised form: 28 December 2011 / Accepted: 3 January 2012 /
Published: 5 January 2012

Abstract: Background subtraction is considered the first processing stage in video
surveillance systems, and consists of determining objects in movement in a scene captured
by a static camera. It is an intensive task with a high computational cost. This work
proposes an embedded novel architecture on FPGA which is able to extract the background
on resource-limited environments and offers low degradation (produced because of the
hardware-friendly model modification). In addition, the original model is extended in order
to detect shadows and improve the quality of the segmentation of the moving objects. We
have analyzed the resource consumption and performance in Spartan3 Xilinx FPGAs and
compared to others works available on the literature, showing that the current architecture
is a good trade-off in terms of accuracy, performance and resources utilization. With
less than a 65% of the resources utilization of a XC3SD3400 Spartan-3A low-cost family
FPGA, the system achieves a frequency of 66.5 MHz reaching 32.8 fps with resolution
1,024 x 1,024 pixels, and an estimated power consumption of 5.76 W.

Keywords: real time image processing; reconfigurable architectures; FPGAs; performance
analysis; video surveillance




Sensors 2012, 12 586

1. Introduction

Extracting background from a video sequence is a required feature for many applications related
to video surveillance: vehicle traffic control, intruders’ detection, suspicious objects, etc. The most
usual approach to segment moving objects is known as background subtraction, and is considered a key
first stage in video surveillance systems. This technique consists of building a reference model which
represents the static background of the scene during a certain period of time. Multiple factors and events
may affect the scene, making this first background subtraction a non-trivial task: sudden and gradual
illumination changes, presence of shadows, or background repetitive movements (such as waving trees),
among many others.

There are different methods described in the literature in order to obtain this background model
for a scene captured by a still camera: simple models for static backgrounds [1,2], or methods
capable to deal with periodic and repetitive movements, i.e., waving trees or escalators such as MOG
(Mixture of Gaussians) [3,4], Bayesian decision rules [5], Codebook-based model [6], or Component
Analysis (PCA and ICA) [7,8]. In spite of the differences between existing algorithms, background
subtraction techniques are computationally expensive in general, especially when they are considered
only the first stage in a multi-level video analytics system. For that reason, efficient implementation
is key to the development of real-time video surveillance systems. In the framework of embedded
systems implementations, characterized by power consumption and real-time constraints, several of
these techniques have been implemented using FPGAs [8—11] or DSPs [12]. There also are other
real-time approaches using GPUs [13,14]. In the case of embedded systems, commodity processor
implementations are not usually utilized although latest devices, such as Intel Atom, could soon address
this market. In this contribution, we focus on a type of implementation that fits a distributed architecture.

Oliveira et al. [11] introduce an FPGA implementation for the Horprasert algorithm, although
the throughput reached by this approach is fairly low. Jiang er al. [10] present a compression
scheme for Mixture of Gaussians model [3] which allows reaching a high frame rate. However,
this approach is not explained in detail, and no results are shown with regards to accuracy or power
consumption. Appiah et al. [9] propose an implementation based on a simplified MOG, which offers
fairly good throughput and acceptable accuracy. Bravo et al. [8] propose an FPGA implementation
based on Principal Component Analysis (PCA), reaching a good throughput and specifying the resource
consumption. Nevertheless, there are no data about accuracy with a standardized dataset. Carr [13]
and Vu Pham et al. [14] present GPU implementations based on MOG, with very different results in
performance. Despite the fact that the approach described in [14] has a higher frame rate than any
of the other mentioned hardware implementations, being a GPU implementation is an impediment for
embedded systems and low power constraints. Strictly speaking, there are new GPU families oriented
to embedded devices that could solve that problem. However, the performance of these GPU families is
considerably lower than the ones of GPU used on standard PCs or laptops.

In our approach, we propose an FPGA architecture based on the method described by
Horprasert [1,2], with the extension that allows for shadow detection [15]. Thus, the use of FPGAs
is justified by requirements of scalability, size and low power consumption which are key features that

other technologies are not able to achieve. The Horprasert method has been selected since it requires



Sensors 2012, 12 587

less memory to store the model while keeping fairly good accuracy, hence being more suitable for
implementation in low cost FPGAs [11]. This algorithm builds a static background model, which means
that the model is obtained at an initial training phase. There are other methods which build dynamic
background models [3,6], which can adapt themselves to changes in the scene. The main difference
between these models, as far as required hardware resources are concerned, is that the latter have much
higher memory consumption requiring external memory with an important bandwidth. Furthermore, the
shadow detection capabilities increase the accuracy of the object shape detection, which helps to achieve
a better object classification and reduces the errors due to shadows artifacts.

Therefore, the main contribution of this paper is the implementation of a background subtraction
model based on Horprasert and extended to allow shadow management in FPGA. This added feature
as well as a careful design, keeping appropriate bit depth in different variables computed with fixed
point arithmetics, enhance the accuracy compared to previous hardware-based approaches described
in the literature whilst maintaining good throughput (more than 35 times faster than the previous
Horprasert-based approach [11]). This high data throughput is achieved through an intensively parallel
design. This approach targets low end embedded devices. In order to properly evaluate the presented
implementation, a comparison with other approaches is included, which is something rarely covered in
the literature related to hardware implementation of background subtraction models. This comparative
study integrates estimations related to the implemented model accuracy and also data throughput to better
evaluate the proposed system in the framework of real-time approaches. To the best of our knowledge this
complete comparative study including computational performance in terms of accuracy and efficiency
has not been reported before and allows comparisons with future alternatives in this application field.

The proposed architecture has been designed with the development environment for System-on-Chip
(SoC) design, EDK of Xilinx [16], and includes the Microblaze processor, which will be used to build
the reference background model and can be used for updating over time. The next stages of subtraction
and pixel by pixel classification will be performed by a specific hardware module using fixed-point
operations in order to keep real-time performance from up to four still cameras simultaneously.

The paper is organized as follows. In Section 2 we briefly describe the background model by
Horprasert et al. [1], including the notation required in order to be able to follow the rest of the paper.
Section 3 shows the developed hardware architecture, including a study of the fixed point arithmetic, the
background subtraction stage and the technique for morphological filtering on FPGA. In Section 4 results
are shown and analyzed, regarding system performance and comparison with other hardware approaches
as well as accuracy results obtained by the algorithm. Finally, conclusions and future work are presented
in Section 5.

2. Background Subtraction Method

As previously mentioned, our implementation is based on the algorithm proposed by
Horprasert et al. [1]. This algorithm basically obtains a reference image to model the background
of the scene so that it can perform automatic threshold selection, subtraction operation and, finally,

pixel-wise classification.



Sensors 2012, 12 588

2.1. Background Model

In order to build a reference image which represents the background, a number N of images will be
used, whose color space is given in RGB. Each pixel < 7 > from the image is modeled by a 4-tuple
< F;, S;, a;, b; >, where each element is defined as follows:

e F; the expected color value, defined as F; = [ug(i), pua(i), up(i)], with pg(i), pa(i), pp(i) being
the arithmetic means of each color channel for pixel .

e S; the value of the color standard deviation for each channel, defined as S; = [0 (i), 0 (i), o5 (7)].

e q; the variation of the brightness distortion, computed as the root mean square (RMS) of the
brightness distortion «;, given by Equation (1).

Ip(i )MZR( i) n [Ggfig)f(tia(i) n fBEjgl(tf)(i)
= (D

= (1)
(@) + (et} s (129)

e b; the variation of chromaticity distortion, the RMS of the chromaticity distortion C'D;, which is

Q;

described in Equation (2).

oD \/ <JR<¢>U—RZ;MR@'>)2 . (JG@)U—G%M(;(@))? s (1;;@);933@@))2 .

More detailed information about how the background model is built can be found in [1].

2.2. Subtraction Operation and Classification

In this stage, the difference between the background model and the current image is evaluated. This
difference consists of two components: brightness distortion «; and chromaticity distortion C'D;. In

order to use a single threshold for all pixels, it is necessary to normalize «; and C'D; as follows:

. 3
Q;
Cpy =22 4

After the normalization of brightness and chromaticity distortions, the given pixel can be classified
into one of the four categories, i.e., Background, Shadowed background, Highlighted background and
Foreground, by the decision procedure described in Equation (5), that is the analytical representation

derived from the model presented in Figure 1.

( ~ A~
Foreground: CD; > 1cp, or &; < Ty, €lse

, Background: Q> Tay, and &y > Tao else
C() = X (5)
Shadowed background: a; < 0, else

| Highlighted background: otherwise



Sensors 2012, 12 589

Figure 1. Graphic representation of the model used to classify the pixels in the categories.
This model is oriented to shadow and highlights detection, taking into account chromaticity
lines as well as brightness changes.

(94
G
A
Tal
ok,
o2 El'
I;
T o — €D,
>R
[ ] Foreground
[ Background
[ ] Shadowed background
B [ Highlighted background

The thresholds 7¢p, Ta1, Ta2 are automatically selected from the information obtained during the
training stage, as explained in [1]. 74, 1s a lower bound used to avoid misclassification of dark pixels.

This approach to shadow detection is considered a Statistical non-parametric (SNP) method [15],
what means that the approach uses probabilistic functions to describe the class membership, and it
is non-parametric since the thresholds are automatically determined by means of a statistical learning
procedure. As previously mentioned, this stage is performed by a hardware module. For that reason,
several modifications have been made in order to reduce the hardware complexity of the architecture.
These simplifications towards a hardware friendly model generate some degradation on the original
model’s quality that will be evaluated in subsequent sections. These modifications will be described in
Section 3.1.

3. Hardware Architecture

An optimized hardware architecture has been developed using novel ideas that allow for a high degree

of algorithm tuning for optimized digital hardware implementation. They can be summarized as follows:

e Hardware/software co-design. The use of a mixed hardware/software architecture allows us
to share its resources to solve many algorithm stages as the ones related with communication,
system initialization, basic control, system debugging, efc. . . . It is not necessary to develop custom
datapaths for these stages because no critical real-time restrictions are imposed to them. This
permits to reduce hardware resources, to extend the system flexibility and to significantly reduce

development time.



Sensors 2012, 12 590

e Superscalar and pipelined architecture. Multiple functional units run in parallel to adapt the
intrinsic algorithm parallelism. The whole implementation has been carefully pipelined in order to
increase the throughput. These strategies allow us to keep the pixel-rate very high and to achieve a
significant performance.

e Adaptable fixed-point arithmetics. The bit-width of the different processing stages has been tuned
according to the accuracy requirements of each processing element. This approach is very different
from the one used on many DSPs or digital hardware implementations that has a basic bit-width for
all the processing stages. Our approach allows us to keep resources always tuned to the required
accuracy at the cost of increasing the complexity of the system design. Hopefully, the use of high-
level description languages helps to reduce the development time and make this option feasible
with acceptable design time.

e Proper utilization of the right level of abstraction for description of the different algorithm modules.
The processing stages mainly require a DSP-based design flow which is well described using
high-level description languages (as provided by ImpulseC [17]) whilst basic controllers such as
the ones required for memory interfaces or low level communications are better described in RTL
(for instance using VHDL or Verilog). In addition, sequential operations such as the ones required
to build communication packages are well described by software code. Our implementation uses
different descriptions based on the previous considerations. This enables to get the maximum

output out of each description level in terms of performance or development time.

As it could be understood from the previous sentences, the advantage of our implementation relies on
the combination of the latest design methodologies, seldom addressed together in the same design. The
drawback of this novel approach is that it requires a high degree of competences at many different design
levels, languages and tools. Nevertheless, the advantage is that it allows highly optimized designs that
completely fit the target application.

In order to address this implementation, we use EDK (Embedded Developer’s Kit) of Xilinx Inc. [16].
The EDK environment facilitates the design of complex and completely modular SoC architectures able
to support embedded microprocessors (MicroBlaze, PowerPC, . . .), peripheral and memory controllers
(Ethernet, DDR2, ZBT, .. .), and interconnecting buses (PLB, NPI, MCH, FSL, .. .), whilst IP cores for
specific processing can be designed using HDL languages through the ISE tool. As board we use the
ViSmart4 video processing board from Seven Solutions [18], including: two Xilinx XC3SD3400aFG676
FPGAs, two 256 MB DDR2 DIMM memory modules, four independent analog video inputs, two
gigabit ethernet connections, 485 connection, a 3G connection module, a 64 MB Flash memory, and
two 1 MB x 36 bits ZBT memories. In our case, we have only used one of the FPGAs included in the
ViSmart board, the other one is used for communication purposes.

This architecture consists of several modules and interconnect buses, as shown in Figure 2. Processing
modules, peripherals and a Microblaze processor are connected to a PLB bus. The VIDEOIN module
captures images from four independent analog inputs and stores them in a ZBT SSRAM external
memory, through the MCH port of the XPS MCH EMC memory interface module. Through the PLB bus,
Microblaze has access to: memory regions (ZBT or DDR2), configuration registers of the peripherals
and the ethernet interface for data and image sending/receiving. The Background subtraction, shadow

detection and blob detection (erosion, dilation and RLE) module performs an intensive processing



Sensors 2012, 12 591

on the pixels of each image in order to separate foreground and background, and then proceeds to
the blob extraction of the different objects. This module uses ImpulseC [17] in order to develop a
DSP-based design flow system. The Microblaze processor is programmed in C/C++ for initialization
and communications tasks, and the rest of peripherals are described in VHDL. The MPMC module
(DDR2 memory controller) offers an easy access to the external DDR2 memory, which stores the
background model. This memory offers efficient high bandwidth access, thus providing a feasible use
for applications requiring real-time processing.

Figure 2. Scheme of the complete architecture and connections between modules,
peripherals, memory and processor.

ZBT
Memory

FPGA: XC3SD3400a

Background

BRAM MCH subtrgaction Binary image Connected

{1 and > erosionand [ _ Component
Shadow dilation RLE (Run Length
detection Encoder)

Microblaze XPS

MCH EMC 2\
@ N\
< PLB >

g . U

ETHERNET DDR2
VIDEO IN
Interface T;J> Resize MPMC NPI

ﬁ Interface
-2 O

10/100/1000 Video input processors 4x
Ethernet DIMM
Physical Layer DDR2
256MB

Figure 3 shows a basic scheme of the proposed architecture for the IP core that performs the
background subtraction, pixel classification and blob detection processing stages. This architecture
consists of a pipelined structure divided into several basic stages which work in parallel. In addition,
it is controlled by means of the embedded Microblaze processor. Before getting into the details of this
architecture, it is important to note that memory has a key role in the system performance and requires an
efficient memory accessing scheme. This has motivated the use of high performance multiport memory
controllers (Xilinx MPMC for DDR?2) as well as very specific and optimized memory ports (NPI).



Sensors 2012, 12 592

Figure 3. Simplified datapath architecture for background subtraction and blob detection

core. The IP core can process streams from up to four cameras.

MPMC DDR2 Memory
Tuple buffer
] -
133 MHz Background subtraction, shadow detection and blob detection
66.5 MHz ) )
Background | Pixel ‘ [ Blob
_ subtraction _Classiﬁcatioq_, detection
o= — Binary Binary image Connected Component
e . .y
NPI % § I O B| 1. Foreground Image erdci'lsaltc::i::d (Run Length Encoder)
fo [ 2. Background blob
] : CDi 3. Shadow 4 NPI
2 Input > buffer |
streams
T —
5
Stream|= 4 ';' i}
XPS MCH EMC
(ZBT Memory)
Image Buffer

3.1. Model Modifications Towards a Hardware-Friendly Implementation

The foreground/background segmentation is executed by a hardware module with an independent
access to the memory, where the current image and the background model are stored. Considerable
reduction of the hardware complexity of the architecture is achieved through precalculating and storing
several constants during the training stage and avoiding division operations by substituting them for
multiplications, which require less hardware resources. In the case of brightness distortion «;, these

constants are computed according to Equation (6):

(aiézg) (rea) i)

R
A; g(z

The brightness distortion «; will remain as in Equation (7), making use of the constants B;, C;, D;.

=

@

,;D>

In order to remove the divisions in the computation of the chromaticity distortion C'D;, we store (S;)~?,

(a;)~" and (b;)~! instead of S;, a; and b;. Besides, the training stage is done with N = 128 images
to facilitate the computation of the mean, standard deviation and root mean square, avoiding divisions.

Previously, the model had a 4-tuple for each pixel, composed by < F;, S;, a;, b; >, whereas now a



Sensors 2012, 12 593

7-tuple will have to be stored< E;, B;, C;, Dy, (S;)7, (a;)~!, (b;)~' >. The hardware complexity has
been reduced considerably, but at the cost of increasing memory consumption, since now we also have
to store the constants B;, C; and D;.

The software implementation has been developed using double floating-point representation. This
allows reaching a higher degree of accuracy at the expense of a worse performance on embedded
devices. In order to develop a hardware implementation on FPGA with constrained resources, a
fixed-point representation is usually employed since it adjusts itself better to the type of available
resources, although a detailed study is required in order to optimize the trade-off between accuracy
and hardware consumption. It is important to take into account that an insufficient number of bits may
lead to inaccurate results with high quantification noise. On the contrary, the use of too many bits can
increase the hardware resources consumption, making the system implementation on a moderate cost
FPGA unfeasible.

In order to determine the appropriate number of bits for the fractional part of variables < F;, B;,
Ci, Dy, ()71, (a;)7%, (b;)~' > which represent our background model, we have measured the error
between the results obtained with different bit-width configurations and the results obtained with a
double-floating-point representation. In order to perform this comparison, we have used the Wallflower
test database [19]. Since we are dealing with a two-class classification problem (foreground and
background), comparison measures will be given by the total of false positive and negative (FP and FN)
in a certain frame of each sequence from Wallflower test. Each of the mentioned variables intervenes
in a stage of the computation of &; and CD;. In order to simplify the procurement of the appropriate
number of bits for each variable, we have grouped these variables depending on the stage in which they
are used to study the bit-width changes jointly.

Figure 4 displays the percentage of errors between the floating point and fixed point implementations,
for each one of these groups of variables. For the first group of variables < B;, C;, D; > which are
used in the computation of «;, an ideal representation would be 8 bits for the fractional part and 18 bits
for the integer part. The second group of variables, consisting of < FE;, (Si)_1 >, which is used in the
computation of C'D;, would have an ideal representation of 8 bits for the fractional part and 8 bits for
the integer part. Finally, regarding the group < (a;)~!, (b;)~' > which is used in the final computation
of &; and CD;, an ideal representation would be 10 bits for the fractional part and 8 for the integer part
(Table 1 and Figure 4).

Each data structure has a different bit-width which is optimized to the type of performed operations
(multiplications, summations, subtractions, efc.). This is not a common approach in the literature because
of the increase in the complexity of the design stage but allows tuning resources and accuracy of the
system in a much finer way.

Once the bit-width of the fractional part of each variable has been established, we have evaluated the

degradation of our complete design due to quantization errors. These results are shown in Section 4.3.



Sensors 2012, 12 594

Figure 4. Percentage of errors between the floating point and fixed point versions,
considering different bit-width of the fractional parts of the variables involved in the
background subtraction. Each graph shows variables involved in the same stage of
computation, and each series corresponds with a Wallflower test sequence: WI—Waving
Trees; MO—Moved Object; TD—Time of Day; LS—Light Switch; CA—Camouflage;
FA—Foreground Aperture; B—Bootstrapping.

25

——WT
—8—MMO

gy T}

—— S

—pp—

% Error (FP + FN)

e =,

01 2 3 45 8 7 9 10 11 12 13
fractional bit-width (B, C, D)

B0 )
= 3 \ —e—WT
g3 —WT T
+ —— 40 + AT
o o
g —— L 30 o e 1”.
= | =
E —— | S E 2 i | S
!'_I; 15 K i I': s (5
- . F 4 10 . —tFA
5 E e . o B
0 -5 ] Hﬁ.ﬂ.—.ﬂ—
01 2 3 45 687 9 10 11 12 13 012 3 46 67 8 9 11 12 13
fractional bit-width (E, §) fractional bit-width (b, a-)

Table 1. Bit-width of each variable taking part in the calculation of colordist and brightness.
The first value represents the integer part and the second value represents the fractional part.
The bit-width values have been determined as the minimum values of the fractional part
for which the quantization error is approximately stable. This information can be easily
extracted from Figure 4.

Variable Bits

< BZ', Ci, DZ > [18 8]
< B, (Si)_l > [8 8]
< ((li)_l, (bi)_l > [8 10]

o [28 8]
CD; [18 8]
Q; [36 10]

CD; [26 10]




Sensors 2012, 12 595

3.2. Background Subtraction and Pixel Classification

The following stages of processing, including background subtraction, pixel classification,
morphological filtering for erosion and dilation, and connected component detection, have been
described using ImpulseC [17].

At the system initialization stage, after acquiring 128 images per camera and storing them into
memory, the background model of the scene can be constructed. As commented before, our system
is able to work with up to four camera streams. Each video sequence from each camera is independent
from the others and has its own background model. Taking into account that the background model is
built only in the beginning, we have considered more appropriate for the construction to be made by a
software application running in the Microblaze processor, since during this stage there are not real-time
requirements. Data of the tuple < E;, B;, C;, D, (S;)™!, (a;)~!, (b;) ™' > are computed in floating point
notation by Microblaze, although they are stored in memory in fixed point to be used by the hardware
module. The size of a fixed point tuple will determine the required memory space for the background
model, in our case < E; (48 bits), B; (26 bits), C; (26 bits), D; (26 bits), (5;) " (48 bits), (a;) ! (18 bits),
(b;)~! (18 bits)> in total 210 bits. In order to maintain a background model for a 1,024 x 1,024 image,
we will need 26.25 MB. This is affordable for the current resources available on many FPGA platforms
and validated the feasibility of our current architecture. Note that this process could be triggered at
any time if we determine that the background has been modified, for instance due to important lighting

conditions changes or because of the appearance of new objects in the scene.

Figure 5. Fine grain pipelined datapath for background subtraction stage. The number
of clock cycles is indicated on top. The different operations are indicated by x sign
(multiplication) and + sign (addition), registers by rectangles while routing paths are

indicated by arrows.

(L)1) (1) 1 (1) (1) (1) (1) (1)} (1) (26) § (1) ;
A a 0k & & i i a :




Sensors 2012, 12 596

The first stage executed by the IP core is background subtraction. Once the Microblaze processor has
built the background model, the subtraction and pixel-wise classification stages, shown in Figure 3, will
be performed by an IP core connected to the MPMC interface by means of the NPI port. These critical
interfaces with external devices are described with VHDL language. This module has been designed
with the high level of abstraction hardware description language ImpulseC, IMPULSEC and has two
input streams (background model BG(7) and current image /(7)) and one output stream (binary mask
M (7)). Figure 5 shows in more detail the fine-grain pipelined datapath for this hardware module. The
multipliers used are optimized with embedded resources (DSP48) of the Spartan3 DSP FPGA. In order to
compute the square root of C'D?, we have used a “Xilinx IP core” generated with the tool Core Generator
and based on the CORDIC algorithm (Parallel Architectural Configuration). The total number of stages
(latency) of each scalar unit is 36, with a data throughput of 1 data per clock cycle. It is remarkable
that the parallel CORDIC core has 26 pipelined stages in total, being able to produce a new output data
each cycle.

3.3. Blob Detection

After conducting background subtraction, the system generates a binary mask image in which 0 and
1 represent background and foreground respectively. In theory, moving objects from the image should
be detected as independent elements in the binary mask image; however, this binary mask image might
include noise and individual objects decomposed in multiple units; this is due to the moving object
having some similar colors to the background. In order to remove noise and connect the decomposed
objects again, morphological operations (erosion—dilation) are applied to the binary mask image, making
use of the architecture described by Hedberg e al. [20], where a low complexity architecture using
Structuring Element Decomposition is proposed. This is not part of the Horprasert model but we have
adopted this extension in order to increase the system accuracy at a low cost. The proposed system
for binary E&D requires low consumption of hardware resources (logic and internal memory). Erosion
and dilation are represented by (A © B) and (A & B) respectively, where A is the input binary image
and B is the structuring element (SE). B has some limitations in the proposed architecture: it must
have a rectangular shape (any length and width is allowed) and it may only contain ones. Thus, we
get B = (Bl @ B2), and B will be decomposed in smaller SEs (Figure 6), therefore, A & B =
A® (B1® B2) = (A® B1) @ B2. As conclusions, B is decomposed into two different 1-D operations,
which is the key task that allows simplifying the hardware architecture of the system and reducing
resources utilization.

As we can see in detail in Hedberg’s model [20], if the SE is both reflection invariant (i.e., B = B)
and decomposable, then

A® B = ((A o Bl)o B2)

&)
Ao B= (A& Bl)& B2

where ’ is bit inversion.



Sensors 2012, 12

597

Figure 6. (a) Decomposition of structuring element B = B1 & B2; (b) Input and output to

decomposition windows B1 and B2.

(a)

B Bzm
STIRTI(1l1l1 B 1]
A AARAE |1|H1|ﬂ1|€B 1]] %
5 RIE EdE Bw:l.dth—5I §

N —
Bwiath = 5

B: (b)
0 0 0 © o/o 0 0 0 0000 0 0 O
01 1 1 1 1]1 o 0 001 10 00
01T 1 1 1 1 1 0 0001 1 00 O
01111110 000711000
0 L & L 1L 2 L © 0001 1 0 0 O
0 0000 0 0 O 0 00 00 0 0 O
B2
0 0 0 0/O 0 0 © 0 000 0 0 0 O
0 0 011 0 0 © 00 00 0 0 0 0
0 0 0/1/1 0 0 0 » 00 0 1 1 0 00
0 0 011 0 0 © 00 01 1 0 0 0
0001 1 0 0 0 0 000 0 0 0 O
0 000 0 0 0 O 00 00 0 0 0 O
Input Output

The total number of comparisons conducted for each output is equal to the number of ones in B;

however, when it comes to a decomposed SE, the number of comparisons is reduced to the sum of ones
in B1 and B2. Therefore, if B has 15 elements (3 x 5), the result of B1 + B2 is 8 elements (3 + 5), the

number of comparisons per output is decreased from 15 to 8.

Figure 7. Architecture of the datapath within the erosion and dilation unit together with the

wordlenghts (WL) in each stage. The input and output sections, stage-0 and 3, have a single
bit wordlength. In stages 1 and 2, the wordlengths are log,(Bwidth) and logs(Bheight),
respectively. The wordlength determines the total size of the memory required to perform

dilation and erosion.

Padd. W <«— 0 Padd. N Row
E or S-Boundary l Flop (:) l -memory

Er/Dil

®

<—|
@_W—Boundary /T @A\_ \ [©) A_N—Boundary

®

A

) 4 Y

Sum. Sum2

+ 1 Sum 1 == Bwidth l— + Sum2 == Bheight}

Stage-0,Wr = 1 Stage-1,WL = log2 (Bwidth) Stage-2,Wr = log2 (Bheight)

Er/Dil

b

Stage-3,WL = 1



Sensors 2012, 12 598

The proposed architecture for the morphological operations is based on Equation (8). Figure 7 shows
the final architecture of the datapath. The same hardware can be used to perform both operations (erosion
and dilation) on a decomposed SE. When combining this with decomposition, the summation can be
broken up into two stages, where the first stage, stage-1, compares the number of ones under B1 to the
width of B1 and the second stage, stage-2, compares the number of ones under 52 in the result from
stage-1, to the height of B2. In order to perform dilation, the input A and the result are inverted using
the multiplexers indicated with number 1.

Due to the rectangular structure of the kernel SE, the erosion can be performed as an addition followed
by a comparison. In the first stage, each bit from A that overlaps with the current position of B1 would
be added and the total result is compared against the width of B. If the addition is equal to the width
of B the result will be one, otherwise it is set to zero. This addition is stored in the stage-1 flip-flop.
When the input is 1, the total addition is increased and, on the contrary, the sum is reset to zero using
the multiplexor marked with number 3. Each time the total addition from stage-1 matches the width of
B, its output becomes 1, therefore the multiplexor marked as 4 will insert into the flip-flop the value
Bwidth — 1 to be compared with the next input bit. The same operating structure is used in stage-2,
storing the number of consecutive overlaps from the first stage for each column in A. Finally, an external
controller will set the north and west padding values and produce the control signals W — boundary,
N — boundary, and F or S — boundary.

We have included this architecture in our circuit in order to perform the opening (erosion—dilation) and
closing (dilation—erosion) operations on the binary mask image. Each E&D operation consists of four
stages; therefore, in order to perform both the opening and closing operations we will have 16 pipelined
stages overall, with a data throughput or rate of 1 result per clock cycle.

Finally, once the morphological operations have been conducted, the binary mask image contains
groups of connected pixels representing different relevant objects (blobs). In order to separate and
differentiate these groups, we will use the algorithm described in Appiah et al. [21], which associates
each pixel to one label placing it into a particular group.

This architecture is divided into different stages running in parallel. First, at the stage PixelToRuns(T),
the pixels in each of the binary mask image rows are represented using a run-length encoding. Each run
has the values I D, EQ), s, e, r, where I D is the identity number of the run, £ () is the equivalence value,
s the z-offset of the start pixel, e the z-offset of the end pixel, and r the row. The run-length encoded
format is a compact representation which allows for an efficient use of the FPGA internal memory.

The second stage, InitLabelling(runs), involves initial labelling and propagation of labels, for each
run. All the runs are scanned, assigning provisional labels which propagate to any adjacent runs on the
row below; runs one row below are scanned for an overlap. An overlapping run in 4-adjacency (s: < ej
and ez > sj) or 8-adjacency (si < ej + 1 and ei + 1 > sj) is assigned with the identity /D;, if and only
if ID; is unassigned. If there is a conflict (if an overlapping run has assigned /D;), the equivalence of
run ¢, £Q); is set to I D;.

The third stage ResolveConflict(runs) solves the conflicts where ID; # FEQ;. In the example
(Figure 8) a conflict occurs at B4, due to the overlap with B5 and B2. This conflict is resolved by
changing ID = 1 and £'Q) = 1 for all the five runs. This is the most sequential part of the architecture



Sensors 2012, 12 599

and it can take the same number of cycles as the square of the number of runs in the image in the worst

case, although this number is usually low. This study is more deeply performed in [21].

Figure 8. Run-length connect component algorithm stages.

Columns
0 1 2 3 4 5 6 7 8 9 1) PixelToRuns (T)
0 B1[B2[B3[B4[B5
1 IDD0O|JO|O]|O]O
— EQIO|O0O|O0O|OfO
0
52 |::> ST|2|6|3|6]|3
(44 3 EN[3 |6 (3 |7|6
RW1l1|1|2|2]|3
4
2)InitLabelling(runs) 3)ResolveConflict (runs)
B1|B2|B3| B4|B5 B1|B2|B3| B4|B5
ID[1]2]1]2]1 |:> ID[1 1111
EQ1 |2 |1(1]1 EQ1 (11|11
4. Results

In this section we evaluate the proposed system in terms of performance and accuracy, comparing with
other approaches and showing the approach’s advantages over other systems described in the literature.
Note that the contribution of this work goes beyond the selection and combination of different algorithms
and implementation techniques. As it will be seen in this section, high performance with very restricted
resources utilization is only possible thanks to the proper combination of latest co-design techniques and
description languages fitting the right level of abstraction. This design approach is seldom used in the

literature and it is one of contributions that we put forward in this work.

4.1. System Performance

For the sake of hardware feasibility, we shall take into account hardware resources in order to achieve
a good trade-off between resource consumption and system accuracy. In Section 3.1, a bit-width
optimization has been performed so that the accuracy of the model is not compromised and the
requirements of hardware resources are affordable. Figure 9 shows the consumption of resources in
the FPGA due to the different data bit-width chosen for the variables involved in the background model.

The entire system has been implemented and experimentally tested on the video processing board
ViSmart, using Xilinx FPGA XC3SD3400aFG676. This platform contains a DIMM DDR2 memory
module, whose memory configuration (Memory Interface: DDR2 @ 133 MHz 32 bits. NPI Width:
64 bits. MPMC NPI Type: 64 Word Burst.) allows for a high bandwidth, such as 920 MBytes/sec
empirically proved [22]. This bandwidth is a key feature in order to reach a high frame rate. The frame
rate can be estimated from our system bandwidth. On the one hand, as we have previously described,
each data tuple < E;, B;, C;, Dy, (S;)71, (a;)~1, (b;)~' >, which defines the background model for a



Sensors 2012, 12 600

pixel, requires a total of 210 bits. On the other hand, each image pixel < R, G, B > requires 3 bytes. In
total, for each pixel in the image, we will have to read from memory 28 bytes. For that reason, with one
camera of resolution 1,024 x 1,024, the throughput is computed as follows:

bandwidth DDR?2 920

ImageResolution—bytes 1024 %1024 x 28
pixel

= 32.8fps 9)

Figure 9. Consumption of resources in the FPGA for the background subtraction IP core.
Each line indicates the resources required for the IP core as a function of the bit-width of the
variables described in Section 3.1, assuming the others are fixed to the chosen value. Our

choices have been marked in the figure.

G000

5500 f
5000 J/
—"Z'L w5 G0

W
-
.E L
¥ 4000 ol
R ES
L_--\_'-.\_ ey &
3500 '
3000
2500
0 2 4 & 8 10 12 14 16

Fractional bit-width

The whole system has different clock domains (operating frequencies) for the different modules.
The Microblaze processor and the system buses operate at a frequency of 66.5 MHz. Communication
module (Ethernet based) at 25 MHz, the input video modules at 13.5 MHz and, finally, the DDR2
interface operates at 133 MHz. Although the maximum processing frequency of our IP core Background
subtraction is 69.5 MHz, it runs at 66.5 MHz (the same as Microblaze and system buses) to avoid a
higher complexity of the FPGA clock distribution networks.

The FPGA implementation extends its use of many portable applications as embedded systems, where
parameters such as size and low power (our system has a consumption of 5.76 W estimated with Xilinx
Xpower Analyzer [16]) are key features which are not achievable by other approaches, such as high
frequency processors.

The FPGA in which the system has been implemented is XC3SD3400aFG676 (actual price:
~286.5 dollars in 2011) by Xilinx [23]. The resource consumption and operating frequency of each of the
parts of the system are shown in Table 2. Taking into account these results, it would be feasible to reduce
costs by using a cheaper FPGA with less logic resources, such as XC3SD1800A-4CSG484C (actual
price: ~53 dollars in 2011). However, in that case it would be necessary to reduce the consumption
of logic resources due to the use of complex memory interfaces (DDR2). One possibility would be the
use of SDRAM memory, what would lead to a decrease in system performance but since performance is

currently quite high, this alternative would be acceptable.



Sensors 2012, 12 601

Table 2. Complete hardware resources required on a Xilinx XC3SD3400aFG676 FPGA
after place and route. The whole system includes processing modules (background
subtraction and blob detection core).

Slice Flip 4 input

Module Slices DSP48s Block RAM far(MHz)
Flops LUTs
Total DDR?2 interface:
O? 1,5522 (65%) 1,8368 (38%) 1,9616 (41%) 48 (38%) 44 (35%) 133 MHz. Microblaze
system and PLB: 66.5 MHz
Background 66.5 MHz (Frec.
ACKEIOUNS 4 400 (18%) 5,032 (11%) 3,982 (8%) 36 (29%) 0 (0%) 2 (Frec
subtraction Max. 69.5 MHz)
Blob
o 1,180 (5%) 874 (2%) 2438 (5%) 0(0%) 8 (6%)
detection

< E; (48 bits), B; (26 bits), C; (26 bits), D; (26 bits), (S;)~! (48 bits), (a;)~* (18 bits), (b;)~" (18 bits)>

We have also addressed the evaluation of the real hardware in comparison with the ImpulseC simulator
in order to check the final system degradation. Even if the simulator operates in fixed point, there are
differences in the performance of the simulator and real hardware, due to restrictions of the simulator
to emulate fixed point arithmetics of the hardware system. In order to introduce the image sequence
evaluation and to retrieve resulting background, we have used the gigabit ethernet interface of the
ViSmart4 video processing board from Seven Solutions [18]. Table 3 shows the total errors obtained
by the proposed architecture, tested with the simulator and the ViSmart4 video processing board, as well
as the difference between them and the percentage of different pixels. The percentage is computed as
follows. We segment the scene using the software simulator and the real hardware obtaining two binary
maps. Then we compute the number of pixels in which the ground truth differs from both systems and
from that number we estimate the percentage of different pixels of the scene. From these results, it can be
seen that the degradation is really small, less than 0.5% in every test except for Waving Trees, validating
the final system implementation.

Table 3. Total errors differences between simulation and real hardware results, in number of
pixels and percentage. Tested over the Wallflower dataset.

Test Simulation Hardware Diff %

B 2,786 2,868 82 043
C 3,114 3,208 94 049
FA 4,059 4,095 36 0.19
LS 14,452 14,501 49 0.26
MO 59 68 9 0.05
TD 1,347 1,381 34 0.18

WT 6,085 6,273 188 0.98




Sensors 2012, 12 602

4.2. Performance Comparison with Other Approaches

It is important to compare the current implementation with other approaches described in the literature
(shown in Table 4). In order to evaluate the processing speed, we use the MegaPixels per Second
measure (MPPS), which is the multiplication of image size by frame rate. The background subtraction
algorithm by Horprasert has been implemented by other authors [11], reaching 30 fps with resolution
240 x 120, i.e., 0.824 MPPS. Our architecture presents a large improvement over this performance
(32.8 fps, 1,024 x 1,024, ie., 32.8 MPPS), and we have implemented other features such as
morphological filters, shadow detection, and a mechanism to send results through Ethernet gigabit. Other
authors have proposed different approaches, as in [9] and [10] based on MOG (Mixture of Gaussians).
Jiang et al. [10] reach 38 fps with resolution 1,024 x 1,024 by applying a compression scheme, but with a
considerable loss of accuracy. The system proposed by Appiah et al. [9] performs 145 fps for 768 x 576
frames, but obtaining worse results in terms of accuracy than our presented approach (Section 4.3).
Bravo et al. [8] implement PCA algorithm on FPGA, which performs at maximum between 190 and
250 fps for 256 x 256 frames depending on the number of significant eigenvectors, i.e., between 11.875
and 15.625 MPPS. However, due to the lack of accuracy information, a more detailed comparison is
not possible.

For standard GPU platforms, the approaches described in Carr [13] and Vu Pham ef al. [14] achieve
high accuracy. Furthermore, Vu Pham et al. [14] presents a high frame rate (980 fps, 400 x 300,
i.e., 112.15 MPPS). The main limitation of our approach with respect to other contributions based on
MOG (Mixture of Gaussians) such as [14] is the accuracy of results. On the other hand, GPU platforms
have the problem of implementation for embedded systems especially in terms of portability, size and

power consumption.

Table 4. Comparison with other previous approaches described in the literature.

I P
Approach Method mag? Frame Rate MPPS rocessor
Resolution Type
Presented work Horprasert 1,024 x 1,024 32.8 32.8 FPGA
Oliveira et al. (2006) [11] Horprasert 240 x 120 30 0.824 FPGA
FPGA: Xili
Jiang et al. (2005) [10] MOG 1,024 x 1,024 38 38 _ i
Virtex2 1000
. FPGA: Xilinx
Appiah et al. (2005) [21] MOC 768 x 576 145 61.18 ]
VirtexII XC2v6000
FPGA: Xilinx
Bravo et al. (2010) [8] PCA 256 x 256 190250 11.875-15.625 Virtex-II
Pro XC2VP7
Carr, P. (2008) [13] MOG 704 x 576 16.7 6.46 GPU
Zivkovic’s
Vu Pham et al. (2010) [14] 400 x 300 980 112.15 GPU
Extended MOG

Ierodiaconou et al. (2006) [12] MOG 352 x 288 21 2.03 DSP




Sensors 2012, 12 603

Other implementations have been proposed using TI DM642 DSP platform, as in [12]. This
contribution is based on MOG (Mixture of Gaussians) and it has been implemented using fixed-point
arithmetics. According to datasheet [24] and using the spreadsheet spra962f [25], we have calculated the
power consumption of DM642 DSP, obtaining 2.5 W. We have assumed that this DSP run at 720 MHZ
and a 80% CPU utilization. According to Table 4, this DSP is able to compute 2.03 MPPS and if we
take into account its low power consumption (2.5 W), it shows 0.8 MPPS per Watt. If we make the
calculations for our system (32.8 MPPS and 5.76 W), we achieve 5.7 MPPS per Watt. Therefore our
FPGA-based system has a better performance.

For some applications, these DSPs offer all the performance we need. In addition, DSPs enable rapid
development of complex algorithms and are better suited for low power applications, although they can
only run up to four calculations at a time. On the other hand, when we need higher performance for other
applications (e.g., background subtraction, image stabilization . . .), FPGAs are a good option, since they
can perform mathematical operations in parallel at one time. Furthermore, FPGAs are excellent for glue
logic, connecting multiple processing chips, peripherals and memories together. Therefore it is often
better to use the FPGA as a coprocessor (video preprocessing functions) for a DSP. The integration
of these two devices onto a single development platform can offer the best of both architectures by
increasing performance and reducing overall cost [26].

A commodity processor will be able to compute the proposed algorithm in real-time with a smaller
resolution, depending on the level of optimization [27]. Nevertheless, the target application required
embedded processing, and due to this, the comparison of our system with standard processor is out of
the scope of this paper.

Finally, note that the processing performance is directly determined by the running clock frequency,
and we are using a low cost FPGA with a reduced performance compared to other FPGAs on the market.
Therefore, migration to faster technologies as Virtex-6 or Virtex-7 FPGAs could directly represent an
improvement of the system performance, although latests Virtex devices have an even higher increase in
costs and power consumption than the benefits from better performance. An easy way to increase this
performance if needed could simply be to replicate the processing cores and split the input image into a

number of parts equal to the replication of cores.
4.3. Evaluation of the Accuracy of the Background Model

Apart from the evaluation of system performance and resources performed in the previous subsection,
it is important to evaluate the quality of the segmentation obtained by the proposed architecture
and to carry out a comparison with other background subtraction algorithms found in the literature.
The algorithms which have been used for this comparison are MoG (Mixture of Gaussians) [3], a
segmentation method based on Bayes decision rules [5], the Codebook model [6] and a simplification
of MoG for FPGAs [9]. These models have been selected since they represent different kinds of
algorithms and they are among the most frequently used. The implementations of MoG and the Bayesian
algorithm that have been used are versions from the OpenCV library, while the other approaches have
been developed by ourselves from the information given in their respective papers. In this section,
the methodology used to compare the different approaches is presented. Two different aspects of our

approach have been evaluated, i.e., the general performance as a background subtraction algorithm



Sensors 2012, 12 604

and its behavior in presence of shadows. The former has been performed by means of the dataset
Wallflower [19], that is widely used in the literature to analyze the quality of the segmentation produced
by an algorithm, while the latter has been studied using the sequences presented in [15].

4.3.1. Background Subtraction Evaluation

Since foreground/background segmentation is a two-fold classification problem, the results are based
on measures related to True and False Positives and Negatives (TP, FP, TN and FN). In this work, relative
measures have been used to compare algorithms in different test sequences maintaining similar ranges of
values. These measures are defined as following: Recall, is the true positive rate (TPR) R = T P/(TP +
FN); Precision is the ratio between the number of correctly detected pixels and the total number of
pixels marked as foreground P = T'P/(TP + FP); finally, the F; combines Precision and Recall to

evaluate an overall quality of the segmentation.

_, PR
- "P+R

(10)

1

This measure offers a balance between the ability of an algorithm to detect relevant and non-relevant
pixels. Therefore, it can be used to perform an objective evaluation [2]. Figure 10 shows the results from
the Wallflower benchmark for each one of the described algorithms. It can be seen that our approach
offers acceptable results, especially in comparison with the other hardware-oriented implementation.
The hardware version has little degradation caused by the fixed-point limitations.

The test “Moved Object” cannot be evaluated using the F}, since the ground truth does not have any
foreground pixel and the precision cannot be computed. For that reason, the performance on this test is
only studied by observing the resultant images (Figure 11).

Figure 10. Overall performance evaluated using F;. FGD is the Bayesian algorithm [5],
MOG is Mixture of Gaussians [3], CB is the CodeBook-based method [6], HWMOC the
FPGA implementation by Appiah et al. [9], and HOR Soft [1] and HOR Hard the floating
point (software) and fixed point (hardware) implementations of Horprasert. Higher accuracy
is represented by larger F} values.

WFGD

mMOG

mCE

mHW MOC

mHOR
HOR Hard

Bootstrap Camouflage Foreground Light Switch Time of Day  Waving Trees
Aperture



Sensors 2012, 12 605

Figure 11. Wallflower evaluation frames, ground truth, and resultant images from

tested algorithms.

Sequence B C FA LS MO TD WT
Test image | Yoy H ; PN
A s o :
Ground
truth
FGD
MOG :
CB § " |
- %5 - r

[ N \
HWMOC 8
HOR Soft

Em ? = ;@ N
HOR Hard )

Besides the general comparison, it is interesting to analyze the behavior of the algorithms in outdoor
and indoor circumstances. For that reason, we have grouped the sequences in two groups according to
their characteristics, and weighted the results in order to obtain an average value. In the outdoor group
we have taken into account the sequences “Camouflage”, “Time of Day” and “Waving Trees”, whilst the
indoor group is composed by the sequences “Bootstrap”, “Foreground Aperture” and “Light Switch”.
As a main conclusion, we can see that, due to the static nature of the Horprasert model, the results are
average for sequences where backgrounds are dynamic. On the other hand, for those sequences whose
background is static, the accuracy of the model is very well ranked even compared with much more
complex approaches.

Figure 12 shows the quality of the segmentation in indoor and outdoor circumstances comparing
the different approaches. It is important to highlight the results presented by the Codebook model.
This motivates a future work of implementation of this approach but it will require a larger amount of
resources and a much more complex architecture.

Finally, it is worth noticing that the hardware implementation has a very low degradation compared
with the original software approach. From Figure 10 it can be seen that the differences between
both approaches only are relevant in “7Time of Day” sequence. Nevertheless, despite that degradation,
the results obtained by the proposed architecture represent an improvement against previous hardware

implementations [9-11].



Sensors 2012, 12 606

Figure 12. Performance in outdoor and indoor circumstances. Higher values of F mean
more accuracy.

Fy

0,9

0.8
0.7
0,6
0.5 Eoutdoor
0,4 Wndoor
03
0,2
0.1
0

HW MOC HORSoft HORHard

4.3.2. Shadow Detection Behavior

One of the benefits of the presented approach is that it is able to compute not only the background
information of the scene but also information about the visible shadows. This could be used to improve
the spatial location of foreground objects as well as to obtain better measurement of its size and
shape [28]. In order to evaluate not only the background subtraction algorithms but also the shadow
detection capability, several metrics have been modified, defining the shadow detection accuracy 7 and
the shadow discrimination accuracy £ [15] as follows:

TPs
_ 1
=T Pg + FNg (b
TP
_ 12
S=TPy+ PNy (12)

where the subscript S stands for shadow and F for foreground. 7 Py is the number of ground-truth
points of the foreground minus the number of points detected as shadows belonging to foreground
objects. The first measure, the shadow detection accuracy, shows the capability of the algorithm to
detect shadow points, or the low probability to misclassify a shadow point. The second measure shows
the discrimination capability, that is, the low probability to classify a non-shadow point as shadow.

Table 5 shows the results obtained by the proposed architecture and the original software
implementation in the “Intelligent Room” sequence as well as the results from other approaches found
analyzed in [15]. Despite the degradation suffered by the hardware implementation (mainly due to the
utilization of fixed-point arithmetics), it offers acceptable results, considering the greater complexity of
the other approaches that makes them unsuitable for FPGAs with limited resources.



Sensors 2012, 12

Table 5. Shadow detection and discrimination accuracy, tested on “Intelligent Rooom”
sequence. SNP (Statistical Non Parametric, Horprasert, our approach), SP (Statistical Para-
metric) [29], DNM1 [30] and DNM2 [31] (Deterministic Non-Model-based approaches).

Intelligent Room

Approach
n (%) £(%)
SNP Soft  74.54 91.76
SNP Hard 71.14 88.13
76.27 90.74
DNM1 78.61 90.29
DNM2 62.00 93.89

607

Regarding the degradation between the software implementation and the proposed one, Figure 13

shows the results for the “Intelligent Room” sequence during a series of evaluation frames. In the worst

of the scenarios, the loss of accuracy due to the restrictions of the hardware implementations is limited

to 5%, offering fairly good results in both detection and discrimination metrics.

This loss of accuracy can be easily seen in Figure 14. Images (a) and (b) show the segmentation

obtained by the software and hardware implementation respectively. The degradation is noticeable in the

higher dispersion of the shadow points in the hardware detection, whilst the shadow regions resulting

from the software implementation are denser. The same effect is shown in images (c) and (d), as well as

some noise detected as shadows instead of being classified as foreground. However, the results are fairly

accurate and the noise can be removed during the connected component stage, which was not included

here in order to facilitate comparison with other approaches.

80

80

F

&0

50

40

30

shadow detection accuracy (%)

20

Figure 13. Shadow detection accuracy and discrimination accuracy of the original software
model and the proposed approach, evaluated on “Intelligent Room” sequence.

Shadow detection accuracy on "Intelligent Room" sequence

A

A"

P AMAVN 4
TV

vy
v

82

132 182
Frame number

232

282

Shadow discrimination accuracy on "IntelligentRoom" sequence

82

132

Soft
Hard



Sensors 2012, 12 608

Figure 14. Frames of the “Intelligent Room” sequence, frame 100 for (a) software and

(b) hardware implementations, and frame 282 for (c) software and (d) hardware.

(a) (b)

5. Conclusions

In this work, we have designed and analyzed an architecture to perform background subtraction in
video sequences capable to detect shadows presented on the scene. This task is considered to be the
first stage in computer video surveillance systems and one of the most demanding operations in terms
of resources utilization. Our approach is based on the algorithm by Horprasert [1], a static model whose
simplicity allows for a low cost FPGAs implementation and which has been extended to perform also
shadow detection.

The design techniques presented in this paper are valid to many resource-constrained hardware
implementations. The co-design strategy shows how to move non-real-time constrained operations to
software running on the processor in order to decrease the hardware resources required. In addition,
the combination of high level languages, such as ImpulseC with RTL descriptions defined using VHDL,
allows reducing the implementation strategy as well as reaching a high performance by optimizing the
code at critical stages and interfaces.



Sensors 2012, 12 609

An FPGA implementation of this algorithm which offers low degradation in comparison with the
original one has been developed. A study has been performed to analyze the bit-width associated with
each of the fixed-point variables in order to cope with the restrictions of the hardware environment. For
the first time, an FPGA implementation of a background model includes shadow detection logic. This
allows us to increase the model robustness as well as to improve object localization on the scene. This is
a valuable contribution that significantly enhances the applicability of the proposed approach.

The approach has been evaluated with the benchmark Wallflower [19] in order to test the quality of
the segmentation and its degradation against the original software solution. The proposed architecture
offers good results (in terms of accuracy) in comparison with other hardware implementations found
in the literature [9]. Furthermore, shadow detection behavior has been analyzed by means of manually
segmented video sequences [15].

The implementation is able to segment objects in complex sequences with resolution 1,024 x 1,024 at
32.8 fps (therefore 32.8 MPPS, Megapixels per Second) or from up to four cameras with less resolution.
This represents a speed up over 35x with respect to the other approach [11] based on Horprasert.

In terms of accuracy/robustness, with respect to other models, the Horprasert-based approach achieves
better results in the Bootstrap and Camouflage scenarios (Figure 10). Finally, in the approach described
here, the basic Horprasert model has been extended to efficiently deal with shadows which represents an
important improvement in daily scenes as illustrated in Figure 14. Concerning the cost of the system,
the architecture has been designed for low cost FPGAs Spartan-3 by Xilinx, and it offers low power
consumption (5.76 W). Therefore we achieve 5.7 MPPS per Watt. Our approach can be included in
embedded systems, where parameters such as size and power are key elements that are not achievable
by other approaches, such as commodity processors or GPU-based systems.

For future work, we intend to evaluate new implementations based on other background models
(dynamic and multimodal) with updating, which will allow the system to adapt to luminosity changes or
sudden scene configuration changes. We also intend to perform offline model updates with the proposed
architecture by means of the Microblaze processor. In addition, we will consider the use of mixed
architectures (FPGA + DSP) for the development of more complex algorithms for subsequent stages of

video analytics.
Acknowledgements

This research was supported by the projects of excellence from the Andalusian Regional Government,
Junta de Andalucia (TIC-3873, TIC-5060), the national project ARC-VISION (TEC2010-15396) and the
EU grant TOMSY (FP7-270436).

References

1. Horprasert, T.; Harwood, D.; Davis, L.S. A Statistical Approach for Real-Time Robust Background
Subtraction and Shadow Detection.  In Proceedings of the IEEE Frame-Rate Applications
Workshop, Kerkyra, Greece, 21-21 Septmeber 1999.

2. Karaman, M.; Goldmann, L.; Yu, D.; Sikora, T. Comparison of static background segmentation
methods. Proc. SPIE 2005, 5960, doi:10.1117/12.633437.



Sensors 2012, 12 610

10.

11.

12.

13.

14.

15.

16.
17.

Stauffer, C.; Grimson, W.E.L. Adaptive Background Mixture Models for Real-Time Tracking.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Fort Collins, CO, USA, 23-25 June 1999; Volume 2, pp. 637-663.

Varcheie, P.D.Z.; Sills-Lavoie, M.; Bilodeau, G.A. A multiscale region-based motion detection and
background subtraction algorithm. Sensors 2010, 10, 1041-1061.

Li, L.; Huang, W.; Gu, I.Y.H.; Tian, Q. Foreground Object Detection from Videos Containing
Complex Background. In Proceedings of the 11th ACM International Conference on Multimedia,
Berkeley, CA, USA, November 2003; ACM: New York, NY, USA, 2003; pp. 2-10.

Kim, K.; Chalidabhongse, T.H.; Harwood, D.; Davis, L. Real-time foreground/background
segmentation using codebook model. Real-Time Imaging 2005, 11, 172-185.

Jiménez-Hernandez, H. Background subtraction approach based on independent component
analysis. Sensors 2010, 10, 6092-6114.

Bravo, 1.; Mazo, M.; Lazaro, J.L.; Gardel, A.; Jiménez, P.; Pizarro, D. An intelligent architecture
based on field programmable gate arrays designed to detect moving objects by using principal
component analysis. Sensors 2010, 10, 9232-9251.

Appiah, K.; Hunter, A. A Single-Chip FPGA Implementation of Real-Time Adaptive Background
Model. In Proceedings of IEEE International Conference on Field-Programmable Technology,
Singapore, 11-14 December 2005; pp. 95-102.

Jiang, H.; Ardo, H.; Owall, V. Hardware Accelerator Design for Video Segmentation with
Multi-Modal Background Modelling. In Proceedings of the IEEE International Symposium on
Circuits and Systems (ISCAS ’05), Kobe, Japan, 23-26 May 2005; Volume 2, pp. 1142-1145.
Oliveira, J.; Printes, A.; Freire, R.C.S.; Melcher, E.; Silva, I.S.S. FPGA Architecture for Static
Background Subtraction in Real Time. In Proceedings of the 19th Annual Symposium on Integrated
Circuits And Systems Design (SBCCI "06), Ouro Preto, Brazil, August 2006; ACM: New York, NY,
USA, 2006; pp. 26-31.

Ierodiaconou, S.; Dahnoun, N.; Xu, L. Implementation and Optimisation of a Video Object
Segmentation Algorithm on an Embedded DSP Platform. In Proceedings of the The Institution of
Engineering and Technology Conference on Crime and Security, London, UK, 13—14 June 2006;
pp. 432-437.

Carr, P. GPU Accelerated Multimodal Background Subtraction. In Proceedings of the Digital
Image Computing: Techniques and Applications (DICTA 08, Canberra, ACT, Australia, 1-3
December 2008; pp. 279-286.

Pham, V.; Vo, P;; Hung, V.T.; Bac, L.H. GPU Implementation of Extended Gaussian Mixture
Model for Background Subtraction. In Proceedings of the IEEE RIVF International Conference
on Computing and Communication Technologies, Research, Innovation, and Vision for the Future
(RIVF), Hanoi, Vietnam, 1-4 November 2010; pp. 1-4.

Prati, A.; Mikic, I.; Trivedi, M.M.; Cucchiara, R. Detecting moving shadows: Algorithms and
evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 918-923.

Xilinx. 2011. Available online: http://www.xilinx.com (accessed on 29 December 2011).

Impulse accelerated technologies. 2011. Available online: http://www.impulseaccelerated.com/
(accessed on 29 December 2011).



Sensors 2012, 12 611

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Seven Solutions S.L. 2011. Available online: http://www.sevensols.com (accessed on 29 December
2011).

Toyama, K.; Krumm, J.; Brumitt, B.; Meyers, B. Wallflower: Principles and Practice of
Background Maintenance. In Proceedings of the 7th IEEE Internation Conference on Compurter
Vision, Kerkyra , Greece, 20-27 September 1999; Volume 1, p. 255-261.

Hedberg, H.; Kristensen, F.; Nilsson, P.; Owall, V. A Low Complexity Architecture for Binary
Image Erosion and Dilation Using Structuring Element Decomposition. In Proceedings of the
IEEE International Symposium on Circuits and Systems (ISCAS ’05), Kobe, Japan, 23-26 May
2005; Volume 4, pp. 3431-3434.

Appiah, K.; Hunter, A.; Dickinson, P.; Owens, J. A Run-Length Based Connected Component
Algorithm for FPGA Implementation. In Proceedings of the International Conference on ICECE
Technology, Taipei, Taiwan, 8—10 December 2008; pp. 177-184.

MPMC. Xilinx. 2011. Available online: http://www.xilinx.com/support/documentation/ip_docu-
mentation/mpmec.pdf (accessed on 29 December 2011).

Avnet (FPGA Distributor). 2011.  Available online: http://www.avnet.com (accessed on 29
December 2011).

Garcia, [ TMS320DM64x Power Consumption Summary. Available online:
http://www.ti.com/litv/pdf/spra962f (accessed on 29 December 2011).

Texas Instruments. 2005. Available online: http://www-s.ti.com/sc/psheets/spra962f/spra962f.zip
(accessed on 29 December 2011).

Liu, X.-L.; Wang, B.; Zheng, Z.-H. Design of Airport Video Aided Surveillance System Based on
DSP+FPGA. In Proceedings of the 30th Chinese Control Conference (CCC), Yantai, China, 22-24
July 2011; pp. 3214-3217.

Anguita, M.; Diaz, J.; Ros, E.; Fernandez-Baldomero, F. Optimization strategies for
high-performance computing of optical-flow in general-purpose processors. IEEE Trans. Circuits
Syst. Video Technol. 2009, 19, 1475-1488.

Hu, J.S.; Su, T.M. Robust background subtraction with shadow and highlight removal for indoor
surveillance. EURASIP J. Appl. Signal Process. 2007, 2007, 108—-108.

Mikic, I.; Cosman, P.C.; Kogut, G.T.; Trivedi, M.M. Moving Shadow and Object Detection
in Traffic Scenes. In Proceedings of the 15th International Conference on Pattern Recognition,
Barcelona , Spain, 3—7 September 2000; Volume 1, pp. 321-324.

Cucchiara, R.; Grana, C.; Piccardi, M.; Prati, A. Detecting Objects, Shadows and Ghosts
in Video Streams by Exploiting Color and Motion Information. In Proceedings of the 11th
International Conference on Image Analysis and Processing, Palermo, Italy, 26-28 September
2001; pp. 360-365.

Stander, J.; Mech, R.; Ostermann, J. Detection of moving cast shadows for object segmentation.
IEEE Trans. Multimed. 1999, 1, 65-76.

(© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/.)



	Introduction
	Background Subtraction Method
	Background Model
	Subtraction Operation and Classification

	Hardware Architecture
	Model Modifications Towards a Hardware-Friendly Implementation
	Background Subtraction and Pixel Classification
	Blob Detection

	Results
	System Performance
	Performance Comparison with Other Approaches
	Evaluation of the Accuracy of the Background Model
	Background Subtraction Evaluation
	Shadow Detection Behavior


	Conclusions

