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Abstract: This paper presents a sensor fusion strategy applied for Simultaneous Localization 

and Mapping (SLAM) in dynamic environments. The designed approach consists of two 

features: (i) the first one is a fusion module which synthesizes line segments obtained from 

laser rangefinder and line features extracted from monocular camera. This policy 

eliminates any pseudo segments that appear from any momentary pause of dynamic objects 

in laser data. (ii) The second characteristic is a modified multi-sensor point estimation 

fusion SLAM (MPEF-SLAM) that incorporates two individual Extended Kalman Filter 

(EKF) based SLAM algorithms: monocular and laser SLAM. The error of the localization 

in fused SLAM is reduced compared with those of individual SLAM. Additionally, a new 

data association technique based on the homography transformation matrix is developed 

for monocular SLAM. This data association method relaxes the pleonastic computation. 

The experimental results validate the performance of the proposed sensor fusion and data 

association method. 
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1. Introduction 

A crucial characteristic of an autonomous mobile robot is its ability to determine its whereabouts 

and make sense of its static and dynamic environments. The central question of perception of its 

position in known and unknown world has received great attention in robotics research community. 

Mapping, localization, and particularly their integration in the form of Simultaneous Localization and 

Mapping (SLAM) is the basic ability with which other advanced tasks such as exploration and 

autonomous navigation can be successfully implemented. Therefore, SLAM has been vigorously 

pursued in the mobile robot research field. 

Monocular cameras have been widely used as low cost sensors in numerous robotics applications in 

recent years. They provide the autonomous mobile robot with abundant information that facilitates 

intuitive interpretation and comprehension of the environment better than other scanning sensors.  

The algorithms based on monocular cameras perform reasonable visual SLAM procedures. 

Points/landmarks extracted from images are common map elements and typically present in structured 

indoor scenes [1–5]. However, they are easily occluded in dynamic environments if sufficient 

precautions are not devised. Features of the segment-based map consist of lines and edges which are 

stable compared with point features and consequently robust enough to improve the performance of 

the monocular SLAM [6–9]. Most of relevant research above, however, implemented SLAM in static 

spaces or environments with few moving objects. Dynamic objects induce spurious features and make 

it difficult to obtain the correct estimates of the robot pose and feature positions. Additionally, 

erroneously extracted map features corresponding to dynamic objects may lead to inappropriate robot 

actions that ultimately result in failure to complete the expected tasks. 

In this study, we present a sensor fusion strategy for line-based SLAM applied in dynamic 

environments. This approach fuses the sensor information obtained from a monocular camera and laser 

rangefinder and includes two modules. One is a feature fusion that integrates the lines extracted 

respectively from a monocular camera and a laser to remove the erroneous features corresponding to 

dynamic objects. The other is referred to as a modified multi-sensor point estimation fusion SLAM 

(MPEF-SLAM) which incorporates two separate EKF SLAM frameworks: monocular and laser 

SLAM. This modified MPEF-SLAM fuses the state variable and its covariance estimated from 

individual SLAM procedure and propagates fused values backward to each SLAM process to reduce 

the error of robot pose and line feature positions. Another advantage of the modified MPEF-SLAM is 

that its implementation is on the basis of two parallel running SLAM processes, which can avoid 

unexpected events. For example, when one SLAM procedure does not work due to the sensor failure, 

the other one can be still running normally. This manifests the idea of redundancy in comparison with 

the single SLAM framework. Additionally, for monocular SLAM process we suggest a new data 

association (DA) algorithm. It employs the homography transformation matrix [10] estimated by the 

matched points determined through Scale Invariant Feature Transform (SIFT) descriptors [11] in two 

images. The sensor fusion strategy is examined and tested in practical experiments. The results 
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demonstrate that the proposed approach can reliably filter out dynamic aspects and yields accurate 

models of the environment, as well enhance the localization precision. 

The remainder of this paper is organized as follows: after reviewing the related work in Section 2, 

we elucidate the framework of monocular SLAM and the data association method in Section 3. Section 4 

describes the sensor fusion strategy including the feature fusion and modified MPEF-SLAM modules. 

We validate our proposed methods through the experiments in Section 5. Section 6 gives our conclusions 

and suggestions for future work.  

2. Related Work 

Most indoor environments can simply and expediently be represented by line segments. In our 

previous work [12] and references therein, the line features have been successfully applied to various 

SLAM algorithms by range scanner sensors. In recent decades, advances in computer vision have 

provided robotics researchers with efficient and powerful techniques that can be employed in a variety 

of autonomous tasks. Following Davison and his group’s pioneering work on monocular SLAM [1–5], 

other researchers studied line-based algorithms. Eade and Drummond [6] proposed an edge-let 

landmark to depict the line features. This work, which is the extension of the so-called scalable 

monocular SLAM [4], avoids regions of conflict and deals with multiple matches through robust 

estimation. Gee and Mayol-Cuevas [7] used fast conic extraction to obtain the 2D edges and then 

estimated the 3D segments with the Unscented Kalman filter (UKF). Smith et al. [8] applied FAST 

corners to quickly verify that there was an edge between two corners by bisecting checks. Besides, 

other researchers conducted similar studies on line based SLAM with a single camera. Lemaire and 

Lacroix [9] as well as Sola et al. [13] introduced the Plücker coordinates for 3D line description and 

considered constraints associated with Plücker representation during the updating stage of Kalman 

filter. Folkesson et al. [14] suggested a M-space feature representation similar to SP-model. This 

feature model is a general and systematic technique that makes it possible to change sensors and features 

without any variation to SLAM implementation. In addition, lines and points can be merged to enhance 

the performance of visual SLAM and improve the precision of the localization and mapping [15,16]. 

The vertical and the floor lines can also be combined to represent the environment in a more complete 

fashion via a unified EKF framework by integrating two different measurement models [17].  

To the best of our knowledge, almost all mentioned methods above focus on the visual SLAM in 

static space or the environments with few dynamic objects. In this study, we re-visit the SLAM 

problem in a dynamic environment from a sensor fusion viewpoint. This approach incorporates the 

sensor information of a monocular camera and laser rangefinder to remove the feature outliers related 

to dynamic objects and enhances the accuracy of the localization. 

Computer vision technology makes visual SLAM feasible, and related data association methodology 

is also an interesting area which has attracted much research attention. In addition to conventional data 

association algorithms such as Nearest Neighbor [7,8], JCBB [18], etc., several data association 

methods for visual SLAM has been developed, including Normalized Cross-Correlation (NCC) [19,20], 

incremental expectation maximization algorithm [21], incremental hierarchical data association based 

on image similarity [22], homography tracking [23] and those based on the SIFT descriptor. The 

invariant property of the SIFT descriptor is an important factor for the SIFT based data association 
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method. For example, in [24,25] landmarks are identified by SIFT and represented by keypoint 

descriptors. These landmarks subsequently are treated as the ideal candidates for robust data 

association. Gil et al. [26,27] managed the data association with the SIFT features from the pattern 

classification viewpoint, and the Mahalanobis distance was established by the average SIFT 

descriptors and a high dimensional covariance matrix. Similarly with pattern recognition technology, 

object-based SLAM [28] combined the advantages of multi-scale Harris corner detector and the SIFT 

descriptor for natural object recognition, which provides a correct data association. Also, to enhance 

the robustness of SIFT descriptor a multi-resolution descriptor was proposed to address the problem that 

the performance gains diminish when uncertainty about camera position increases [29]. 

These data association methods using the SIFT technique improve the robustness compared with 

the NCC and image patches based approaches. With this advantage, we also developed a data 

association method that does not apply the SIFT descriptor as the map features but rather uses the 

descriptor to estimate the homography transformation matrix of any two images, and then employs the 

estimated homography transformation matrix to implement data association. 

3. Line Based EKF Monocular SLAM 

In this section the outline of the line-based monocular SLAM framework is discussed. We briefly 

present the camera/robot motion and line measurement model. After that the homography transformation 

matrix based data association method for monocular SLAM is introduced. 

3.1. Camera/Robot Motion Model and Line Measurement Model 

The camera is fixed on the robot platform which moves in a 2D plane, and its translational and 

rotational velocity are identical with the mobile robot. For convenience, as is shown in Figure 1 we 

assume the origins of the robot and the camera reference frames are located at the same point.  

Figure 1. The world and robot/camera coordinate reference. Red and subscript W: world 

reference; black and subscript R: camera/robot reference. ah is the height from the  

ground plane. 
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The simplified camera motion model is: 
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where xv(k) is the robot pose at time k including the position (xR(k), yR(k))
T and head orientation R(k);  

uk is the control variable at time k including the translation velocity vk and rotational velocity ωk; Δt is 

the sampling time. 

Line extraction is actually an edge detection operation in the image processing terminology. Most 

of the edge features represented in the related work are extracted by using a first-order edge detection 

operator: the canny operator [6,7]. In this current study, we employed another first-order edge detector: 

the Sobel operator combined with a thresholding technique for edge extraction in a specified region of 

interest (ROI) displayed in Figure 2(a).  

Figure 2. (a) The region of interest (ROI); (b) Detected horizontal edges in ROI without 

morphological operation, and some edges related to dynamic objects are not removed;  

(c) Detected horizontal edges in ROI after shrink and clean morphological operation with 

thresholding technique; (d) Selected line features in ROI after thicken operation. 

 

(a)     (b) 

 

(c)     (d) 

 

The range of ROI encapsulates the ground plane since most static edges are present on the floor. In 

this ROI we just consider the horizontal static edges, and do not focus on tracking the dynamic targets. 

After horizontal edge detection processing, it is clear that several edges corresponding to the dynamic 

objects (i.e., the person here) cannot be eliminated from the selected region, which is illustrated in 

Figure 2(b). To reduce the effect of these potential outliers, the shrink and clean morphological 

operations firstly are carried out on all edges. With these operations, the shorter and thinner edges, 

u 
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which usually relate to the parts of dynamic objects, are removed; and secondly for the rest of edges, if 

the length of an edge is less than the length threshold (in pixels) it is also rejected from the edges set. 

This operation makes sure to further exclude spurious edges not removed in shrink and clean process 

(cf. Figure 2(c)). Finally the thicken operation is implemented to recover the interested edges and 

highlight them (cf. Figure 2(d)), which will prepare for edge parameter extraction in the next step. 

We developed two sets of parameters for edge representation: one was used in the measurement 

model; the other was for data association and sensor fusion. In this subsection, we mainly discuss the 

parameters for the measurement model. For a line reflected in the vision system, the minimal 

representation uses four parameters (e.g., Denavit-Hartenberg line coordinates) in 3D Euclidean space 

but it may be ineffective in some robotic research topics. There are several non-minimal 

representations for the 3D line, such as endpoints of the line [8], center and unit direction vector of the 

line [6], two endpoints plus unit direction vectors [7], and so on. In this study, we also describe the 

lines by the line endpoints non-minimal representation because the advantages are this representation 

is homogenous and suitable for the projection through a pinhole camera. 

Similar to [7,8], with the location of line endpoints we borrowed and extended the idea of their 

work and presented the line measurement model as: 
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where at step k, in Equation (2) ptmk is the 3D location of the mth endpoint in the world coordinate 

system, m
kd is the depth of the mth endpoint from the camera center, RMk is the rotation matrix 

associated with quaternion, and m
kê is the unit vector direction of the mth endpoint from the camera 

center of projection; in Equation (3) hk is the length of the normal and φk is the angle of inclination of 

the normal from the camera/robot framework which will be used for feature fusion, f is the function in 

matrix form for calculating hk and φk; Equation (4) computes the parameters of the 2D line in the image 

plane. These parameters consist of the measurement variables, including the orientation k of the 2D 

line, the locations of the line’s endpoints pek (i.e., pixel coordinates), and coordinates of the projection 

which is the intersection point pipk between a 3D line and the normal of the line (projected intersection 

point for short in the following sections). П is the standard pin-hole projection function for a calibrated 

camera, Pck is the mean camera projection matrix estimated in the kth step, and nk is the measurement 

noise from the image. To make a simple presentation, we define the pixel coordinates of the line 

endpoints pek and projected intersection point pipk in a unified form i.e., p = (xu,yv)
T. Note that the 

endpoints initialization is same as the procedure presented by Smith et al. [8]. 

Besides the location of line’s endpoints used for measurement model, we also considered several 

additional parameters: the position of projected intersection point pip which has been calculated via 

measurement model and the line descriptor [ρ, θ]T in Hough space. They are applied as the auxiliary 

parameters for our proposed data association strategies, and we will concentrate on these topics in the 

following sections. A step-by-step procedure of the complete edge/line extraction from the camera is 

as follows: 
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Step 1: Pre-process the acquired image to filter out different noise signals;  

Step 2: Select the region of interest (ROI); 

Step 3: In the ROI, detect the horizontal edges by the Sobel operator combined with thresholding;  

Step 4: shrink and clean morphological operations on all edges to eliminate those corresponding to 

dynamic objects; 

Step 5: Remove the edges whose length is less than the length threshold; 

Step 6: Implement thicken operation to recover the interested edges; 

Step 7: Calculate the pixel coordinates of line endpoints and projected intersection point, and descriptors 

in Hough space. 

3.2. Data Association Based on Homography Transformation Matrix 

Sampling is considered very important in Nearest Neighbor data association methods. In the 

reference works [1–5,8], samples in a window region are used to match the predicted features and 

calculate the innovation. However, the computation pixel by pixel in the predefined region is a little bit 

repetitious. In this subsection, we suggest a homography transformation matrix based data association 

(HTMDA) method. This matrix is estimated by the matched points between two images with the help 

of SIFT descriptors. HTMDA firstly applies the SIFT mechanism to detect the matched points between 

any two images. Because of advantages of the SIFT, as is shown in Figure 3 the matched points are 

obviously unsusceptible to the moving object (the person here). Therefore it is reasonable to apply 

them as the stable points to determine the homography transformation matrix. By these matched points 

the homography transformation matrix M and its covariance ΣM can be estimated using the 

computational procedure of MLE technique [10].  

Figure 3. Matched point determined by SIFT descriptors. 

 

After the estimations of M and ΣM are obtained, the predicted pixel coordinates lp̂ of line endpoints 

and projected intersection point in the image plane can be expressed as: 

ml pp Mˆ  (5)

where pm is the coordinates of the line endpoints and projected intersection point stored in the map 

(note that projected intersection point is not the component of the state variable). The coordinates of 

the observed feature in the image is marked as pl, and the definition of Mahalanobis distance is: 

)ˆ()ˆ( 1 llTll
m pppps  

MΣ  (6)
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When estimating M and ΣM, we have considered the pixel error in both images as well as the 

propagation in Equation (5). The covariance in observation and prediction can be regarded as being led 

by the covariance ΣM. That is why here we use ΣM for the Mahalanobis distance computation. As 

many popular data association algorithms, Mahalanobis distance can be treated as the criteria for data 

association. Hence in this work, if two values of Mahalonbis distance meet the following condition: 

2,1),,(2  insmi   (7)

(these two Mahalanobis distance values are calculated by any two points, for example two endpoints or 

one endpoint and one projected intersection point, located on the observed line), then the observed line 

can be associated with the line stored in the map, labelled as 1, otherwise it is a new feature, marked as 0. 

Where  is the statistically significant level i.e., P-value and n is the number of degrees of freedom. 

Looking back through the implemented process of the proposed HTMDA, compared with the 

related work in Section 2, instead of directly applying SIFT descriptors as the natural features for data 

association, we emphasize using the SIFT mechanism to determine the matched points between any 

two images and then apply these matched points to estimate the homography transformation matrix 

and its related covariance. The data association is based on this estimated matrix and its covariance. 

Additionally the main difference between our defined Mahalanobis distance in Equation (6) and the 

formula in Gil’s work [26] is that the distance is constructed only by ΣM and the pixel coordinates 

without any SIFT descriptor.  

3.2.1. Practical Considerations on Data Association 

Sometimes the position of the predicted image line endpoints may be outside the image range, and 

we cannot use the criteria (7) above to determine associated features. For this special case, we employ 

the Hough space parameters presented in previous subsection to handle the data association problem, 

and adopt an alternative criterion, that is, to test whether the predicted endpoints lie on the observed 
image lines. The ends lie on the lines if and only if   0ˆ mTl

h lp . We relax this condition practically as: 

  mTl
h lp̂  (8)

where ε is an arbitrarily small positive quantity, lm = (cosθ, sinθ, −ρ)T is the homogeneous 

representation for observed image lines by the Hough space parameters, and T
vu

e
h yxp )1,ˆ,ˆ(ˆ   is the 

homogenous pixel coordinates of predicted line endpoints. If there exists two predicted line endpoints 

that meet the condition: 

  2,1,ˆ  ilp mTl
hi   (8-1)

or one predicted line endpoint/projected-intersection-point meets condition (7) and another predicted 

line endpoint makes the criterion (8) true, then the observed line is matched with the line feature stored 

in the map or else it is a new one. 

It is impractical and time consuming to compute all M and ΣM between the most recent image and 

all previous ones. In this study we captured an image per 2 s and calculated M, ΣM by using the newest 

grabbed image and the two latest ones with the sliding window technique, because the robot moves in 

an intermediate speed and after about 4 s some features stored in the map could probably disappear in 

current image. Algorithm 1 illustrates our HTMDA algorithm. 



Sensors 2012, 12 

 

 

437

Algorithm 1. HTMDA algorithm. 

HTMDA ALGORITHM 

// INPUT: observed lines parameters, the 3 most recent images 

// OUTPUT: data association matrix DA 

 

[ desCur, locCur ] = sift(CurrentImg ); // Find SIFT keypoints for current captured image. The outputs are 

// desCur: descriptor for the keypoint; locCur: keypoint location 

for each observed line i 

for k = 2:−1:1 

[ desK, locK ] = sift( Img( k ) ); // Find SIFT keypoints for kth image. 

// Estimating M and ΣM  

[ M( k ), ΣM( k ) ] = HomographyEstimation( locCur, locK, C ); // C is the variance of image noise 

// Observation prediction 

for each line feature j stored in map 

EndsPred ( j ) = M( k )EndsMap( j ); // Equation (5) 

sm = ( EndsObs( i ) – EndsPred( j ) )  (ΣM( k )) −1  (EndsObs( i ) − EndsPred( j ))T; // Equation (6) 

if ( condition (7) is true ) // Any two Mahalanobis distance values satisfy the condition (7) 

                          DA( i, j, k ) = 1; 

else if ( (condition (8-1) is true) || (condition (7) && condition (8) are true) ) 

// Two predicted line points locate on the same line, or one Mahalanobis distance value meets 

// condition (7) and one predicted line point lies on the observed line. 

                          DA( i, j, k ) = 1; 

else 

                          DA( i, j, k ) = 0; 

end if 

                end 

                if ~isZero( DA( i, :, : ) ) 

                    continue; 

                end if 

       end 

end 

4. Sensor Fusion Strategy 

As was mentioned in Section 1, this study is a natural extension of our prior research [12]. In that 

work, we proposed a robust regression model by MM-estimate for the segment based SLAM in 

dynamic environments. The segments (named laser segments) were extracted from the raw laser 

rangefinder data and most of the outliers related to moving objects were eliminated. However, if these 

dynamic objects momentary start and stop several times, they could probably be treated as segment 

features by using a robust regression model and be misincorporated into the state variables, which will 

deteriorate the performance of SLAM. Since the lines extracted from the monocular camera are almost 

static after necessary processing stated in Subsection 3.1, we combine these image line features with 

laser segments and apply Bayesian decision as the feature fusion strategy to remove those pseudo 

segments reflected in the laser segments. Furthermore, we suggest a modified MPEF-SLAM to 

incorporate the state estimates obtained from the individual monocular and laser SLAM. With this 
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modified MPEF-SLAM, the covariance of the robot pose is reduced so that the accuracy of the 

localization can be improved. 

4.1. Line Feature Fusion 

The purpose of the feature fusion is to remove the pseudo laser segments corresponding to dynamic 

objects. Before the implementation of feature fusion, it is necessary to figure out the laser segments 

and image lines in the same sensor detection range. As the horizontal field of view (HFOV) of the 

monocular camera has a limited visual angle, it is feasible to extract the laser segments within this 

HFOV. That is, when a frame of raw laser data is received, those located outside the HFOV are filtered 

out. For these filtered raw data, the robust regression model [12] is employed to extract the laser 

segments and estimate the segments parameters. These laser segments are defined as the laser segment 

set labeled as SFL. Similarly, we can obtain the image lines and compute their parameters from the 

grabbed image, as well define the image line set as SFI. The pre-processing procedure above ensures 

that these two sets of line features are extracted within the same detection range. After that, the Bayesian 

decision fusion rule [30] is applied to determine the matched features via exhaustive algorithm in these 

two feature sets. The fusion rule is: 
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where p(y|Hi) i = 0,1 is the conditional probability of event y when the hypothesis Hi is true. Event y 

means the feature matching. In this study we define event y = [zC, zL]T, zC is the image lines parameters 

for feature fusion and zL is of the laser segments. Null hypothesis H0 means the laser segments are 

assumed to assign to the noise, and relevant alternative hypothesis H1 implies the laser segments 

probably are related to image line features. p(Hi) is the probability when hypothesis Hi is true. Cij,  

i = 0,1, j = 0,1, represents the cost of declaring Hi true when Hj is actually true. For H0, we choose 

event y as [zC, zL]T = [sC + vC, vL]T, sC is the parameters of image lines with the zero mean and 

covariance RC, vC and vL which have zero mean and covariance 2
C  and 2

L  are mutually independent 

additional sensor noise of the camera and laser. Event y for testing H1 is [zC,zL]T = [sC + vC, sL + vL]T 

where sL is the laser segment parameters with the zero mean and covariance RL. Noted that the 

parameter sC of image lines is [hk, φk]
T. As for the calculation of sL and RL, the interested reader may 

refer to our prior work [12] for more detail. Generally, the monotonically increasing natural logarithm 

rule is considered, that is: 
H1

lnLR(y) <>
H0

lnη
 

(9)

Suppose that p(H0) = p(H1) = 0.5, C01 = C10 =1 and C00 = C11 = 0, which means that the cost for 

mistaken decision is much more than that for correct decision, then p(y|H0) ~ N(0,Σ0) and  

p(y|H1) ~ N(0,Σ1). Here: 
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 , I is the identity matrix (10)

and the decision rule (9) is equal to: 
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With rule (11), we validate all the laser segments located in HFOV. If H0 is accepted then the laser 

segment is the outlier, otherwise if H1 is accepted then it is the definite static feature. Actually, 

employing the exhaustive algorithm to search matched features in two line sets is a tedious work. To 

handle this problem, for two endpoints of each image line we can respectively compute approximate 

angles from robot head (i.e., the x-axis of robot frame) via parameter [hk, φk]
T as well as determine the 

angular interval [γC1, γC2]. Similarly, when extracting laser segments, according to the laser scanning 

resolution it is easy to obtain the angles from robot head for two endpoints of each segment and the 

related angle ranges [γL1, γL2]. If these two groups of angle boundaries are close, we use Equation (11) 

to check whether the laser segments are outlier or not. By this technique, the search work can be reduced. 

4.2. Modified MPEF-SLAM 

In [30], a framework of MPEF for a Kalman filter was proposed. It led to a lower covariance for 

fused state estimates compared with each individual one, as well maintaining the optimal estimation. 

We extended the idea of MPEF in this paper to EKF SLAM problem, and developed a modified 

MPEF-SLAM framework. It incorporates two individual parallel-running EKF SLAM processes: 

monocular SLAM and laser SLAM to build a fused EKF SLAM procedure.  

Algorithm 2. Modified MPEF-SLAM algorithm. 

FUSION SLAM BASED ON MODIFIED MPEF ALGORITHM 

// Robot pose initialization 

[ x1
v0, P

1
v0 ] = PoseInitialization( Camera ); // Initialization of monocular SLAM, xv and Pv are the initial values 

C = getSensorError( Camera ); 

[ x2
v0, P

2
v0 ] = PoseInitialization( Laser ); // Initialization of laser SLAM 

[ range, bearing ] = getSensorError( Laser ); // Obtaining the noise parameters of laser sensor 

Q = createQ(tra, rot ); // Obtaining the noise parameters of intrinsic sensor, i.e., encoder 

// Line Feature initialization 

SegC = HorizontalEdge( image ); // Horizontal line extraction from 1st captured image 

[ z1
0, P

1
z0, RC ] = intializeNewFeature( SegC, camPar, x1

v0, P
1
v0, C ); // Image line feature initialization. camPar: 

// intrinsic parameters of the camera 

SegL = LineExtraction( laserdata ); // Segment extraction from 1st frame of laser data 

[ z2
0, P

2
z0, RL ] = intializeNewFeature( SegL, x2

v0, P
2
v0, range, bearing ); // Segment feature initialization 

 

// State variable and related covariance initialization 

X1
0 = createX( x1

v0, z
1

0 ); P
1

0 = cerateP( P1
v0, P

1
z0 ); // For monocular SLAM  

X2
0 = createX( x2

v0, z
2

0 ); P
2

0 = cerateP( P2
v0, P

2
z0 ); // For laser SLAM 

 

// Fused robot pose initialization 
2
00

2
00 ; v

f
v

f
v PP  xx ; 

// Main loop 

k = 1; 

while isRobotRunning() 
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Algorithm 2. Cont.  

uk = getControl( k ); // Obtaining control variables 

      [ X1
k|k, P

1
k|k, X

1
k|k-1, P

1
k|k-1 ] = MonoSLAM( X1

k-1, P
1
k-1, uk, Q, RC, getObservation( imagek ) ); 

      [ X2
k|k, P

2
k|k, X

2
k|k-1, P

2
k|k-1 ] = LaserSLAM( X2

k-1, P
2
k-1, uk, Q, RL, getObservation( laserk ) ); 

      // Do MPEF procedure 
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; 

//  W is the weight matrix, and ])(,)(,)(,)(,[ 12
||

12
||

11
||

11
||

  kk
f
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f
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f
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f
kk PPPPPPPPIW  

// Propagate backward the MPEF results to each individual SLAM 

2,1//;; 1|1|)1|()1|(   iPP f
kk

i
kk

f
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i
kkv xx  

// Update individual covariance 

2,1,//);,,(update |||
_

1|1|1||   iPPPPPPP i
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f
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b
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bi
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f
kk

i
kk

i
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i

kk
bi

kk PP |
_

1| 
; 

k = k + 1; 

end 

 

In the modified MPEF-SLAM framework, the state variable and its covariance in each individual 

SLAM are first fused by a fusion-weighted matrix to obtain a fused state variable and covariance. 

After that, the fused state variable and covariance are propagated backward to each individual SLAM 

for updating the individual state variable and related covariance. By this updating scheme, the 

covariance matrices of the fused and individual state variable are decreased, even though the fused 

estimation could not be kept at an optimal value. The details on the theoretical derivation of the 

modified MPEF-SLAM are described in Appendix. The purpose of this modified MPEF-SLAM is to 

improve the accuracy of localization. We sketched our fusion SLAM algorithm in Algorithm 2. The 

superscript i indicates the type of the sensor, 1 for monocular camera and 2 for laser; f means fusion 

and b stands for back propagation.  

5. Experimental Results 

We conducted extensive experiments in the corridor just outside the control laboratory of the 

Electrical Engineering Department. The mobile robot platform used for experimental studies was the 

Pioneer 2DX mounted with a Canon VCC4 monocular camera, a SICK LMS200 laser rangefinder  

and a 16-sonar array. The camera was calibrated by the Calibration Toolbox (available online: 

http://www.vision.caltech.edu/bouguetj/calib_doc/) and the intrinsic parameters are listed in Table 1. A 

sequence of images as well a frame of laser data were collected when the mobile robot was moving 

with an average speed of 300 mm/s using ARIA and the OpenCV class library. The sampling time Ts 

for feature extraction and control values acquisition is 2 s. There were several people walking through 

the corridor at normal speed around the robot. Sometimes they slowed down or stopped completely at 

some place. After obtaining sensor data, we implemented the SLAM and sensor fusion offline in 

MATLAB environment on a desktop PC with Pentium 4 3.0 GHz CPU and 1G RAM. The experiments 

were designed to validate our sensor fusion strategy and data association algorithm. 
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Table 1. Intrinsic Parameters. 

Item Value 

Focal length fc = [365.12674   365.02905] 
Principal point cc = [145.79917   114.50956] 
Skew factor alpha_c = 0.000 
Distortion factor kc = [−0.22776, 0.36413, −0.00545, −0.00192, 0.000] 
Pixel std err = [0.10083   0.10936] 

5.1. Testing the Feature Fusion Strategy 

In this experiment, a person stood in front of the robot for few minutes shown in Figure 4(a). The 

size of ROI defined in Figure 2(a) is u: [0,320] pixel and v: [40,240] pixel. The extracted image lines 

with the endpoints in this ROI are illustrated in Figure 4(b). Also the segments obtained from laser 

sensor are displayed in Figure 4(c), and it can be seen that several laser segments, for example laser 

segment 4, are pseudo features which are related to the dynamic objects. It is clear that these pseudo 

laser segments can not be removed by the MM-estimate based method proposed in our previous work. 

To delete these pseudo features, by using the line feature fusion strategy describe in Section 4, we 

incorporated the image lines with the laser segments and tested all possible hypothesis to determine 

which laser segment is not the feature.  

Figure 4. Local mapping result at the 33rd sample time. (a) The original captured image.  

A person stood in front of the robot for a moment. (b) The extracted image lines and their 

endpoints in ROI. The cyan line is the first extracted one and numbered as 1. (c) The 

extracted laser segments within the HFOV and a pseudo segment (segment 4) related to 

standing person. (d) After integrating the lines information extracted from images, the 

incorrect segment was removed. 

 
(a) (b) 

 
(c) (d) 
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Table 2 lists the hypothesis test results. It can be seen that laser segment 4 did not match any image 

line and it can be eliminated from the set SFL.  

Table 2. The hypothesis test of feature fusion. 

Number of Segments from laser 
Number of lines in image 
1       2       3        4        5       6 

1 H1    ×      ×      ×      ×      × 
2 ×     ×      H1     ×      ×      × 

3 ×     ×      ×      H0     H1     × 
4 ×     ×      ×      ×      ×      × 
5 ×     ×      ×      ×      ×      H1 

× means no fusion process is implemented. H0 means the laser segments are assumed to assign to 
the noise, and H1 implies the laser segments probably are related to image line features. 

Additionally, it can be found that laser segment 3 correlated with image lines 4 and 5. This is 

because laser segment 3 concurrently located in the angle interval determined by image lines 4 and 5 

respectively. However, it only related to line 5 according to the fusion rule. We applied this feature 

fusion strategy in the whole EKF laser SLAM process and the result after feature fusion is shown in 

Figure 5.  

Figure 5. The laser SLAM results with the feature fusion. (a) The robot trajectory and the 

grid map plotted by the software of ActivMedia Co. using raw laser data; (b) The final 

built map using feature fusion where the part circled by the ellipse is enlarged to show the 

details. orange: the segment map after fusion; light gray: the grid map for comparison. 

 
(a) 
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Figure 5. Cont. 

 

(b) 

Figure 5(a) is the robot trajectory and grid map plotted by the software of ActivMedia Company 

with raw laser data. It is obvious that parts of grid map are contaminated by the walking persons. 

Those raw laser data corresponding to the moving objects lead to the extraction of pseudo laser 

segments. Fortunately, with the proposed feature fusion method they are almost removed, which is 

shown in Figure 5(b). And the grid map is overlaid in light gray color for comparison. Furthermore, it 

can be found in Figure 5(b) that a few of raw laser data related to the static segment features are lost in 

the final map.  

The reasons for this case are: one is the locations of these laser data are out of the HFOV of the 

camera, the other is the assumptions of proposed Bayesian fusion rule is strict (i.e., pessimistic 

condition) so that a segment related to the real static object is mis-deleted as the pseudo one. With this 

experiment, we can state that the feature fusion method is competent for disposing pseudo and 

confused features. 

5.2. Testing the Modified MPEF-SLAM 

We firstly ran two individual EKF SLAM: monocular SLAM and laser SLAM procedures in 

parallel mode. The state variable and its covariance obtained respectively from each individual SLAM 

were integrated to compute the fused state variable and related covariance of the MPEF-SLAM. 

Finally the fused state variable and covariance were propagated back to monocular and laser SLAM 

respectively for updating the individual state variables to improve the localization accuracy. Figure 6 

illustrates the covariance of the fused and individual robot pose. It can be seen that the covariance of 
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the position: xR and yR is obviously reduced after fusion. However, the covariance of the orientation R 

is similar to the value from laser SLAM, but it is more efficient than that from the monocular SLAM. 

This is because the covariance of the state variable in laser SLAM contributes more for computing the 

weighted matrix. 

Figure 6. The estimated covariance of fused and individual robot pose. red line: estimated 

covariance in laser SLAM; green line: estimated covariance in monocular SLAM; blue 

lines: estimated covariance in MPEF-SLAM. 

 

Figure 7. The estimated covariance of an endpoint of one line feature. Red line: estimated 

covariance in laser SLAM; Green line: estimated covariance in monocular SLAM; Blue 

lines: estimated covariance in MPEF-SLAM. 
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Figure 7 gives the results of covariance on an endpoint of one line feature. We note that the selected 

line features displayed in Figure 7 for validation are the ones always appearing in 40 consistent images 

during the experiment. It seems that the covariance of the line endpoints after sensor fusion is also 

reduced. With these experiments, we may state that the MPEF-SLAM decreases the covariance of state 

variables and increase the accuracy of localization. 

5.3. Testing the HTMDA 

In the defined ROI, we compute M and ΣM via the current captured image (labeled as image 2 in 

Figure 8) and one image stored in image sequence buffer, for example the previous image (labeled as 

image 1 in Figure 8). After that with the estimated M and ΣM we selected one pair of lines to 

demonstrate our HTMDA method. As shown in Figure 8, we marked endpoints as 1, 2 and projected 

intersection point as 3 for Line A of image 1. Those for Line B observed in image 2 are as 1’, 2’  

and 3’. According to Equation (5), we obtained the predictions of 2’ and 3’ stressed in red cross in 

image 2. It can be seen that the prediction of 2’ almost coincides with the 2’, and the prediction of 3’ 

locates at Line B but is a little bit far from 3’. The position of the prediction of endpoint 1’ is out of the 

bound of image 2. In this case, we may use condition (7) to decide if Line B is associated with Line A 

or not, but it is false. Hence the condition in Equation (8-1) has to be considered to test whether the 

predictions of 1’ and 3’ lie on Line B. Obviously this condition is true. Therefore, we can determine 

that the observed Line B in the captured image is matched with the Line A stored in the map.  

Figure 8. The endpoints and projected intersection point of the lines in the stored and 

captured images. The image 1 (on the left) is captured at the 57th sample time and the right 

one (image 2) is at the 58th sample time.  

 

Figure 9 shows the errors of HTMDA for the known endpoint 2 of Line A in Figure 8. Because 

there is no device in our present experimental conditions for detecting the ground truth of the features, 

we provisionally measured the truth value by hand as accurate as possible, which follows the process 

of [31]. Line A appears in around 20 sequential images. As displayed in Figure 9, the actual feature 

estimation errors are bounded within the 3 limits, which demonstrates the effectiveness and consistency 

of the proposed HTMDA.  

1’ 

Line A Line B 
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Figure 9. Errors between the actual and estimated location of endpoint 2 from 40th to 60th 

sample time. The 99% confidence limit is shown in red dash-dot line. 

 

6. Conclusions 

In this paper, we suggest a sensor fusion strategy including feature fusion and modified MPEF-SLAM 

modules for the SLAM task of autonomous mobile robots in dynamic environments. Our feature 

fusion policy incorporates the line features extracted by a monocular camera with the segments 

represented by robust regression model from a laser sensor, the purpose of which is to remove the 

potential pseudo laser segments corresponding to the moving objects. The modified MPEF-SLAM 

combines state variable estimates obtained from individual SLAM procedure (monocular and laser 

SLAM), and respectively propagates the fused state variable backward to each SLAM process to 

reduce the covariance of the state variable of individual SLAM furthermore improve the accuracy of 

localization. Additionally, for the data association problem in monocular SLAM we present a new 

method based on homography transformation matrix. It relaxes redundant computational procedures 

compared with the algorithm based on pixel by pixel computation. Experimental results verify the 

performance of the proposed sensor fusion strategy and data association algorithm. The planned future 

work will include improvement of the feature fusion module on how to use the laser data located 

outside the HFOV and extension of sensor fusion modules such as sensor management, active sensor. 

Another promising direction is on developing an online implementation for the proposed HTMDA and  

MPEF-SLAM algorithm by embedded hardware and technique. 
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Appendix 

The motion models for two SLAM procedures are identical and represented as: 

,...1,0;2,1;),( )()1(  kivf kk
i

kv
i

kv uxx  (12)

and the observation model is: 
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where the motion noise vk and measurement noise  are both zero mean random variables 

independent of each other and are not cross correlated. Their covariance matrices are Qk and  

respectively. i = 1,2 has the same meaning as stated in Section 4.2. To compare performances between 

fused and distributed filtering, the stacked measurement equation is: 
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and the covariance of the noise wk is given by: 
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Each individual EKF SLAM is:  
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where Fk and  are the Jacobian matrix with respect to the state variable xvk. From Equations (16,17), 

we have: 
1
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For the fused EKF SLAM, there are similar formulas: 
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where 1 2[( ,) ( ) ]T T T
k k kH H H . Also the covariance of the fused state variable is deduced as: 
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According to Equations (19) and (22), f
kkP | can be represented by i
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Multiplying zk at both side of Equation (21), we have: 

k
i

i
k

Ti
k

f
kkkk

T
k

f
kkk

f
k RHPRHPK zzz 



 
2

1

1
|

1
| )()(  (24)
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Substituting Equation (25) into Equation (24), and then substituting Equations (21) and (24) into 

Equation (20), we find: 
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Actually in each iteration, )( )1|(
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By Equations (18) and (27), Equation (26) is rewritten as: 
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It is necessary to note that Equations (23) and (28) manifest the relationship of the state variables as 

well as the covariance matrix in the fused and individual EKF SLAM. From Equation (28), the weight 

matrix for each individual state variable can be determined. That is:  
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If the latest fused state estimate f
kkv )|(x  is broadcasted to every individual state estimate as the back 

propagation (named feedback), we can prove that the covariance of state variable is reduced with this 

feedback but the performance of the fused EKF SLAM is unchanged with and without the feedback. 

To maintain the identity with [30], we apply the same symbols and assumptions, and the general 

symbols x̂ and P̂ mean the state variable and its covariance when the feedback is considered. 

Concerning the feedback, the individual and fused one-step predictions are:  
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Rewriting Equations (23) and (28) by using Equation (30) as: 
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Suppose that the initial values of state variable vector and covariance for fused and individual EKF 

SLAM are same, i.e., 

i
|

i
|

f
||

i
|

i
|

f
|| PPPP 0000000000000000

ˆˆ,ˆˆ  xxxx  (33)

and we also employ the assumptions listed in [30]: 
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At step k, substituting Equation (34) into Equation (31), we have: 
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Similar to Equation (19), we can get: 
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Substituting Equation (36) into Equation (35), we obtain: 







 
2

1

11
1|

1
| )()()(ˆ

i

i
k

i
k

Ti
k

f
kkkk HRHPP  (37)

In comparing with Equation (23), we claim that : 
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On the other hand, with assumptions above we get the following equations by substituting  

Equation (18) into Equation (15):  
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and Equation (21) into Equation (20): 
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With replacement of the related item in Equation (32) by Equation (39), and considering the 

conditions of Equation (34), the following derivation is obtained: 








 

2

1
)1|(

11
)1|(

1
|)|(

1
| )]()()()()[((ˆ

i

i
kkv

ii
k

Ti
k

i
k

i
k

Ti
k

f
kkv

f
kk

f
kkvkk hRHRHPP xzx)x

 








  

2

1
)1|(

11
)1|(

1
|)|(

1
|

(38)equation )]()()()()[(((
i

i
kkv

ii
k

Ti
k

i
k

i
k

Ti
k

f
kkv

f
kk

f
kkv

f
kk hRHRHPP xzx)x)  

(41)

Comparing Equations (40) and (41), we assert that: 

f
kkvkkv )|()|(ˆ xx   (42)

It is obvious from Equations (38) and (42) that the performance of fused EKF SLAM does not 

change in the presence or absence of feedback. However, when the feedback is allowed into the 

individual EKF SLAM, the fused covariance of the state variable is decreased. This result is verified  

as follows: by Equations (19) and (37) we have the equation: 
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It is easy to prove that Equation (43) is equal and larger than zero because ,...3,2,1-|1-1-|1-  kPP i
kk
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kk

  

(cf. [30]). Therefore, we have 1
1|

1
1|

1
|

1
| )()()()ˆ( 





  i

kk
f
kk

i
kk

i
kk PPPP , that is: 

i
kk

f
kk

i
kk

i
kk PPPP 1|1||| ,ˆ

   (44)

and also:  

i
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f
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which derives from Equations (19), (37) and (38) if and only if 1)( ) ( 0j j j

j i

T
r r rH HR 


 , for some  

r ≤ k − 1. Please refer to [30] for this condition in detail. 

It can be concluded that Equations (44) and (45) suggest that under a certain constraint the fused 

covariance of the state variable is reduced with the feedback. And when we use this fused state 

variables in SLAM, it will reduce the error of the localization and map features without changing the 

performance of individual EKF SLAM. 
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