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Abstract: Due to their weak received signal power, Global Positioning System (GPS) 
signals are vulnerable to radio frequency interference. Adaptive beam and null steering of 
the gain pattern of a GPS antenna array can significantly increase the resistance of GPS 
sensors to signal interference and jamming. Since adaptive array processing requires  
intensive computational power, beamsteering GPS receivers were usually implemented 
using hardware such as field-programmable gate arrays (FPGAs). However, a software 
implementation using general-purpose processors is much more desirable because of its 
flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR) 
with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is 
based on an optimized desktop parallel processing architecture using a quad-core  
Central Processing Unit (CPU) coupled with a new generation Graphics Processing Unit 
(GPU) having massively parallel processors. This GPS SDR demonstrates sufficient 
computational capability to support a four-element antenna array and future GPS L5 signal 
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processing in real time. After providing the details of our design and optimization  
schemes for future GPU-based GPS SDR developments, the jamming resistance of our 
GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses 
commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS 
applications requiring anti-jam capabilities. 

Keywords: Global Positioning System (GPS) sensor; software-defined radio; controlled 
reception pattern antenna (CRPA); radio frequency interference; parallel processing; 
Graphics Processing Unit (GPU) 

 

1. Introduction 

Since Global Navigation Satellite System (GNSS) sensors (e.g., Global Positioning System or GPS of 
the US [1,2], Galileo of Europe, GLONASS of Russia, and Compass of China) are widely used in many 
fields, including navigation, surveillance and precise timing, their vulnerability to radio frequency 
interference (RFI) is drawing significant attention. GPS RFI [3-5] is especially problematic for  
GPS-based safety-of-life services such as aviation. For example, GPS RFI was detected during the 
installation of a Ground-Based Augmentation System (GBAS) [6-10] ground monitor at Newark airport 
(EWR) on 23 November 2009 [11]. The installed GBAS can support GPS-based precision landing 
approach of aircraft down to 200 ft above the runway. Since then, many other GPS RFI events have been 
detected at Newark airport and the certification of that GBAS has been delayed. The RFI sources turned 
out to be personal “privacy jammers” in vehicles on the nearby highway, which are designed to 
overwhelm weak GPS signals by transmitting signals in the GPS L1 frequency (1.575 GHz). 

In order to guarantee the integrity and availability of civil aviation under GPS RFI, the United 
States Federal Aviation Administration (FAA) has recently initiated an effort called Alternative 
Position Navigation and Timing (APNT) to provide a navigation system for aviation that can provide 
many of the operational capabilities that will be enabled by GPS [12,13]. The aim of APNT is to 
provide robustness for the US National Airspace to GPS outages due to RFI and other events. Among 
various GPS anti-jamming technologies, an adaptive beamsteering GPS receiver has been proposed for 
robust time synchronization between terrestrial assets used by APNT, such as Ground Based 
Transceivers (GBTs), even under GPS RFI [14,15]. 

Since ground stations are stationary, in principle one tracked satellite is adequate for time transfer. 
However, if a beamsteering GPS receiver can steer directed beams towards all GPS satellites in view 
and reject RFI adaptively as presented in this paper (Figure 1), it could be potentially used for many 
other applications such as hardening GBAS ground facilities. Mitigation of RFI for generic GPS 
applications using adaptive antenna arrays has been previously studied (e.g., [16-18]). In order to use a 
controlled reception pattern antenna (CRPA) array for high-integrity GPS applications such as aircraft 
landing guidance [19], the system should satisfy four quality requirements which are accuracy, 
integrity, availability, and continuity [20]. Several researchers have studied the feasibility of using 
CRPA for high-integrity GPS applications [21-23]. 
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The development of GPS software-defined radio (SDR) [24,25] has been beneficial for studying 
adaptive beamsteering GPS receiver technology as well [26]. A software implementation of a GPS 
receiver is more desirable than a traditional hardware implementation using field-programmable gate 
arrays (FPGAs) or application-specific integrated circuits (ASICs) for multiple reasons. First, such an 
implementation has higher flexibility and shorter development time, allowing new algorithms to be 
quickly implemented and tested. Second, a software implementation that can run on commercial  
off-the-shelf (COTS) general-purpose processors makes the technology more cost effective and 
accessible for the civil consumer market. Although a real-time GPS SDR requires extensive 
computational power, real-time GPS L1 SDRs using COTS general-purpose processors has been 
developed by several researchers (e.g., four tracking channels for GPS in 2001 [27] and 24 tracking 
channels for GPS and Galileo in 2006 [28]).  

Figure 1. Illustration of the functionality of our GPS SDR for processing a four-elememt 
controlled reception pattern antenna (CRPA) array. The receiver adaptively rejects 
jammers while steering high gains toward all GPS satellites in view. 

 

However, development of a real-time GPS SDR for CRPA is still challenging because adaptive GPS 
beamsteering processing requires much more computational power than a conventional GPS receiver. 
We are not aware of a previous real-time GPS SDR development for CRPA with all-in-view satellite 
tracking capability. Chen et al. [29] presented a real-time beamsteering GPS SDR for robust time 
transfer for APNT. Since the receiver is only for a time transfer application, it makes a direct beam 
toward a single satellite (i.e., single-beamsteering-channel SDR). The receiver processes intermediate 
frequency (IF)-sampled data with 16 Msps (mega samples per second) rate (16 Msps real samples). This 
sampling rate is sufficient for GPS L1 C/A signals because L1 C/A-code bandwidth is about 2 MHz, but 
it is not enough for future GPS L5 signals whose code bandwidth is about 20 MHz. Further, 2-bit 
sampling resolution of this previous work does not provide necessary dynamic range for anti-jamming 
applications. In this paper, we present a novel SDR architecture for GPS anti-jamming reference station 
receivers with CRPA using COTS general-purpose parallel processors. The GPS SDR for CRPA 
presented in this paper has capabilities far exceeding those described in this previous work.  
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We achieved required computational power by parallel processing on a new generation  
general-purpose Graphical Processing Unit (GPU) and a novel design scheme (see [30] for the 
evolution of GPUs for general-purpose computing). Among many applications, GPUs can be used  
for sensor systems which require significant processing power (e.g., [31]) because GPUs provide  
very high computational throughput from their massive number of threads. GPU-based GPS SDRs 
without beamsteering capability have been previously developed by several researchers [32-35]. 
Knezevic et al. [32] developed an 8-channel GPS SDR capable of processing 40 Msps and 8-bit 
resolution data in real time using a single-core 3.0 GHz CPU and an NVIDIA GeForce 8800 GTX 
GPU. Hobiger et al. [33] developed a real-time GPS SDR supporting 12 channels with 8 Msps and  
4-bit resolution data using an Intel Core 2 Q9450 CPU and an NVIDIA GeForce GTX 280 GPU. 
Cailun et al. [34] stated that they developed a GPS SDR running 150 channels with 5 Msps and 14-bit 
resolution data using an Intel Xeon 5150 CPU and an NVIDIA GeForce GTX 285 GPU, however their 
paper does not present the design details. All these developments in [32-34] utilized GPUs for 
correlation operations for code tracking. On the other hand, Pany et al. [35] used an NVIDIA GTX 480 
GPU to expedite GNSS signal acquisition. The GPUs that have been used by these previous studies are 
summarized in Table 1. 

Table 1. Comparison of GPUs which have been used for GPS SDRs in the literature.  
The specifications of GPUs are selected from Table A-1 of [36]. 

 
Compute 

Capability 
Number of 

Multiprocessors 
Number of 

CUDA Cores 
Previous GPU-based GPS 

SDR Development 
GeForce 8800 

GTX 
1.0 16 128 

8 channels, 40 Msps, 
8-bit resolution [32] 

GeForce GTX 280 1.3 30 240 
12 channels, 8 Msps, 
4-bit resolution [33] 

GeForce GTX 285 1.3 30 240 
150 channels, 5 Msps, 
14-bit resolution [34] 

GeForce GTX 480 2.0 15 480 Acquisition only [35] 

Our GPS SDR for CRPA presented in this paper has 12 beamsteering channels for all-in-view 
satellite tracking (Figure 1), and it processes IF-sampled data at a 40 Msps rate (20 Msps inphase and 
quadrature samples) which enables future GPS L5 signal tracking whose bandwidth is ten times wider 
than the L1 C/A-code bandwidth. Further, our receiver processes digitized samples with 14-bit 
resolution. Although most commercial GPS receivers process 2-bit resolution data, more dynamic 
range is required for anti-jamming applications. As a very rough comparison, the GPU-based SDR  
in [34] effectively processes 750 Msps (5 Msps data and 150 tracking channels), but our GPU-based 
SDR for CRPA effectively processes 2,400 Msps (40 Msps data and 60 tracking channels because  
12 channels for each antenna element of a four-element array and additional 12 channels for 
beamsteering). In addition, our receiver calculates signal covariance matrix for adaptive interference 
rejection which requires additional computational power. To the authors’ knowledge, a real-time 
capable GPS SDR for CRPA with comparable functionalities on general-purpose CPU and GPU has 
not been previously demonstrated.  
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This paper is organized as follows: Section 2 presents our GPS SDR architecture and discusses the 
computational challenges in detail. Our SDR design with a real-time phase calibration feature 
considers a GPS reference station receiver under RFI. Since a CRPA array is more voluminous than a 
conventional patch antenna, GPS infrastructure receivers such as differential GPS (DGPS) reference 
station receivers are more likely to support CRPA than mobile users. Section 3 explains our 
implementation details using an Intel Core i7 950 CPU and an NVIDIA GTX 480 GPU. Although a 
modern GPU can easily run thousands of threads in parallel, each GPU thread is not as powerful as a 
CPU thread. Roughly speaking, a CPU is more powerful for serial processing and a GPU is more 
powerful for parallel processing. In our SDR design, computational loads are balanced between CPU 
and GPU by considering their strengths. After discussing anti-jamming performance of the GPS SDR 
for a four-element CRPA in Section 4, conclusions are given in Section 5. 

2. GPS SDR Architecture for CRPA Processing and Computational Challenges 

Adaptive array processing starts from phase calibration between antenna elements for each satellite 
tracking channel. Once the carrier phases of all antenna elements are aligned, signal-to-noise-density-ratio 
(C/N0) of the corresponding satellite channel can be enhanced by combining all phase-aligned signals 
(i.e., high antenna gain, or beam, would be formed toward the satellite). One method of phase 
alignment is to use array synthesis techniques that consider array orientation, baseline geometry, 
satellite constellation, line biases, filter delays, etc. Furthermore, antenna anisotropy and mutual 
electronic coupling between antenna elements should be considered for precise phase alignment.  
In our experience this method is considerably more difficult than our method illustrated in Figure 2. 

Figure 2. Inter-channel phase alignments using independent satellite tracking channels for 
each antenna element. Different array steering vectors are obtained at each epoch for 
different satellites (i.e., 12 different steering vectors for our GPS SDR supporting  
12 beamsteering channels). 
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Figure 2 shows phase alignment of one satellite channel as an example. Four antenna elements 
independently track the same satellite. Then, a carrier phase of each antenna for the satellite (i.e., 1φ , 

2φ , 3φ , and 4φ ) is obtained from its tracking loop. Now phase alignment can be done by simple phase 
rotation with phase difference between each antenna and a reference antenna (i.e., 1 1 1 0φ φ φΔ = − = , 

2 2 1φ φ φΔ = − , 3 3 1φ φ φΔ = − , and 4 4 1φ φ φΔ = − ). This phase alignment method is conceptually 
straightforward, but it has several limitations. For each satellite tracking, five independent tracking 
channels are required for a four-element array system (i.e., four tracking channels for four antenna 
elements and one tracking channel for a synthesized beamsteering signal). Thus, five-times more 
computational power than for a conventional receiver is required. This method is applicable for mobile 
GPS receivers with CRPA to reduce multipath effects by forming high antenna gains in the directions 
of direct signal paths from satellites. However, this method may not be useful for mobile users under 
strong RFI because tracking channels for a single antenna element can lose lock under RFI, and thus 
phase differences between antenna elements cannot be calculated on-the-fly.  

As mentioned in Section 1, the applications of our anti-jamming GPS SDR for CRPA are GPS 
ground station receivers such as time transfer receivers for GBTs, GBAS ground facility receivers, and 
DGPS reference station receivers. Since these receivers are stationary, the simple phase alignment 
method is still applicable even under RFI. When RFI does not exist, which is a usual condition, an 
array steering vector, *T , for each satellite can be obtained by independently tracking each antenna 
element as in Figure 2. Then, the array steering vectors are stored as a lookup table with time stamps. 
Since GPS satellite ground tracks repeat in a known basis, the stored array steering vectors can be used 
for a stationary GPS receiver when RFI makes the on-the-fly phase alignment impossible. Again, this 
method is not adequate if a GPS receiver with CRPA is not stationary. 

Once array steering vectors are given, an adaptive RFI cancellation algorithm is applied as in Figure 3. 
Among two algorithms reviewed in [37], the minimum-variance distortionless-response (MVDR) 
algorithm [38] is applied in this paper. The optimal weight vector, W , in MVDR processing is 
estimated by Equation (1). The measurement vector, X , is composed of the digitized signals right 
after the analog-to-digital converter in our implementation, but it can be the sample vector after carrier 
wipeoff for pre-correlation adaptation or the inphase and quadrature prompt correlator output vector 
for post-correlation adaptation [Ф in Equation (1) is a signal covariance matrix and μ is a signal power 
scaling factor. The * operator represents complex conjugate]: 

*

1 *

TE

μ −

⎡ ⎤≡ ⎣ ⎦
=

Φ X X

W Φ T
 (1) 

For computational efficiency, a propagating approach to update weight vector by Equation (2) is 
implemented in our SDR [37]. This approach does not require to calculate an inverse of Ф (γ is a 
misadjustment parameter which controls convergence speed and steady-state misadjustment): 

1

*

n n n

n n nγ μ
+ = + Δ

⎡ ⎤Δ = −⎣ ⎦

W W W

W T Φ W
 (2) 
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Figure 3. Adaptive RFI cancellation by MVDR processing with given array steering 
vectors from the phase alignment in Figure 2. 

 
 

Before discussing the required computational power for our GPS SDR for a four-element CRPA, 
the number of multiplications and additions for a conventional GPS SDR with a single antenna is 
calculated as follows (see Table 2 for summary). The carrier wipeoff is a complex multiplication of 
digitized input signals and receiver-generated carrier samples (this is not simply two real 
multiplications because input signal is a complex signal with inphase and quadrature samples). Since 
one input sample takes four multiplications and two additions of real numbers for the carrier wipeoff 
as shown in Equation (3), the total number of multiplications and additions for N inphase samples and 
N quadrature samples per millisecond is 6N: 

( )( ) ( ) ( )a jb c jd ac bd j ad bc+ + = − + +  (3) 

Table 2. Comparison of the required number of multiplications and additions for the GPS 
SDR for CRPA in this paper and a conventional GPS L1(C/A) SDR. N is the number  
of inphase or quadrature samples per millisecond (NL5 = 10 NL1). NL5 = 20,000 is used in 
this work. 

 GPS SDR for  
four-element CRPA 

Conventional  
GPS SDR 

Carrier and code wipeoff 1,080 NL5 216 NL1 
Data synthesis by weighting 360 NL5 N/A 
Covariance calculation 64 NL5 N/A 

The code wipeoff is the correlation of signals after the carrier wipeoff and receiver-generated  
C/A code replica samples. A correlation of N input inphase samples and N code replica samples takes 
N multiplications and N − 1 additions. Since N is much larger than 1, approximately 2N multiplications 
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and additions are required for inphase samples. Usually, a GPS receiver correlates incoming signals 
with an early, a prompt, and a late code replica. Thus, 6N operations are performed for inphase 
samples. The same operations are performed for quadrature samples, so the total number of operations 
is 12N. Considering both carrier and code wipeoff, 6N + 12N = 18N multiplications and additions are 
required every millisecond for a single tracking channel of a conventional GPS SDR, where N is the 
number of inphase or quadrature samples per millisecond. For a 12-channel SDR, 12 × 18N = 216N 
multiplications and additions are required. Other operations such as tracking and position calculation 
are neglected in this simple analysis because those operations are not as computationally expensive as 
the carrier and code wipeoff. The carrier and code generation operations are not included in the 
number of operations calculation because lookup tables are used instead of generating code and carrier 
on-the-fly. 

In our GPS SDR for a four-element CRPA, five tracking channels are necessary for each 
beamsteering channel due to the on-the-fly phase calibration. Thus, the cost of carrier and code 
wipeoff is 5 × 216N = 1,080N. For beamforming, input data from four antennas should be combined 
together with proper weights. Weighting is complex multiplications as in Equation (3), and N inphase 
and N quadrature samples per antenna requires 6N multiplications and additions for weighting. Thus, 
the weighting of four-antenna data costs 4 × 6N = 24N. After weighting each antenna data, all 
weighted data need to be added together, which requires 3N additions for inphase samples and 3N 
additions for quadrature samples per beamsteering channel. Thus, 12 × (24N + 3N + 3N) = 360N. 
operations are required for 12 beamsteering channels having 12 different weight vectors.  

The MVDR processing requires signal covariance matrix calculation. The measurement vector X  
in Figure 3 and Equation (4) is a 4-by- N  complex matrix. The calculation of ABT in Equation (4) 
takes approximately 32N multiplications and additions (N multiplications and N-1 additions for each 
element of ABT which has 16 elements), but the calculation of AAT or BBT takes about a half 
operations because of its symmetry. Thus, X*XT costs approximately 16N + 16N + 32N) = 64N.  

* ( )( ) ( ) ( )T T T T T T Tj j j= − + = + + −X X A B A B AA BB AB A B  (4) 

Therefore, the total number of multiplications and addition for the carrier and code wipeoff, data 
synthesis, and covariance calculation for our GPS SDR for a four-element CRPA is approximately 
1,080N + 360N + 64N = 1,504N. This required number of operations per millisecond is significantly 
larger than the number of operations of a conventional 12-channel and single-antenna GPS SDR, 
which is 216N (Table 2). Since GPS L5-code bandwidth is ten times wider than GPS L1 C/A-code 
bandwidth, the sampling rate for L5 processing should be ten-times higher and thus the number of 
digitized samples per millisecond would be ten-times more. Our GPS SDR is designed to process  
40 Msps for future L5 processing. Hence, the required computational cost of our SDR for CRPA is 
about 70-times higher than a 12-channel single-antenna GPS SDR processing 4 Msps L1 C/A signals 
as shown in Equation (5):  

5 1

1 1

1504 1504 10 69.63
216 216

L L

L L

N N
N N

×= =  (5) 

If a GPS SDR processes only 2-bit resolution data, the bitwise-parallel correlation algorithm  
in [39] can reduce the computational burden. The bit-wise parallel correlation is known to be about 
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twice as fast as a conventional integer correlation. However, an anti-jam GPS SDR for CRPA requires 
more dynamic range and our SDR processes 14-bit resolution data. In this case, the bitwise-parallel 
correlation scheme does not provide any benefit. 

Although current CPUs in the market are very powerful, it is very unlikely we will have a CPU 
whose single thread can run 70 GPS L1 SDRs simultaneously in the foreseeable future. Even modern  
multi-threaded C/C++ codes on a quad-core CPU in [29] could not achieve this much computational 
power. As a more powerful general-purpose processor specifically designed for parallel processing,  
a GPU can share significant computational burden as a co-processor. Nevertheless, GPU-based GPS 
SDRs in the literature (Table 1) do not seem to demonstrate enough computational power for the 
CRPA processing explained in this section. Although a rigorous comparison between different GPS 
SDR performances is not possible without profiling the source codes, rough comparisons can still be 
made. For example, the 8-channel, 40 Msps GPS SDR in [32] is not enough for the CRPA processing 
of this paper which requires correlation operations of 60 channels with 40 Msps data. The 150-channel, 
5 Msps GPS SDR in [34] can simultaneously run roughly less than 20 GPS L1 SDRs with 12 channels 
each, but it is not enough for the CRPA processing which requires the computational cost of about  
70 GPS L1 SDRs [Equation (5)].  

However, these GPUs have compute capability 1.x (Table 1) and these SDR performances could be 
enhanced by using new generation GPUs of compute capability 2.x. Although backward compatibility 
is guaranteed, performance enhancement by a new generation GPU is limited if unmodified source 
codes designed for a previous generation GPU is used, because the new generation GPUs of compute 
capability 2.x have a very different architecture called Fermi architecture [40]. In order to take full 
advantage of Fermi architecture, we specifically designed our GPU-based GPS SDR for CRPA in a 
way to maximize the utility of new resources from the new GPU architecture. The GPU of compute 
capability 2.0 used in this work is NVIDIA GeForce GTX 480 which was released in March 2010.  

Although a GPU can provide more computational throughput than a CPU, certain tasks may not be 
readily parallelizable for GPU processing. More important, it is not desirable to idle a CPU while a 
GPU performs its tasks. Thus, a wise use of CPU in parallel with GPU can always improve the SDR 
performance. In our design, the computational burden is shared by multi-threading on a quad-core 
CPU. In this way, a multi-core CPU provides thread-level parallelism in addition to the hardware 
parallelism as a different hardware from GPU. The novel GPS SDR implementation by parallel 
processing on CPU and GPU is detailed in the next section. 

3. GPS SDR Design for CRPA Using General-Purpose Parallel Processors 

3.1. Hardware Setup 

The entire receiver processing after the analog-to-digital converters in Figures 2 and 3 is performed 
on general-purpose processors in our SDR implementation. Four Trimble Zephyr antennas are used as 
an ad hoc CRPA array (Figure 4). GPS L1 signals from four antennas are down-converted to baseband 
and digitized by four commercial digitizers (Universal Software Radio Peripheral 2, or USRP2, from 
Ettus Research LLC).  
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For raw data recording, the sampling rate of each USRP2 is set to 40 Msps (20 Msps inphase and 
quadrature samples). Each sample size is 2 byte with 14-bit resolution. Although a 40 Msps rate is 
adequate for GPS L5 signal processing, only one GPS satellite is transmitting a healthy L5 signal as of 
July 2011. Thus, it is not possible to demonstrate 12-channel GPS L5 SDR processing with live signals. 
As an alternative, we process L1 signals with 40 Msps rate to demonstrate the SDR’s computational 
capability for future real-time L5 processing. Otherwise, it is unnecessary to process L1 signal with  
40 Msps rate because L1 C/A-code bandwidth is only 2 MHz. However, it is slightly optimistic to 
directly transfer the 40 Msps L1 C/A-code results in this paper to L5 because L5 has data and pilot 
signals, longer codes, and a secondary code, which are not considered in the L1 C/A-code tracking. 

The digitized samples are streamed via gigabit Ethernet to solid state disks (SSDs) within 
computers. SSDs are used because streamed data rate from each antenna is 80 MB/s which is higher 
than the writing rate of conventional hard disks. After storing four-antenna data in SSDs, the real-time 
computational capability of our GPS SDR for CRPA is demonstrated by replaying the stored data 
faster than real time. The COTS general-purpose parallel processors (CPU and GPU) used for the GPS 
SDR are shown in Figure 4. 

Figure 4. Hardware setup for GPS SDR for four-element CRPA processing. 

 

3.2. GPU-Based Parallel Correlator 

The basic design idea of the GPS SDR for CRPA is to maximize parallelism in receiver architecture. 
As discussed in Section 2, the carrier and code wipeoff has the biggest computational load (1,080N 
multiplications and additions every millisecond, in other words 1,080N/1,504N ≈ 72% of total 
computational load, N = 20,000 in our case) but it can be highly parallelized. Compute Unified Device 
Architecture (CUDA) is NVIDIA’s parallel computing architecture, and we use a CUDA-enabled GPU 
to perform the carrier and code wipeoff operations. Figure 5 illustrates our GPU-based parallel 
correlator. Our GPU code is written in CUDA C programming language [36,41].  
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Figure 5. GPU-based parallel correlator design. The operations of single thread block  
(256 threads) on inphase data with a prompt C/A code replica are illustrated here. Thread 
blocks perform similar operations every millisecond on quadrature data with an early and a 
late code replica as well. Total 27 thread blocks are needed for each tracking channel, and 
total 60 tracking channels are needed for the CRPA processing. 

 
 

The GTX 480 GPU used in this work has 15 multiprocessors and 480 CUDA cores (Table 1). Since 
each multiprocessor of GPUs of compute capability 2.x can have 1,536 active threads (Table 3), the 
GTX 480 GPU can have 1,536 × 15 = 23,040 active threads.  

Table 3. Technical specifications and feature support per compute capability (Selected 
from Tables F-1 and F-2 of [36]). 

 Compute Capability 
1.0 1.1 1.2 1.3 2.x 

Maximum number of resident thread blocks per multiprocessor 8 
Maximum number of resident warps per multiprocessor 24 32 48 
Maximum number of resident threads per multiprocessor 768 1024 1536 
Number of 32-bit registers per multiprocessor 8 K 16 K 32 K 
Maximum amount of shared memory per multiprocessor 16 KB 48 KB 
Number of shared memory banks 16 32 
Amount of local memory per thread 16 KB 512 KB 
Maximum number of threads per block 512 1024 
Atomic addition operating on 32-bit floating point values in 
global and shared memory 

No Yes 

However, this maximum possible GPU occupancy may not be achieved for various reasons. The 
GPU occupancy is determined by the number of threads per thread block, the number of registers used 
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per thread, and the allocated shared memory per thread block. Once these three design parameters are 
determined, the GPU occupancy of the design can be calculated using the CUDA GPU occupancy 
calculator [42]. After several design iterations, we assign 256 threads (or eight warps) per thread block 
and five thread blocks per multiprocessor. In CUDA, threads are executed in groups of 32 threads. 
This 32-thread group is called a “warp”. A multiprocessor of GTX 480 can have 48 active warps 
(Table 3). Thus, when each thread block has eight warps and six thread blocks are assigned to each 
multiprocessor, a 100% GPU occupancy (i.e., all 48 warps in use) can be achieved. However, our 
design is limited by the number of registers per multiprocessor (the physical limit is 32 K registers per 
multiprocessor as shown in Table 3) and only five thread blocks can be assigned to each 
multiprocessor. Hence, 5block / multiprocessor 8 warp / block 40 warp / multiprocessor× =  are assigned. 
The GPU occupancy in this case is 40 warp / 48 warp 83.33%= . 

If we can reduce the number of assigned registers per thread, the occupancy can be increased, but it 
is generally difficult to reduce the number of register variables in source code while performing  
the same task. The maximum number of registers per thread can be manually forced using  
‘–maxrregcount’ flag at compile time. Although this flag may force to decrease register usage and 
increase the occupancy, it does not always improve performance for two reasons. First, spilled 
registers are stored in much slower local memory. Second, higher occupancy above a certain point 
does not improve performance (Chapter 4 of [43]). We force 24 registers per thread using this flag and 
it results in the best performance in our case. 

According to Section 3.2.6 of [43], as many as 24 warps (768 threads) per multiprocessor (i.e., 50% 
occupancy) are required to completely hide the latency of registers’ read-after-write dependencies. If 
occupancy is more than 50%, it may not be necessary to further optimize parameters to obtain even 
higher occupancy. Note that the GTX 480 GPU has 480 CUDA cores (Table 1), which is theoretically 
capable of performing 480 16-bit floating-point operations (multiply, add, or multiply-and-add) per 
clock cycle. With the 83.33% occupancy, one multiprocessor has 1,536 × 83.33% = 1,280 active 
threads, and the GTX 480 GPU with 15 multiprocessors (Table 1) has 1,280 × 15 = 19,200 active 
threads. Thus, it is clear that CUDA cores cannot perform operations on all active threads 
simultaneously at the same clock cycle. However, it is important to generate large number of active 
threads to hide memory latency. In this way, CUDA cores would continuously have enough threads to 
process while other threads wait for memory reading. (Hiding memory latency in GPU will be further 
discussed in Section 3.4.) 

3.2.1. Memory Space on a CUDA Device 

Before explaining the correlator design in Figure 5, we briefly review the memory space on a 
CUDA device. Figure 6 illustrates a host computer and a graphics card, or “device”, with the GTX  
480 GPU. In order to process data in the memory of a host computer using GPU, the data must be 
copied over to the global memory of a device. The data bus for the GTX 480 GPU is PCI-E 2.0 × 16 
whose maximum bandwidth is 16 GB/s. Once the data is copied from host memory to device global 
memory, multiprocessors in GPU access the data in global memory for processing. The theoretical 
maximum global memory bandwidth of the GTX 480 GPU is 177.4 GB/s [44]. This number is 
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calculated in Equation (6) based on its specification. Its memory interface width is 384 bit. Memory 
clock is 1,848 MHz and it is a double data rate (DDR) memory: 

1384 bit Byte/bit 1848MHz 2 177.4GB/s
8

× × × =  (6) 

Local memory is also placed in DRAM and it is for large structures and arrays or spilled registers. 
If a GPU code, or “kernel”, requests more than available registers, those variables are placed in local 
memory.  

Figure 6. Memory space on a host computer and a CUDA device. Constant memory and 
texture memory on a CUDA device are not shown here because they are not used in our 
SDR implementation. 

 

DRAM access has high latency due to limited bandwidth, but on-chip memory access is much faster. 
The latency of uncached on-chip shared memory is roughly 100 times lower than the latency of global 
memory (Section 3.2.2 of [43]). On-chip registers also have low latency. Therefore, a basic optimization 
strategy is to minimize high latency memory access such as host-to-device memory copy and global 
memory access. Memory latency is not usually a problem for CPU because it has a sophisticated and 
optimized cache hierarchy. GPU is optimized for high processing throughput instead and it has weakness 
on tasks requiring high memory access but low computational intensity. In terms of processing 
throughput, the theoretical maximum throughput of 32-bit floating-point operations on the GTX  
480 GPU is 1.34 Tflops (Tera floating-point operations per second), which is about ten times higher than 
the throughput of modern CPUs (See Figure 1-1 of [36]). The theoretical maximum throughput of GTX 
480 is calculated in Equation (7) based on its specifications [44]. Each CUDA core can perform one  
16-bit multiply-and-add operation (i.e., two 16-bit floating-point operations) per clock cycle: 

480cores 1401MHz 2flop/core/cycle 1.34Tflops× × =  (7) 

3.2.2. Data Copy and Synthesis for Beamforming 

Every millisecond, raw inphase and quadrature samples in the host memory are copied to the device 
global memory for the carrier and code wipeoff by GPU (Figure 5). The latency of this host-to-device 
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memory copy can be hidden by running the GPU direct memory access (DMA) engine and compute 
engine in parallel, which will be discussed in Section 3.3. However, the global memory access latency 
is still a major design concern. General optimization practice to minimize global memory access is to 
access global memory once and store the read data in on-chip shared memory for later processing 
because shared memory access is much faster. As shown in Table 3, a new generation GPU of 2.x 
compute capability has three times larger shared memory per multiprocessor than previous generations, 
but it is still a very limited resource (48 KB per multiprocessor). In our implementation,  
five thread blocks are assigned in each multiprocessor, so each thread block can use up to 9.6 KB 
shared memory. Thus, we copy 768 inphase samples and 768 quadrature samples, and 788 C/A code 
values (total 9.3 KB) from global memory to shared memory every millisecond (Figure 5). Note that 
20 more samples, which is equivalent to one C/A code chip, are copied for C/A code than the number 
of inphase or quadrature samples because we need an early and a late C/A code replica, which are 
separated by one C/A code chip, in addition to a prompt replica. 

It is also an important optimization practice to minimize divergent warps (Section 6.1 of [43]).  
If threads within the same warp follow different execution paths, processing throughput would be 
impacted. For this reason, the number of assigned samples (768 samples) is taken as a multiple of the 
number of threads (256 threads) in a thread block so that every thread can perform identical operations 
on different data samples assigned to each thread. Although 788 C/A code values are stored in shared 
memory, appropriate 768 samples are selected as an early, a prompt, and a late code replica. If we 
copy 256 more samples of inphase, quadrature, and C/A code to shared memory, it does not fit into  
9.6 KB limit. 

During the data copy from global memory to shared memory, aligned coalesced global memory 
access is highly desirable (Section 3.2.1 of [43]). Coalesced memory access is achieved by thread 
indexing so that adjacent threads can access adjacent 16-bit integer samples in global memory (the 
inphase and quadrature samples in global memory are 16-bit integers from analog-to-digital converters. 
These 16-bit integers are copied to shared memory as 32-bit floating-point numbers for further GPU 
processing). However, aligned access with a 128-byte memory segment is not guaranteed in our design. 
Since each tracking channel experiences different Doppler frequency, the C/A code boundary of each 
channel in the inphase and quadrature sample stream is not aligned. Thus, we need to copy 1 ms 
samples (20,000 inphase and 20,000 quadrature samples) for each tracking channel with different 
starting point in global memory and the starting point may not be aligned with a 128-byte memory 
segment. If the global memory access is not aligned with a 128-byte segment, two 128-byte memory 
transactions for each 128-byte access by a warp would be performed by the default setting of compute 
capability 2.x devices (Section F.4.2 of [36]). 

The synthesis of raw data from four antenna elements with proper weights is an essential part of the 
GPS CRPA processing (Figures 2 and 3). Following the discussion in Section 2, the data synthesis 
would take 360 /1504 24%N N ≅  of total computational load if the whole processing is serialized 
(Table 2). In our implementation, the data synthesis is done in parallel by massive number of active 
threads (19,200 threads as shown earlier in Section 3.2). This parallelism is realized by multiplying 
appropriate weights to the inphase and quadrature samples by each thread while the data is copied 
from global memory to shared memory. Since the memory copy operation is already performed in 
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parallel by massive number of threads, the data synthesis can be also performed in parallel by adding 
simple multiplications and additions in each thread during the copy operation. 

3.2.3. Carrier and Code Wipeoff 

After the data copy and synthesis in Figure 5, the carrier wipeoff is performed. Since shared 
memory space is not sufficient to store sine and cosine values in addition to data samples and C/A 
code values, the necessary sine and cosine values are directly accessed from global memory. Sine and 
cosine values are not numerically calculated in our implementation to reduce computational burden. 
Instead, lookup tables are stored in global memory. These lookup tables have sine and cosine values 
within a possible carrier frequency range at baseband (−10 kHz to 10 kHz) with a 10 Hz resolution. 
The reason to use the limited shared memory to store C/A code values rather than sine and cosine 
values is that each C/A code value is accessed three times–once for an early, a prompt, and a late 
replica while sine and cosine values need to be accessed once. Thus, it is more beneficial in terms of 
reducing total global memory access to use shared memory for C/A code values rather than sine and 
cosine values.  

Once the carrier wipeoff is completed, the code wipeoff is performed (Figure 5). At this stage, the 
C/A code values and the inphase and quadrature samples after the carrier wipeoff are already stored in 
shared memory. Thus, their access latency is roughly 100 times lower than global memory access if 
there are no shared memory bank conflicts (Section 3.2.2 of [43]). The GTX 480 GPU has 32 shared 
memory banks (Table 3). Since consecutive 32-bit words are assigned to consecutive banks, 
consecutive data samples (32-bit floating-point numbers in our SDR) are assigned to consecutive 
banks. If different threads access different banks simultaneously, bank conflicts do not occur and 
shared memory accesses can be parallelized. By appropriate thread indexing for linear addressing 
(consecutive threads access consecutive 32-bit data samples as in Figure F-2 of [36]), we remove 
shared memory bank conflicts. Now the code wipeoff operation can be done very efficiently without 
further global memory access or bank-conflicted shared memory access.  

3.2.4. Parallel Reduction in Reallocated Shared Memory 

Once the carrier and code wipeoff is completed, the input inphase and quadrature data and a C/A 
code replica in shared memory are no longer used by the parallel correlator. Hence, the valuable 
resource, shared memory, is reallocated for the next operation. The next operation to complete 
correlation in Figure 5 is to sum the obtained values after the carrier and code wipeoff. Parallel 
reduction is a well-known parallel algorithm for fast summation of many values. Figure 7 shows a 
simple example of parallel reduction for summation of four numbers. Thread 1 adds numbers 2 and 3, 
and thread 2 adds numbers −1 and 1 at the same instruction cycle in this example. Note that adjacent 
threads accesses adjacent numbers (i.e., 2 and −1, or 3 and 1) to prevent shared memory bank conflicts. 
If thread 1 adds numbers 2 and −1, and thread 2 adds numbers 3 and 1, bank conflicts would occur. 
(See [45] for detailed discussion of optimized parallel reduction algorithms in GPU.)  
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Figure 7. Simple example of parallel reduction for the summation of four numbers. 

 

Before the parallel reduction in Figure 5, each thread sums three values and assigns the sum to the 
reallocated shared memory. Thus, 256 numbers per thread block are ready for parallel reduction. The 
number of samples for parallel reduction should be a power of 2 because a half of the numbers are 
added to the other half of the numbers every instruction cycle. At the first instruction cycle, threads 1 
through 128 add two numbers each. At the second instruction cycle, threads 1 through 64 add two 
numbers each, and so forth. Hence, 256 numbers are added after eight instruction cycles in this parallel 
algorithm, which is much faster than 255 instruction cycles of serial summation. This parallel 
reduction should be performed in shared memory rather than global memory because the algorithm 
requires repeated memory access. Once the summation is completed, the accumulated number is stored 
as the first element of the 256-element array used for parallel reduction.  

Since 27 thread blocks perform the correlation operation for one tracking channel, the result of 
parallel reduction of each thread block should be added together for a final result. Different thread 
blocks cannot communicate each other via shared memory. Thus, those numbers are atomically added 
to a variable in global memory in our implementation. Atomic addition of 32-bit floating-point 
numbers in global memory is supported by compute capability 2.x (Table 3). Atomic addition is a 
serial operation, but serial addition of 27 numbers from 27 thread blocks is not computationally 
intensive. Computationally intensive summations are already completed by parallel reduction in each 
thread block. The result of the parallel correlation in Figure 5 is six numbers (an early, a prompt, and a 
late correlation for inphase and quadrature samples) per tracking channel. The memory copy latency of 
these six numbers from global memory to host memory is negligible. The GPU kernel for the carrier 
and code wipeoff is executed for each 1 ms data block. Its execution time for 1 ms data is about  
0.59 ms (averaged over 10,000 measurements). 

3.3. Hardware Parallelism 

The GPU kernel performing the data synthesis and the carrier and code wipeoff handles  
(1,080N + 360N)/1,504N ≈ 96% computational load of the CRPA processing. The remaining  
64N/1504N ≈ 4% computation is for the signal covariance calculation (Table 2). Since the CPU and 
GPU are different hardware, they can perform different tasks in parallel. The covariance calculation 
can be also performed by another GPU kernel, but the quad-core CPU (Intel Core i7 950) is powerful 
enough to complete the covariance calculation while the GPU kernel performs the data synthesis and 
the carrier and code wipeoff. Thus, we assign the covariance calculation to CPU and run it with GPU 
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in parallel (Figure 8). For parallel processing on the quad-core CPU, we generate 10 CPU threads for 
the covariance calculation. The covariance matrix X*XT in Equation (4) is a Hermitian matrix (i.e., it is 
equal to its own conjugate transpose). For a four-element antenna array, X*XT is a 4-by-4 matrix. Since 
it is a Hermitian matrix, we need to calculate the upper triangular part only (i.e., 10 numbers) and take 
complex conjugate of calculated numbers to obtain the lower triangular part. Thus, we assign one CPU 
thread for calculating each of 10 numbers in the upper triangular part of the covariance matrix. 

Figure 8. Hardware parallelism with CPU, GPU compute engine, and GPU DMA engine 
in addition to thread-level parallelism by multi-core CPU and GPU. Total processing time 
for 1 ms data is about 0.75 ms. 

 

Further, we assign five CPU threads for signal tracking operations based on the correlation results 
from a previous millisecond (1 thread per antenna and 1 thread for beamsteering channels result in  
5 threads). Although we generate 15 threads for the covariance calculation and signal tracking, the 
quad-core CPU can run up to eight threads simultaneously by its hyper-threading technology. Hence, 
the generated 15 threads run together only by splitting CPU time. The multi-threaded covariance 
calculation on CPU is further optimized by single instruction multiple data (SIMD) instructions.  
The execution time of 10 CPU threads for the covariance calculation is about 0.29 ms. The tracking 
operation is relatively light weight, and the execution time of five CPU threads for tracking is about  
0.07 ms. Figure 8 shows the timing diagram of the parallel operations by CPU and GPU. Although the 
tracking and the covariance calculation by CPU seem to run independently and simultaneously in this 
figure, it is not exactly true. As already explained, five threads for tracking and 10 threads for 
covariance calculation share CPU time. However, the CPU operations and the GPU operations run 
completely in parallel because they are different hardware.  

Another important hardware parallelism exists within the graphics card. The input data should be 
copied from host memory to device global memory first before any GPU operations, and the latency of 
this memory copy is significant due to limited PCI-E bandwidth (Figure 6). However, NVIDIA GPUs 
have dedicated DMA engines. Thus, the latency of the host-to-device memory copy by the GPU DMA 
engine can be completely hidden behind the GPU computation provided that the memory copy 
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requires less execution time than the computation. In order to realize this parallelism, we implement 
two data buffers (so called “ping-pong” buffers) and perform the GPU computation on 1 ms data 
within one buffer while the DMA engine copies next 1 ms data to the other buffer and vice versa. In 
addition, two CUDA streams should be created (one for data copy and the other for computation) and 
GPU memories should be allocated as page-locked memory to utilize asynchronous CUDA functions 
(see [46] for a detailed discussion of overlapping data copy and computation).  

Page-locked memory allows faster memory access as an additional benefit. Since the GPU DMA 
engine can directly access page-locked memory, the latency of page-locked memory is lower than the 
latency of conventional pageable memory. CUDA 4.0 Toolkit released in March 2011 [47] allows a 
simple way to utilize page-locked memory by a new function called ‘cudaHostRegister’. Once existing 
variables allocated in host memory are registered using this function, they can be accessed faster as 
page-locked memory. Special memory allocations using ‘cudaHostAlloc’ as in the previous CUDA 
versions, for example, are not necessary. Thus, the benefit of page-locked memory can be appreciated 
without significant modification of existing codes.  

After the parallel executions of CPU, GPU compute engine, and GPU DMA engine on 1 ms 
incoming data, CPU needs to prepare next 1 ms data by memory copy within ring buffer in host 
memory, etc. In addition, CPU needs to update graphical user interface (GUI) of the SDR. These 
remaining tasks take about 0.16 ms as shown in Figure 8. The total processing time for 1 ms data is 
about 0.75 ms. Hence, the GPS SDR for CRPA demonstrates real-time capability with sufficient 
timing margin. 

3.4. Optimization Considerations 

This subsection further discusses the performance of our GPU kernel and possible optimization 
strategies for a generic GPU kernel for future GPS SDR developments. As mentioned in Section 3.2, 
GPU has weakness on tasks requiring high global memory access. It is a usual design assumption that 
the performance of a GPU kernel would be limited by memory access (memory-bound) rather than 
computation intensity (compute-bound). Thus, it is a good design practice to start from optimizing 
global memory access by aligned and coalesced memory access and an efficient use of shared memory. 
Generating large number of threads and providing high GPU occupancy are also recommended to hide 
memory and register access latency. Once global memory access is optimized, necessary computations 
would be implemented on top of the memory access codes. Execution paths of 32 threads within the 
same warp should be identical for maximizing computational efficiency.  

In order to check the limiting factor of the performance of our GPU kernel, all computation codes in 
the kernel are commented out and the execution time of memory access codes alone is measured. The 
memory access alone takes about 0.42 ms for 1 ms input data (remember that the original kernel with 
memory access and computation takes about 0.59 ms). After that, the global memory access codes are 
commented out and the execution time of computation codes alone is measured. The computation 
alone without global memory access takes about 0.50 ms. Therefore, our kernel is compute-bound 
rather than memory-bound, which means further optimization of memory access may not reduce the 
kernel execution time. Note that the global memory access latency is well-hidden in our GPU kernel. 
Adding the global memory access codes to the computation codes increases kernel execution time by 
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only 0.09 ms, even though the global memory access alone takes about 0.42 ms. GPUs hide memory 
latency by fast thread context switching and many more threads than available CUDA cores. In other 
words, CUDA cores do not wait for memory reads of certain threads but perform instructions on other 
available threads until the memory read is completed. 

If a generic GPU kernel for a GPS SDR is memory-bound, several optimization schemes could be 
considered. Global memory access can be reduced with the cost of increased computation. For 
example, we use sine and cosine tables in global memory to reduce computational burden, but if a 
kernel is memory-bound, this approach is not recommended. Instead, sine and cosine values should be 
calculated by threads in order to reduce global memory access. A similar approach is possible for the 
C/A code tables. We copy necessary C/A code values from lookup tables in global memory to shared 
memory before the code wipeoff. Instead, the C/A code table can be stored in constant memory as  
in [32]. Constant memory is cacheable read-only memory. Although constant memory access is faster 
than global memory access, it is a very limited resource (64 KB per device). In order to fit the  
C/A code table into this small memory space, Knezevic et al. [32] compressed the table. Thus, the  
C/A code values need to be decompressed before the code wipeoff operation, which requires  
extra-computations. This is a good optimization strategy for a memory-bound GPU correlation kernel, 
but our kernel is compute-bound and it is undesirable to increase computational intensity for reducing 
global memory access.  

There are also several optimization strategies for a compute-bound kernel for GPS SDR. All GPU 
computations in our implementation are 32-bit floating-point operations. One may think that  
replacing floating-point operations to integer operations could provide computational benefit. In fact, 
GPUs of compute capability 2.0 can perform 32 32-bit floating-point operations (add, multiply, and 
multiply-and-add) per clock cycle per multiprocessor and the same number of 32-bit integer operations 
(add, logical operation) per clock cycle per multiprocessor (Table 5.1 of [36]). For 32-bit integer 
multiply or multiply-and-add, the GPUs can perform only 16 operations. Thus, replacing 32-bit 
floating-point operations to 32-bit integer operations would not provide any computational benefit. 
CUDA-enabled GPUs do not natively support 16-bit integer operations, so 16-bit integer operations do 
not provide benefit either. GPUs of compute capability 1.x natively support 24-bit integer multiply  
‘–mul24’, but GPUs of compute capability 2.x natively support 32-bit integer multiply instead. Hence, 
applying 24-bit integer multiply instead of 32-bit multiply in devices of compute capability 2.x 
actually decreases performance.  

As a more promising optimization strategy for a compute-bound kernel, Lee et al. [48] suggested  
to use shared memory to reduce register usage and consequently increase GPU occupancy. Resister 
usage is the limiting factor of the occupancy of our kernel as discussed in Section 3.2. In order to 
reduce one 32-bit register use per thread, we need 32 bit × 256 thread = 1,024 Byte shared memory per 
thread block. However, the remaining shared memory space per thread block in our kernel is only  
9.6 KB − 9.3 KB = 0.3 KB. Thus, this strategy would not be effective in our case.  

Another suggestion in [48] for a compute-bound kernel is to assign one big thread block to each 
multiprocessor so that the thread block can use the whole resource of the multiprocessor. If we can 
assign one thread block with 1,280 threads per multiprocessor instead of five thread blocks  
with 256 threads each, available shared memory space for the one big thread block would be  
0.3 KB/block × 5 block = 1.5 KB. This space can store about 125 inphase samples, quadrature samples, 
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and C/A code values. However, the maximum number of threads per thread block is 1,024  
(Table 3), so it is not possible to assign 1,280 threads to one block. We may assign two thread  
blocks with 640 threads each. Then, available shared memory space for each block would be 
1.5KB / 2 block=0.75KB / block . This space can hold about 62 inphase samples, quadrature samples, 
and C/A code values. Although we can possibly process about 62 more samples per thread block with 
this configuration, 62 is not a multiple of the number of threads per thread block (i.e., 640 in this case). 
Thus, it would be difficult to prepare data for parallel reduction without divergent warps. If some 
warps are divergent, performance could decrease after changing the design to use two thread blocks.  

Although the aforementioned optimization strategies may not be beneficial to our GPU kernel, we 
can further improve the performance of our GPS SDR by utilizing the CPU more efficiently. The 
preparation and GUI operations in Figure 8 do not need to wait until the GPU kernel finishes its 
operations. If the preparation and GUI operations start right after the covariance calculation, the whole 
CPU operations would take about 0.29 ms (covariance) + 0.16 ms (preparation, GUI, etc.) = 0.45 ms. 
Therefore, the CPU operations (0.45 ms) can be completely hidden behind the GPU operations  
(0.59 ms). We have not yet implemented this idea because the current GPS SDR for CRPA fully serves 
our purpose and the code modifications to incorporate this idea are not trivial in our current code base. 

Performance improvement by use of newer hardware is always expected. The GTX 480 GPU 
released in March 2010 that we use for this work has 480 CUDA cores and 1,401 MHz processor  
clock [44]. The GTX 580 GPU released in November 2010 has 512 CUDA cores and 1,544 MHz 
processor clock [49]. As in Equation (7), the theoretical maximum throughput of the GTX 580 is 
calculated in Equation (8), which shows about 18% improvement over the throughput of GTX 480: 

512cores 1544MHz 2flop/core/cycle 1.58Tflops× × =  (8) 

Thus, if we run our compute-bound kernel in GTX 580, its execution time should be decreased (if 
the kernel is memory-bound, more operations per clock cycle do not necessarily improve its 
performance). This new hardware, GTX 580, also provides benefit for a memory-bound kernel by its 
faster memory clock (2,004 MHz). Its theoretical maximum global memory bandwidth is calculated in 
Equation (9). Comparing with Equation (6), about 8% improvement over the bandwidth of GTX 480 is 
achieved: 

1384 bit Byte/bit 2004 MHz 2 192.4GB/s
8

× × × =  (9) 

We demonstrate a real-time capability of our GPS SDR for CRPA using single CPU and single 
GPU. Nevertheless, if GPU throughput is really a concern for future GPU-based GPS SDR 
developments for other applications, multiple graphics cards can share the burden. The CUDA 
architecture is scalable and the CUDA 4.0 Toolkit released in March 2011 provides significantly 
improved multi-GPU programming features [47].  

4. Anti-Jam Capability of GPS SDR for CRPA 

This section demonstrates the anti-jam capability of our GPS SDR for CRPA under a synthetic 
wideband jammer. Live GPS L1 signals through a four-element antenna array are IF-sampled by  
four USRP2s and recorded in four SSDs. As mentioned in Section 3.1, we record GPS L1 data with  
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40 Msps rate to demonstrate the SDR’s computational capability for future GPS L5 signal processing. 
Synthesized code division multiple access (CDMA) jamming signals are added to the recorded  
L1 signals by post-processing. Wideband CDMA jammers are more challenging to GPS receivers  
than narrowband continuous-wave, or CW, jammers. The jamming direction is selected as the 
direction of GPS signals from PRN 10 (Figure 9). This CDMA jammer is simulated using PRN 168, 
which is currently unused by any satellite, and the interference signal is amplified to have 40 dB 
jamming-to-signal-power ratio (J/S).  

Figure 9. Anti-jam capability of GPS SDR for CRPA under synthesized CDMA jamming. 
The SDR is capable of tracking 12 satellites but eight satellites are shown here because 
eight satellites are visible at this epoch. 

 

Figure 9 shows parts of the captured output window of the SDR. Without adding the synthesized 
CDMA jammer, all tracking channels of the SDR track valid satellites in view as the C/N0 plot of 
Figure 9 (middle) demonstrates. There are five tracking channels for each satellite. The first channel of 
each satellite in Figure 9 is the tracking channel for composite signal beamsteered to that satellite. The 
remaining four channels are the individual tracking channels for each of the four antennas for that 
satellite. The beamsteering channels of all satellites show about 6 dB C/N0 enhancements due to the 
increased gain resulting from utilizing signals from four antennas rather than one antenna. These 
directional beams toward satellites provide benefits, such as mitigation of multipath errors, even under 
nominal conditions without GPS jamming. 

Once the simulated CDMA jammer is injected, most single antenna channels lose tracking as in 
Figure 9 (right). (The SDR does not show C/N0 of lost channels.) We modulate alternating 1 s and −1 s 
in the navigation data of the jamming signals in order to check if the SDR tracks valid satellites instead 
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of the jammer. In fact, the single antenna channels of PRN 25 track the jammer instead of the correct 
satellite partly due to high cross correlation. Nevertheless, the beamsteering channels of all satellites 
including PRN 25 still track the correct satellites, and the receiver outputs correct position solutions. 
(PRN 10 is an exception because the jammer is injected in this direction.) 

Although our GPS SDR for CRPA rejects moderate to high levels of interference in the tests with 
live signals and synthetic interference, the saturation effects of the analog front-end due to real 
jammers cannot be studied in this way. Analytical and numerical studies neglecting these effects can 
be somewhat optimistic for the real-world performance of the GPS SDR for CRPA. To evaluate the 
saturation effects, live over-the-air GPS jamming tests, which are difficult to perform due to 
regulations, are necessary in the future. 

5. Conclusions 

In order to increase the jamming resistance of GPS sensors, we have designed a GPS SDR for a 
four-element CRPA array. This GPS SDR is capable of real-time beamsteering toward 12 GPS 
satellites with a sampling rate of 40 Msps for future GPS L5 signals. The on-the-fly phase calibration 
of this paper provides a simple way to align phases between multiple antenna elements of a stationary 
GPS CRPA. The computational requirement of our CRPA processing has not been satisfied by 
previous GPS SDRs in the literature. We propose an optimal GPS SDR architecture using CPU and 
GPU and maximize the usage of their parallel computation capabilities including thread-level 
parallelism and hardware parallelism. General-purpose GPU technology is relatively new and actively 
evolving. Our GPU kernel is specifically optimized for the recent development of a new GPU 
architecture with compute capability 2.x and a new CUDA 4.0 Toolkit. Since design and optimization 
strategies using this new generation GPU are not widely available in the GPS sensors community, this 
paper tries to provide sufficient details for future GPS SDR developments for other applications.  

Although this paper focuses on the design of a GPU kernel, a modern multi-core CPU is powerful 
enough to share a large portion of the computational load. Modern processors are evolving towards 
increasing the number of cores rather than the speed of processing clocks. As a result, modern processors 
demonstrate very high instruction throughputs, but users need to parallelize their computations in order 
to properly utilize the parallel resources. Multi-threading on CPU and SIMD operations by each thread, 
as implemented in our SDR, are essential to fully appreciate the CPU resources. 

The GPS CRPA technology is more mature in the military market, but the technology is mostly 
confidential and unreleased for civil applications. However, GPS RFI is not just a military concern and 
some civil applications, such as GPS-based aviation, require certain level of resistance to GPS RFI. 
This paper demonstrates that GPS CRPA technology can be implemented using cost-efficient COTS 
hardware and processors, which envisions wide applications of this technology. 
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