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Abstract: This paper reports the design, characterization and implementation of a Fiber 

Bragg Grating (FBG)-based temperature sensor for an Insulted-Gate Bipolar Transistor 

(IGBT) in a solar panel inverter. The FBG is bonded to the higher Coefficient of Thermal 

Expansion (CTE) side of a bimetallic strip to increase its sensitivity. Characterization 

results show a linear relationship between increasing temperature and the wavelength shift. 

It is found that the sensitivity of the sensor can be categorized into three characterization 

temperature regions between 26 °C and 90 °C. The region from 41 °C to 90 °C shows the 

highest sensitivity, with a value of 14 pm/°C. A new empirical model that considers both 

temperature and strain effects has been developed for the sensor. Finally, the FBG-bimetal 

temperature sensor is placed in a solar panel inverter and results confirm that it can be used 

for real-time monitoring of the IGBT temperature. 
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1. Introduction 

Solar panel inverters are used to change direct current (DC) from solar panels into alternate current 

(AC). The operating range of a solar panel inverter is from 2.0 kW to 7.5 kW. The change from DC to 

AC is achieved via an electrical switching process. Most inverters use the Pulse Width Modulation 

(PWM) technique to reduce harmonics [1,2]. A typical implementation of IGBTs in a solar panel 

inverter uses full-bridge topology using four switches. However, solar panel inverters that use this 

technique emit large EMI due to high di/dt and dv/dt caused by switching [3]. Furthermore, because of 

its semiconductor foundation, the temperature variations can cause the IGBT characteristics to change 

dramatically. As the temperature increases, the turn-off energy losses increase and forward voltage 

drop, VCE, decreases [4]. 

Electronic-based temperature sensor measurement of an IGBT is impractical because of the large 

EMI presence in the solar panel inverter. High EMI levels can cause disturbances in the temperature 

readings. Therefore, an alternative option is to use FBG-based sensors, because of their immunity to 

EMI. Fiber Bragg Gratings (FBG) have been traditionally used as temperature, strain and vibration  

sensors [5-7]. Variations in temperature, strain and vibration induce changes in the grating period and 

index of refraction of the fiber optic, thus changing the Bragg wavelength. FBGs offer important 

advantages such as electrically passivity, immunity to electromagnetic interference (EMI), high 

sensitivity, multiplexing and self-referencing capability. Immunity to EMI makes FBGs an alternative 

sensor when EMI can cause disturbances to electronic-based sensors. FBGs are utilized as temperature 

sensors in electric power systems where high voltage is a concern [8]. 

The dependence of the Bragg wavelength on temperature effect is due to two factors: (i) the 

dependence of the index of refraction of the glass to temperature and (ii) thermal expansion of the 

glass. In silica fibers, ~95% of the observed shift in the Bragg wavelength occurs due to shift in the 

fiber’s refractive index with respect to changes in the temperature. A bare FBG temperature sensor  

with a wavelength of 1.3 μm over the range of 5 °C to 85 °C gives a normalized responsivity  

of 6.67 × 10
−6

 °C
−1

 [9]. A typical value for thermal response at 1,550 nm is 0.01 nm/°C. At higher 

temperature the sensitivity is higher and the response becomes slightly nonlinear [10]. An FBG is 

essentially not very sensitive to the change of the external refractive index (RI) [11]. By attaching the 

FBG to passive devices, the thermal characteristics of the materials can be used to control the 

sensitivity of the FBG wavelength to temperature. 

Reddy et al. [12] made use of the chemical composition of the gratings and attached an FBG to a 

platinum plate in order to use the FBG to measure high temperatures (up to 900 °C). The sensor gives 

an experimental sensitivity value of 11.44 pm/°C. Wu et al. [13] used capillary steel tubes, metalized 

and organic polymer packages to enhance the sensitivity of an FBG for measurements of  

low-temperatures. The temperature sensitivities of the capillary steel tube, metalized and organic 

polymer packages were 0.0213 nm/°C, 0.0283 nm/°C and 0.1376 nm/°C, respectively.  

In general, the temperature sensitivity of the FBG can be improved when it is coated with a material 

that has high CTE, such as a metal. The metal coating also protects the FBG. Feng et al. [14] coated a 

FBG with Ni-Cu, Cu-Ni and Cu. Lupi et al. [15] coated the FBG with zinc and copper using the 

traditional electrowinning process, after an aluminum pre-coating of the sensor. However, if an abrupt 

thermal stress (occurring at much lower temperature) occurs during the coating process, this can 



Sensors 2011, 11                            

 

 

8667 

permanently affect the optical features of the FBG and the optical properties will also be slightly 

affected by the coating process. 

Tian [16] and Song [17] bonded FBGs to the lower CTE side of a bimetal and used it as a sensor to 

measure temperature and strain. In this work, we propose to improve the sensor’s sensitivity by 

bonding the FBG to the higher CTE side of a bimetal. The FBG-Bimetal temperature sensor is first 

characterized in order to understand its behavior. Although the FBG-Bimetal temperature sensor is 

affected by the strain and temperature effects simultaneously, we are able to separate the two 

components in order to determine the temperature of the IGBT. 

We have developed a temperature measuring system that is simple, cheap, effective and can be fully 

integrated into a solar panel inverter. Packaging or coating the FBG with high CTE metals is expensive 

and time-consuming. It would also be difficult to integrate into a solar panel inverter to measure the 

temperature of the IGBT. By removing the middle rivet of the bimetallic sheet, the FBG-Bimetal 

temperature sensor can be screwed on top of the IGBT. To the best of the authors’ knowledge, this is 

the first paper that describes an FBG-based temperature sensor for solar panel inverters. 

2. Methodology 

Theory and Design 

The Bragg wavelength is described by:  

           (1) 

From Equation (1), it is apparent that the Bragg wavelength, λB, is depended on the effective index 

of refraction,      and the spacing between gratings,  . The effect of temperature to the Bragg 

wavelength under constant strain is dominated by the thermo-optic effect, which accounts for 95% of 

the total effect. The wavelength shift due to temperature effect on an FBG is given by [10]: 

   

  
   

 

 

  

  
 (2)  

where   is the Coefficient of Thermal Expansion (CTE) of the fiber material (e.g., silica). The strain 

effect on wavelength shift is given by [10]: 

   

  
         (3)  

where the photoelastic contribution,     is given by [10]: 

                          (4)  

where     is the fiber Pockel’s coefficient and   is the Poisson ratio. 

The FBG is bonded to a bimetal, so when it is heated, the wavelength shift is the product of strain 

effect,    and temperature variation,   . Therefore, the wavelength shift of the FBG is given by [6]: 

   

  
           (5)  

where    and    are the strain and temperature sensitivities of the FBG, respectively. 
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A bimetallic sheet consists of two metals with different CTE. When there is a change in the 

temperature, both metals expand in a pre-determined manner due to their CTE differences. When 

heated, the metal with the higher CTE will expand more than the metal with the lower CTE. As a 

result, the bimetallic sheet will bend towards the metal with the lower CTE. When cooled, the 

condition is reversed and consequently, the bimetallic sheet will bend in the opposite direction. 

The strain,   , that influences the wavelength shift in Equation (5), is the strain of the bimetallic 

sheet when the temperature varies. Therefore, we associate the function     with the temperature 

variation,   . The relationship between the strain,   , of the bimetallic sheet and the temperature 

variation,   , is given [18] by:  

        (6)  

where    is the difference of the coefficient of thermal expansion (CTE) of the two metals. 

Therefore, the wavelength shift for an FBG that is bonded to a bimetal can be rewritten as:  

   

  
                       (7)  

In Equation (7), there are two temperature variations, namely,           and       due to the heat 

transfer loss between the FBG and the bimetallic sheet. Therefore, the value of           is not the 

same as       although the heat is generated from the same source. Also, from Equation (7), it is 

understood that the relationship between wavelength shift and temperature is linear. 

3. Experimental Setup 

The polyimide coating of the FBG is removed before the FBG is inscribed using a 244 nm 

ultraviolet (UV) laser exposure with a phase mask, using hydrogen-loaded fibers. The peak reflectivity 

values are typically 90% and the Bragg wavelength located around 1,550 nm at room temperature.  

The physical grating lengths are set to 2 cm length for all samples. A bimetallic sheet  

measuring 150 mm (height) × 32 mm (width) × 8.4 mm (thickness) is used. The FBG is glued on the 

bimetallic sheet using UV cured Norland Optical Adhesive (number 61). The glue has a melting 

temperature of 125 °C. The bimetallic sheet consists of brass and steel riveted together. The FBG was 

bonded onto the brass surface, which has the higher CTE. Figure 1 shows the FBG-Bimetal 

temperature sensor assembly. 

Figure 1. FBG-Bimetal temperature sensor assembly. 

 
  



Sensors 2011, 11                            

 

 

8669 

Calibration of Sensor 

The experimental setup for the calibration of the temperature sensor is shown in Figure 2. When 

heated, brass elongates more than steel. As a result, the bimetallic sheet curves towards steel. The 

periodicity of the FBG grating increases because the FBG is stretched. With increasing temperature, 

the Bragg wavelength,   , will continue to increase.  

Figure 2. Experimental setup for the sensor calibration. 

Type K 

Thermocouple

DC Power Supply

ASE Source

Voltmeter

Optical Spectrum Analyzer

Power Resistor (Heater)

FBG bonded to a 

Bimetal Strip
Optical 

Circulator

 

A DC power source controls the voltage supply to a 50 W, 100 Ω power resistor which functions as 

a heater. The voltmeter monitors the voltage supply. Type K thermocouple temperature sensor was 

used to monitor the temperature of the bimetallic sheet. Amplified Spontaneous Emission (ASE) 

source (NP2000ASE, Nuphoton Technologies) supply C-band light into the FBG and the reflected 

Bragg wavelengths are monitored by an optical spectrum analyzer (FTB-5240S/BP Optical Spectrum 

Analyzers, EXFO). The voltage of the DC power source is gradually increased in order to increase the 

temperature of the bimetallic sheet. The corresponding Bragg wavelength for each temperature 

increment is recorded. The wavelength shift of the FBG mounted onto the bimetal is characterized 

with respect to the temperature changes and the elongation of bimetal. Repeat measurements are taken 

to account for various errors.  

4. Result and Discussion 

The result of the characterization process is shown in Figure 3. As the temperature increases, the 

wavelength shift also increases. Figure 3 shows that three different regions have been identified and 

are labeled as A, B and C, respectively.  
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In region A, from 26 °C to 34 °C, the gradient is 1 pm/°C. In region B, from 35 °C to 40 °C, the 

gradient is 7 pm/°C and in region C, from 41 °C to 90 °C the gradient is 14 pm/°C. Tian [16] reported 

a temperature sensitivity of −4 pm/°C, while Song [17] reported a temperature sensitivity of 8.1 pm/°C  

and −0.018 pm/°C for uncompensated and compensated FBGs, respectively. Compared to the work by 

Tian [16] and Song [17], the FBG-Bimetal temperature sensor is more sensitive in region C. 

Figure 3. Wavelength shift versus temperature. 

 

This concurs with Equation (7), where the relationship between wavelength shift and strain and 

temperature is linear. The results also show that the FBG-Bimetal temperature sensor is able to meet 

all requirements without any modifications. From the calculation based on the expressions presented in 

Equations (5–7) the value of       in region C is 0.73 °C when           is 1 °C. This indicates that 

there is 27% of heat transfer loss between the bimetal and the FBG. Consequently,       can be 

written as 0.73          . Thus, Equation (7) becomes: 

   

  
                                 (8)  

Real-Time Monitoring IGBT Temperature  

Following characterization, the FBG-Bimetal temperature sensor is placed inside a solar panel 

inverter for real-time testing. The sensor is screwed on to the top of an IGBT as depicted in Figure 4. 

The IGBT is facing the steel side and the FBG is bonded onto the brass side of the bimetallic sheet. 

Therefore, the FBG is not under any additional strain from the mounting process. The FBG wavelength 

shift is continuously monitored every 5 min from 10:30 a.m. to 6 p.m. The Bragg wavelength of this 

sensor system is then recorded and processed using the Labview software package.  

Figure 5 shows the functionality of the FBG-Bimetal temperature sensor when it is placed in a solar 

panel inverter. The real-time monitoring process is performed from 10:30 a.m. to 6 p.m. with 5 min 

intervals between the temperature measurements. The temperature measurements are performed 

automatically via a previously developed Labview software program. The test was performed on a 

cloudy day.  
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Figure 4. FBG-Bimetal temperature sensor screwed on top of an IGBT. 

 

Figure 5. IGBT temperature measurements using FBG-Bimetal temperature sensor. 

 

The IGBT temperature fluctuates according to the solar power collected by the solar panel. The 

power collected from the solar panel depended on the position of the sun during the day or whether the 

day is overcast. Therefore, the temperature of the IGBT should gradually increase in the morning, peak 

in the afternoon and gradually decrease in the evening. From Figure 5, the temperature of IGBT was 

high around 12 p.m. and around 2 p.m. The highest temperature measured was 58 °C from 2:30 p.m.  

to 3 p.m. The temperature of IGBT gradually decreased in the evening as the sun sets in. The results 

confirmed that the FBG-Bimetal temperature sensor is working correctly when placed in a solar  

panel inverter. 

5. Conclusions 

Characterization results show that there is a linear relationship between the wavelength shift and 

temperature changes. It is found that the sensitivity of the sensor can be categorized into three 

characterization temperature regions between 26 °C and 90 °C. The region from 41 °C to 90 °C shows 
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the highest sensitivity, with a gradient of 14 pm/°C. As the temperature increases, the sensitivity 

increases and becomes slightly nonlinear. Therefore, we suspect that FBG itself has a temperature 

sensitivity threshold. Once the threshold is exceeded, the FBG temperature sensitivity increases. The 

wavelength shift in FBG-Bimetal temperature sensor is a product of the heat conduction between the 

two metallic elements and the FBG, and also the threshold condition of the FBG. When placed in a 

solar panel inverter, the FBG-Bimetal temperature sensor is able to detect the temperature of the IGBT. 
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