
Sensors 2011, 11, 7568-7605; doi:10.3390/s110807568
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Semantically-Enabled Sensor Plug & Play for the Sensor Web
Arne Bröring 1,2,3,?, Patrick Maué 1, Krzysztof Janowicz 3,4, Daniel Nüst 1,3 and
Christian Malewski 1

1 Institute for Geoinformatics, University of Münster, D-48151 Münster, Germany;
E-Mails: pajoma@uni-muenster.de (P.M.); daniel.nuest@uni-muenster.de (D.N.);
c.malewski@uni-muenster.de (C.M.)

2 ITC Faculty, University of Twente, 7522 NB Enschede, The Netherlands
3 52◦ North Initiative for Geospatial Open Source Software, D-48155 Münster, Germany
4 Geography Department, University of California, Santa Barbara, CA 93106, USA;

E-Mail: jano@geog.ucsb.edu

? Author to whom correspondence should be addressed; E-Mail: arneb@uni-muenster.de;
Tel.: +49-251-83-39761; Fax: +49-251-83-39763.

Received: 9 July 2011; in revised form: 26 July 2011 / Accepted: 26 July 2011 /
Published: 2 August 2011

Abstract: Environmental sensors have continuously improved by becoming smaller,
cheaper, and more intelligent over the past years. As consequence of these technological
advancements, sensors are increasingly deployed to monitor our environment. The
large variety of available sensor types with often incompatible protocols complicates the
integration of sensors into observing systems. The standardized Web service interfaces
and data encodings defined within OGC’s Sensor Web Enablement (SWE) framework
make sensors available over the Web and hide the heterogeneous sensor protocols from
applications. So far, the SWE framework does not describe how to integrate sensors
on-the-fly with minimal human intervention. The driver software which enables access to
sensors has to be implemented and the measured sensor data has to be manually mapped to
the SWE models. In this article we introduce a Sensor Plug & Play infrastructure for the
Sensor Web by combining (1) semantic matchmaking functionality, (2) a publish/subscribe
mechanism underlying the Sensor Web, as well as (3) a model for the declarative description
of sensor interfaces which serves as a generic driver mechanism. We implement and evaluate
our approach by applying it to an oil spill scenario. The matchmaking is realized using

Sensors 2011, 11 7569

existing ontologies and reasoning engines and provides a strong case for the semantic
integration capabilities provided by Semantic Web research.

Keywords: Sensor Web Enablement; Sensor Plug & Play; sensor integration; Semantic
Web; sensor bus; sensor interface descriptors; semantic matching; ontology alignment

1. Introduction

The Sensor Web envisions uniform access to sensor resources comparable to the retrieval of
information resources in the World Wide Web today [1]. It will eventually enable Web-based discovery,
access, exchange, and processing of sensor observations, as well as the tasking of sensor systems. The
Sensor Web Enablement (SWE) initiative of the Open Geospatial Consortium (OGC) defines standards to
build such a Sensor Web [2]. SWE makes sensors available over the Web through well-defined formats
and Web service interfaces by hiding the sensor communication details and the heterogeneous sensor
protocols from applications working on top of these services. Deploying a SWE framework is especially
appropriate for large information infrastructures where multiple participating organizations (or multiple
departments of the same organization) are required to work with a shared set of sensor resources. In
the recent years, SWE standards have been applied in various research projects and systems showing
their practicability and suitability in real world applications. Such applications range from a debris flow
monitoring system for Taiwan [3], the utilization of SWE in disaster management systems [4–6], to a
Tsunami early warning system for Indonesia [7]. Nevertheless, substantial effort is required to make a
sensor and its observations available on the Sensor Web, since methods and mechanisms to automate
this process are missing.

Connecting sensors to the Sensor Web involves three major steps: (i) a sensor description has to be
manually registered at a Sensor Web service; (ii) to upload sensor data, driver software needs to be
implemented which converts measured data from the native sensor protocol to higher level Sensor Web
observations; (iii) sensor characteristics and the service model have to match before sensor observations
can be uploaded to a Sensor Web service. For example, the sensor output and the observed property of
a feature residing on the Sensor Web have to match. So far, these matchings have to be established and
maintained manually by the service provider.

Minimizing adaptation and administration efforts is a major pre-requisite for the on-the-fly integration
of sensor data—named Sensor Plug & Play here. Based on such a plug & play paradigm, as envisioned
in our previous work [8] and also by Pathan et al. [9], Sensor Web services can be set up for certain
geographic regions and thematic topics. The existence of a new sensor on the Sensor Web triggers an
automatic registration with SWE services interested in the sensor’s characteristics. Finally, the sensor can
upload its observations which get automatically mapped to the appropriate service model. The automatic
registration and mediation is a key to disaster management where an ad hoc densification of a sensor
network is required. Use cases range from flooding scenarios, in which the affected river courses are not
densely enough covered with water gages, to incidents in nuclear plants where ad hoc deployments of
radiation detectors might be necessary. If Sensor Web services are in place and used by disaster relief

Sensors 2011, 11 7570

organizations as a coherent infrastructure to access observation data, the efficient integration of new
sensors becomes crucial. Other areas, where plug & play integration of sensors with existing information
infrastructures would facilitate workflows, range from environmental monitoring over early warning
systems to precision agriculture.

This research combines previous results with a framework for semantically-enabled matchmaking
and mediation based on Semantic Web technologies to realize Sensor Plug & Play. First, we
extend the Sensor Bus [10], an intermediary layer between sensors and SWE services, to introduce
a publish/subscribe mechanism within the Sensor Web. This is required to make services aware of
new sensors appearing on the Sensor Web. Second, a driver mechanism for sensors is incorporated
in our approach—the Sensor Interface Descriptor (SID) concept [11]. The SID model extends OGC’s
SensorML standard to describe the protocol of a particular sensor type in a declarative way. By means of
a generic SID interpreter, the native sensor protocol can be translated to the SWE protocols. Third, we
analyze the central challenge for Sensor Plug & Play [8], the matchmaking between sensor characteristics
and requirements of Sensor Web services, and the automatic inclusion of sensor data into domain specific
service models. For example, a sensor measuring precipitation needs to be automatically linked to a
service that is interested in weather related observations for incorporation into forecasting models. We
tackle this challenge by building a semantically-enabled matchmaking and mediation framework for the
Sensor Web. Besides setting the theoretical ground for our work, we provide a working implementation
for all components and demonstrate their interaction. To our best knowledge, this is the first working
Sensor Plug & Play infrastructure.

To demonstrate our approach we apply the developed methods to a case study. We assume that a
release of crude oil from an offshore platform in the Norwegian Sea has caused a spill endangering the
marine biosphere. Multiple organizations contribute to the disaster management process. Sensors are
deployed to sample weather related properties such as wind direction, wind speed, and air temperature,
as well as sea related properties such as water temperature, current direction, current speed, and
salinity. Those environmental properties can serve as input parameters to multi-dimensional oil
weathering models [12] to simulate the dispersion, spreading, advection, evaporation, emulsification, and
dissolution of the oil slick. This information is important to react with appropriate spill response actions
(see e.g., [13,14]).

We assume that a Sensor Web infrastructure is already in place for the oil spill scenario and used
by different disaster management organizations. Newly deployed sensors have to be made available
on-the-fly to ensure that applications can directly utilize the gathered observations (e.g., to incorporate
them into simulations). As a proof-of-concept, we use typical marine conductivity-temperature-depth
(CTD) sensors [15], an RBR XR-420 and a Seabird SBE 37; see Figure 1. Such CTD sensors are
commonly used in marine research and can be carried by ships in oil spill scenarios for assessing salinity
and temperature at various sampling points of the affected area. The Sensor Web infrastructure is set up
based on the developed mechanisms for Sensor Plug & Play and utilized to automatically connect the
CTD sensors with Sensor Web services.

The remaining paper is structured as follows. Section 2 introduces the Sensor Web Enablement
initiative as well as Semantic Web technologies and ontologies. Section 3 provides an in-depth analysis
of requirements for a Sensor Plug & Play on the Sensor Web. Next, Section 4 presents the designed

Sensors 2011, 11 7571

architecture which fulfills the requirements and is followed by a description of the implementation
(Section 5). In Section 6, we apply the developed methods to the oil spill scenario and demonstrate
their usability by automatically plugging two CTD sensors into a local Sensor Web infrastructure. The
paper closes with conclusions and an outlook to future work.

Figure 1. The CTD sensors used in the case study.

2. Background

This section introduces research on Sensor Web Enablement and the Semantic Web relevant for the
understanding of the presented work.

2.1. Sensor Web Enablement

The Sensor Web Enablement (SWE) initiative of the Open Geospatial Consortium (OGC) has
established a suite of standards to realize the vision of a Sensor Web. In this context, the Sensor Web is
understood as a Web service-based infrastructure which enables the discovery of sensor related resources,
the access to sensor observations, the tasking of sensors, as well as eventing and alerting within a Sensor
Web environment [16]. Those functionalities are provided through standardized Web service interfaces
and data encodings defined by SWE. By establishing such a well-defined and interoperable Sensor
Web layer, the heterogeneous sensor protocols and communication details of the underlying sensors
are hidden from applications and users.

The current design of the SWE framework consists of the following Web services: First, the Sensor
Observation Service (SOS) [17,18] enables access to measured sensor data and sensor metadata. While
the SOS follows a pull-based communication paradigm, the Sensor Alert Service (SAS) [19] and its
successor the Sensor Event Service (SES) [20] push sensor data to subscribed clients and supports
user-defined filter criteria. The Sensor Planning Service (SPS) [21] enables tasking of sensors (e.g.,
setting the sampling rate of a sensor). Discovery of sensor related resources is provided by the Sensor
Instance Registry (SIR) [22] and Sensor Observable Registry (SOR) [23].

In this work, we focus on the SOS as it is the most relevant service in practical applications so far.
The interface of the SOS supports access to heterogeneous sensor types, stationary as well as mobile

Sensors 2011, 11 7572

sensors, which gather their data in situ or remotely. The heterogeneous communication protocols and
data formats of the associated sensors are hidden by the standardized interface. To associate the SOS with
a sensor, a description of this sensor is uploaded to the SOS via the RegisterSensor operation which can
be accessed subsequently by calling the DescribeSensor operation. The InsertObservation operation is
responsible for the integration of newly measured data. Those uploaded observations can be requested by
calling the GetObservation operation using a combination of temporal, spatial, and thematic filters. The
Sensor Model Language (SensorML) [24] is used within SWE to describe the sensor’s characteristics.
Observed sensor data is modeled and encoded conforming to the Observations & Measurements
(O&M) [25] standard.

SensorML specifies a model and XML encoding for the description of sensor related processes.
Physical sensors, ranging from simple sensors such as thermometers to composed instruments consisting
of multiple single sensing components, as well as virtual sensors can be described. The common root
is the abstract type Process which converts an input into an output; see Figure 2. Although virtual
sensors such as post processing procedures, simulations or environmental models can be in principal
described with SensorML, this article focuses on physical sensors. A physical sensor has typically some
physical phenomenon (e.g., temperature, conductivity, or pressure) as its input and the quantification
of another phenomenon as its output (e.g., water temperature, salinity, or depth). Various metadata
about the process can be specified, including its identification, classification, or contact information of
the responsible provider. To model physical sensors, the System type can be used which also allows
to describe it by spatial (e.g., the definition of a geographic position) and temporal (e.g., the definition
of a sampling time) attributes. Further, the interfaces of a sensor can be described by means of the
InterfaceDefinition which allows to describe the Open System Interconnection (OSI) [26] stack of an
interface. While this SensorML element provides a means for giving a basic description of a sensor
interface, a more detailed interface description including the definition of the protocol structure is not
defined by the SensorML model. This is where the Sensor Interface Descriptor (SID) model comes into
play to extend SensorML (Section 4.2).

Figure 2. Simplified depiction of an excerpt of the SensorML model.

Sensors 2011, 11 7573

O&M defines a model describing observations as an act of observing a certain phenomenon. The basic
observation model is shown in Figure 3. An observation has a relationship to a procedure representing
the process which has performed the observation, e.g., often a sensor or instrument, but may also be
a human observer or a computation. The observed property points to a description of the phenomenon
which is observed (e.g., “water temperature” or “salinity”). This phenomenon is a property of the feature
of interest as the target of an observation. The observation provides a value for this observed property
at a certain time, the phenomenon time. The observation value is contained in the result element. This
result can be of any type, ranging from a single measurement to an n-dimensional coverage of values.
Subtypes of the basic observation further define this result type.

The feature of interest of an observation can either be represented by a domain feature or by a
sampling feature. A domain feature (e.g., “Norwegian Sea” or “Mississippi River”) is designed for a
particular application domain. A sampling feature (e.g., “Station”, “Trajectory”, or “Scene”) is domain
independent and purely an artifact of the sampling strategy to produce observations for a domain feature.
The sampling feature links to the domain feature which represents the spatially distributed real world
entity. For example, when measuring the water temperature of the Norwegian Sea at different depths,
the concrete locations of the measurements are represented through three dimensional sampling points.
Those sampling points reference the feature representation of the Norwegian Sea which carries the water
temperature property. This example shows that the observed property of an observation can either be a
direct or transitive member property of the feature of interest. That means, if the feature of interest is
a sampling feature, the observed property has to be either a member of the sampling feature or of the
domain feature.

Figure 3. Simplified depiction of O&M’s basic observation model.

2.2. Semantic Web Technologies and Ontologies

The Semantic Web describes a stack of methods and technologies to make the meaning of data more
explicit. With moving the business logics towards the data, developing applications can be reduced to the

Sensors 2011, 11 7574

combination of existing software components such as Semantic Web reasoners, querying endpoints, or
faceted browsing user interfaces. Recently, Vilches-Blazquez et al. [27] demonstrated how the interplay
of these Semantic Web technologies with annotated geographic information can be used to create
semantically-enabled browsers for the Semantic Geospatial Web. Various knowledge representation
languages, such as the Web Ontology Language (OWL) or the Resource Description Framework (RDF),
are used to make the data available in a machine-readable and understandable way as well as to specify
ontologies that restrict the meaning of terms towards their intended representations.

Within the last years, several ontologies have been developed to address the vision of a Semantic
Sensor Web [28]. These ontologies range from sensor-centric approaches inspired by SensorML [29],
over observation-centric specifications based on O&M [30–32], to ontologies highlighting the role of
stimuli, observed properties, and processes [33–35]. While each of them differs with respect to the
intended application area and the definition of the core concepts, the Stimulus-Sensor-Observation
ontology design pattern [36] was developed to establish a lightweight and common ground for these
and future ontologies. A survey comparing the most prominent ontologies was recently presented by
Compton et al. [37]. The major purpose for developing ontologies for the Semantic Sensor Web is
to improve the discovery of sensors and observations beyond simple keyword matching or code lists.
Additionally, rule-based systems can be used to discover hidden information or reclassify the data
according to the user’s needs. Sheth et al. [28], for instance, have proposed an approach to detect
Blizzard conditions based on sensor data from weather stations, a sensor and weather ontology, as well
as a set of rules. McCarthy et al. [38] built a spatial decision support system for near-real-time hazard
monitoring based on ontologies for O&M and SensorML. Sensor data is automatically converted to
the ontologies for enriching the information content and allowing rule-based inference techniques to
facilitate decision making.

With the advent of Linked Data [39], the mostly top-down driven research on the Semantic Sensor
Web shifted towards making sensor data available following the Linked Data principles, i.e., by providing
Uniform Resource Identifier (URI) for raw data, dereference them via HTTP, and linked to other external
data [40–45]. Today, SWE plays a major role in providing sensor related data in an interoperable way,
hence, various researchers have investigated how to integrate the Semantic Sensor Web with Spatial Data
Infrastructures or OGC services in general [41,45–47]. On a higher abstraction level, the term Semantic
Enablement describes a family of models, services, ontologies, and annotations to connect the OGC
driven Geospatial Web with the Semantic Web [47].

3. Requirements for a Sensor Plug & Play on the Sensor Web

In this section, we describe the common understanding of plug & play for devices, and for sensors
in particular, by focusing on technologies such as USB and IEEE 1451. Derived from the general
conception of plug & play, we define the meaning of Sensor Plug & Play for the Sensor Web and
identify functional requirements.

Sensors 2011, 11 7575

3.1. Requirement for a Publish/Subscribe Mechanism

The common notion of plug & play describes it as the ability to make the functionality of a device
instantaneously available within a system or network. In day-to-day life, plug & play is often related to
devices with a Universal Serial Bus (USB) [48] connector. USB supports easy usage and configuration of
external computer devices without the need for user intervention. With its support for hot-plug (no need
for restarting the computer to use the device) and automatic configuration, USB has become the main
standard for computer periphery. Once a user plugs a device into the system, the device registers itself
at the standard port of the host and the configuration is initiated. According to the USB specification,
the host is able to retrieve the capabilities with vendor and product identification from the device. This
identification is globally unique so that operating systems can load the according driver and make the
device available to the system resources via the system bus.

Our work aims at a plug & play for the Sensor Web based on OGC’s SWE framework. In analogy to
USB, the SWE services represent the system resources to which the sensor needs to be made available.
A new sensor should be able to automatically register with SWE services which have announced interest
in its characteristics (e.g., observed phenomenon, type of sensor, or current geographic location). Thus,
from a service provider perspective, the key requirement is:

Requirement 1. A plug & play mechanism for the Sensor Web shall allow a service provider to subscribe
a service on the Sensor Web by specifying sensor characteristics relevant for this service.

From a sensor provider perspective, two requirements are derived:

Requirement 2. A plug & play mechanism for the Sensor Web shall allow a sensor provider to publish
the availability of a sensor by providing a description of the sensor characteristics.

Requirement 3. A plug & play mechanism for the Sensor Web shall allow a sensor provider to publish
measured sensor data so that interested services can retrieve the data.

Given the above requirements for sensor and service provider, the key requirement for the system
architecture is:

Requirement 4. A plug & play mechanism for the Sensor Web shall ensure that newly available sensors
which satisfy the characteristics required by a service are automatically registered at this service and
their observations are automatically inserted.

3.2. Requirement for a Generic Driver Mechanism for Sensors

Once the publish/subscribe mechanism is in place, it is essential that messages between sensors and
SWE services can be exchanged. A translation between heterogeneous sensor protocols and the SWE
protocols is required. This translation can be generally addressed from two directions. On the one hand,
it can be approached by implementing interoperable interfaces on the sensor. On the other hand, it can be
approached by introducing mechanisms which bridge between the variety of sensor protocols and SWE
specifications.

The first direction about interoperable interfaces is addressed by several standardization approaches.
The most prominent standardized interface for sensors is IEEE 1451 [49,50]. The IEEE 1451 family of

Sensors 2011, 11 7576

standards allows for connecting sensors to sensor networks through vendor independent interfaces. A
key role within this standards family plays the Transducer Electronic Data Sheet (TEDS) which contains
metadata about the sensor. TEDS are stored on small non-volatile memory devices (e.g., an EEPROM)
attached to sensors. Their structure is optimized for low memory usage and only a limited set of metadata
can be included, for example, sensor identification, calibration, correction data, measurement range, and
manufacturer related information. Due to the focus on compactness, not all characteristics of a sensor can
be captured. For example, metadata for automated processing of sensor data to higher level protocols
cannot be described in TEDS. Hence, this work is based on SensorML as it has a richer data model.
Hu et al. [51] convert TEDS to SensorML by creating a knowledge base which maps each TEDS
property to an appropriate SensorML description. Extending this approach to combine it with our work
to automatically generate Sensor Interface Descriptors for IEEE 1451 sensors could be promising. SID
interpreter can then connect IEEE 1451 sensors on-the-fly with SWE services.

However, until now, the IEEE 1451 standards have not achieved broad acceptance. Sensor
manufacturers hesitate to change their existing and well established sensor interfaces and protocols to
conform to the IEEE 1451 standards. In fact, a huge variety of non-standardized sensor interfaces are
in use. Different approaches try to bridge between these proprietary sensor protocols and higher level
Sensor Web specifications. For example, Walter and Nash [52] analyze system designs which may lower
the implementation barrier for integrating sensors and SWE services. Lightweight SWE connectors are
suggested which convert raw sensor formats to SWE-based data models. The authors describe design
approaches for such SWE connectors, but do not describe their implementation. Similar approaches are
the AnySen application [53] and the Sensor Abstraction Layer (SAL) [54]. They introduce mechanisms
which are capable of interpreting data from sensors by utilizing descriptions of the sensor. These
approaches are supposed to make use of SensorML to describe sensor characteristics and thereby abstract
from the interface of a sensor. However, both do not detail how the essential information, for being able
to interpret incoming sensor data, is reflected within SensorML.

The systems described above act as intermediary brokers between sensors and SWE services. They
take the burden of adapting the sensor protocol from the sensor manufacturer or provider. We propose
to follow this idea, since standardized interfaces for sensors, such as IEEE 1451, are not yet established.
A description of a sensor interface which follows a well-defined model needs to also explain how to
interpret the sensor protocol. With increasing expressiveness of such a model, more complex sensor
interfaces can be connected. Such an interface description has to be exchangeable in case the sensor
interface is adjusted (e.g., due to firmware updates). Moreover, the interface description needs to be
shareable so that, once defined, it can be passed on to others who operate sensors of the same type. Thus,
we deduce the following, requirement:

Requirement 5. A plug & play mechanism for the Sensor Web shall rely on a “driver” mechanism
which enables the translation between a sensor protocol and the higher level SWE protocols based on a
generic, exchangeable and sharable interface description associated with the sensor.

Sensors 2011, 11 7577

3.3. Requirement for a Matchmaking Mechanism

Approaches such as USB or IEEE 1451 enable the connection of hardware devices with computer
systems. However, to enable plug & play of sensors within the Sensor Web, we need to go beyond the
integration of the hardware device provided through a driver mechanism (Section 3.2). In applications
such as environmental monitoring, early warning, or disaster management, the integration of the sensor
with the model of the specific application plays a crucial role. O&M and SOS as part of the SWE
framework (Section 2) are such data / service models that serve as generic foundations for application
specific models. An example for an application specific extension of O&M is WaterML 2.0 [55] for the
hydrology domain.

Based on the required publish/subscribe mechanism (Section 3.1), we envision that SWE services can
subscribe sensors based on their characteristics. The key challenge is to assure that these characteristics
are advertised by a sensor and match those required by the service. For example, a sensor may
characterize itself by stating its identifier, name, model number, or contact information about its provider.
While a matching of this kind of basic characteristics can be checked by simple string comparison,
spatial, temporal, and thematic characteristics require more advanced match techniques. Temporal
characteristics include the sampling rate or the lifetime of a sensor. Spatial characteristics include
the current position of a sensor, a path along which it is traveling, or a geographic region within it
can function. The central thematic characteristic of a sensor is the observed phenomenon (e.g., water
temperature) as its output, in combination with the unit of measure (e.g., Kelvin). But also other
thematic characteristics such as the sensor configuration (e.g., the calibration), sensor deployment (e.g.,
distance to a road network, mobile/stationary sensor), or the measurement technique (e.g., usage of a 3D
ultra-sonic anemometer or a 2D mechanical anemometer for observing wind) are important. Matching
sensor characteristics with the requirements of a service is challenging and frequently requires semantic
mediation; a detailed analysis has been recently described by Bröring et al. [8].

Sensors gather data by observing stimuli emitted from the physical environment [36]. The digital
counterparts of entities in this environment are the features of interest residing on the Sensor Web
(Section 2). Before registering a service, the service provider defines these features, e.g., for the
Norwegian Sea, based on the application area. Sensors are not aware of these features as they collect
field data. Hence, when subscribing new sensors, the features whose qualities are observed have to be
determined. Sampling points, i.e., locations at which sensors take measures, can be reduced to their
spatial footprint. However, to ultimately determine the domain feature, e.g., a waterbody, its thematic
component needs to be incorporated as well.

Equally important is the matching of the output of a sensor and a property of a feature of interest;
see Figure 4. By assuring this matching, sensor data is linked to the application model of the service.
This enables the integration of the sensor with the Sensor Web. Syntactic matching is a first step in this
process. Data encoding, structure, and data types of the sensor output and the feature property have
to match. Second, the semantics of the output and the observed property have to be compared. Wind
direction has been used to demonstrate the involved challenges. Syntactically, wind direction can be
represented, for example, as a numeric value, a textual value, or even a complex data type. The semantics
of wind direction can be defined as the direction from which the wind blows, or as the direction the wind

Sensors 2011, 11 7578

is blowing to [56]. This mismatch cannot be discovered by syntactic matching alone and would lead to
wrong results in later processing steps. Consequently, we deduce the following requirement:

Figure 4. Matching between sensor and service characteristics.

Requirement 6. A plug & play mechanism for the Sensor Web shall implement a matching between the
characteristics advertised by a sensor and the characteristics required by a service.

Semantic matching is based on the assumption that shared domain vocabularies are present and
used for the semantic annotation of both the advertised and requested sensor characteristics. Semantic
annotations establish links from application-specific metadata to commonly accepted vocabularies which
capture the knowledge on the domain level (e.g., oceanography, hydrology, or meteorology). What
vocabulary to use depends on the scenario or the required expressiveness and cannot be specified
beforehand. Some vocabularies are widely accepted and can be considered as de-facto standards (some
are even maintained by standardization organizations). If other, more specific, or local vocabularies
are used, they need to be related to these de-facto standards. Such mappings between vocabularies
ensure that reasoning engines are able to compute matching across different domains and information
communities. The following requirement ensures that semantic matching can be performed:

Requirement 7. A plug & play mechanism for the Sensor Web built on semantic matching shall either
use a widely accepted vocabulary or more specific, but aligned vocabularies for the semantic annotation
of sensor characteristics.

4. A Standards-Based Architecture for Semantically-Enabled Sensor Plug & Play

In this section, we present the architecture for realizing Sensor Plug & Play on the Sensor Web.
The following subsections detail how the developed components and their interplay fulfill the identified
requirements and how they relate to SWE standards (Section 3).

4.1. Realizing a Publish/Subscribe Mechanism with the Sensor Bus

The required publish/subscribe mechanism (Section 3.1) is realized by introducing an intermediary
sensor integration layer between the sensor layer and the Sensor Web layer; see Figure 5. This

Sensors 2011, 11 7579

intermediary layer is externally designed as a logical bus, the Sensor Bus. The Sensor Bus has initially
been defined and implemented by [10]. In the following, an enhanced bus message protocol adjusted to
the needs of semantic matchmaking and enabling Sensor Plug & Play is described. An implementation
of the Sensor Bus concept based on XMPP is described in Section 5 and examples illustrating the usage
of the message protocol are given in Section 6.

Figure 5. The sensor infrastructure stack.

Aligned with the message bus pattern [57], the Sensor Bus incorporates (1) a common communication
infrastructure, (2) a shared set of adapter interfaces, and (3) a well-defined message protocol. The
common communication infrastructure is realized through an underlying messaging technology. The
Sensor Bus is independent of the underlying messaging technology which can therefore be exchanged.
It can, for example, be realized with instant messaging systems such as XMPP [58] or IRC [59], but
also using Twitter as shown in [10]. Services as well as sensors can publish messages to the bus and are
able to subscribe to the bus for receiving messages in a push-based communication style. The different
components (i.e., sensors and Sensor Web services) can subscribe and publish to the Sensor Bus through
adapters. Those adapters convert the service or sensor specific communication protocol to the internal
bus protocol; see Figure 6).

A detailed analysis of interactions between the sensor layer and the Sensor Web layer, which emerge
when introducing the Sensor Bus as an intermediary layer, is conducted by [60]. Those interactions
are realized through particular bus messages which are described below. The Sensor Bus message
protocol is designed in a compact style to preserve system resources. Single message fields are divided
by a separator sign (the “∗” character). In the following specification of the message protocol, we put
variables which act as placeholders for actual values in “<” and “>” brackets.

Sensors 2011, 11 7580

Figure 6. Components of the Sensor Bus.

Listing 1. The connect sensor message.

Connec tSenso r ∗ <s e n s o r d e s c r i p t i o n URL>

To register a sensor at the Sensor Bus, the adapter belonging to the sensor sends a ConnectSensor
message (Listing 1) which contains a URL pointing to a sensor description document. This document is
placed at a Web-accessible location by the sensor publisher beforehand. The URL of the document
identifies the sensor in the subsequent communication via the Sensor Bus. We propose to use the
SensorML standard (Section 2) as the format of the sensor metadata document. SensorML is domain
independent which makes it generic and, thus, information can be encoded in multiple ways. We
demand that the sensor description conforms to a profile elaborated in previous work [61] which restricts
the genericness of SensorML. By complying to this profile, all components of the architecture can
rely on finding the sensor characteristics in well-defined elements of the SensorML document. These
characteristics suffice for effective discovery and include [62]:

• Identification of the sensor.
• Keywords that describe the sensor.
• Contact information about the company/individual that operates the sensor.
• Capabilities of the sensor (e.g., measurement capabilities such as accuracy, or operational

capabilities such as survival range).
• Classification of the sensor (e.g., model number or sensor type).
• Location of the sensor.
• Outputs of the sensor.

The connection of a service at the Sensor Bus and the subscription for certain sensor characteristics
is conducted by a sequence of messages sent by the service adapter (Listing 2). First, the service adapter

Sensors 2011, 11 7581

calls the ConnectService message to publish the endpoint of the service (i.e., its URL) which identifies
the service in future messages. Subsequently, multiple SubcribeService messages can be sent over the
bus, each defining a subscription of the service for sensors with a particular set of characteristics.

Listing 2. The message sequence for service connection and subscription.

1 . C o n n e c t S e r v i c e ∗ <s e r v i c e URL> 2 . S u b s c r i b e S e r v i c e ∗ <s e r v i c e URL>
∗ <s e n s o r c h a r a c t e r i s t i c A> ∗ <va lue>
∗ <s e n s o r c h a r a c t e r i s t i c B> ∗ <va lue>
. . .

x . S u b s c r i b e S e r v i c e ∗ <s e r v i c e URL>
∗ <s e n s o r c h a r a c t e r i s t i c Y> ∗ <va lue>
∗ <s e n s o r c h a r a c t e r i s t i c Z> ∗ <va lue>
. . .

The service subscription is specified in a key-value-pair style that associates a sensor characteristic’s
unique identifier with a value. A SubscribeService message can contain multiple key-value pairs which
are combined by a logical AND to a single subscription. This way, a service adapter can announce
interest in sensors with certain survival capabilities (e.g., battery lifetime greater than 10 days) that are
observing a particular observed property (e.g., temperature) with data being published in a particular
unit of measure (e.g., degree Celsius).

To reference a particular characteristic in a subscription, two alternatives exist. For commonly
used characteristics, such as unit of measure and observed property, we have defined a list of unique
identifiers (e.g., uom for unit of measure). To subscribe for characteristics which are priorly unknown
to the system (e.g., the survival range of a sensor) a unique concept identifier has to be used. During
matchmaking (Section 4.3) such priorly unknown characteristics are compared to the generic capability
elements of a sensor’s SensorML document. To make the values of these characteristics interpretable to
the components listening on the bus, they are encoded as SWE Common simple types (e.g., Boolean,
Text, QuantityRange) [24,63].

The message sequences described above are published in the management channel of the Sensor Bus,
where management components are listening. Two kinds of management components with different
responsibilities are defined; see Figure 6.

First, a mediator component computes the matchmaking between the characteristics a service requires
and the characteristics advertised in the SensorML document of a sensor. The mediation continues if all
characteristics of a sensor either match directly the requirements of a service, or a rule is available that
converts between two characteristics. If the matchmaking requires a conversion rule, the service adapter
needs to be notified that a transformation of incoming measurements will be required in the future.
Therefore, the mediator publishes required conversion rules to the management channel. Typically,
such conversion rules translate between different units of measure (e.g., Kelvin to Celsius) or different
data types (e.g., decimals to categorical values). This process of semantic meditation is similar to
formerly developed approaches for the semantic matchmaking of user requirements against web service
capabilities, for example described by Schade et al. [64]. Our approach is particularly designed for the
mediation between sensors and services. It is detailed in Section 4.3.

The start of the above outlined process is indicated by a MediatingService message (Listing 3) from
the mediator to declare that it takes over the computation of the matchmaking and prevent that multiple

Sensors 2011, 11 7582

mediators start this expensive calculation. After the process, a Mediate message is sent to publish the
result of the matchmaking. If needed, a conversion rule is contained in the mediate message (Listing 3).
The service adapter applies this rule to data received from the particular sensor to translate between its
output format and the required format of the observed property on the service side. The message contains
the advertised sensor output and the required observed property to which the mediation belongs. Multiple
mediator instances are listening to the management channel. This way, the system is scalable and the
mediation process does not cause delay. Also for the sake of scalability, the functionality of mediation
and channel administration are kept in separate components.

Listing 3. The mediate message sequence.

1 . M e d i a t i n g S e r v i c e ∗ <s e r v i c e URL> 2 . Media te ∗ <s e n s o r d e s c r i p t i o n URL> ∗ <s e r v i c e URL>
∗ <a d v e r t i s e d s e n s o r o u t p u t>
∗ <r e q u i r e d o b s e r v e d p r o p e r t y>

[∗ <c o n v e r s i o n r u l e >]

The second kind of management component is the channel administrator that monitors the
management channel and is responsible for registering services and sensors to particular communication
channels. The communication channels are used to publish and receive measured sensor data. For each
output of a sensor, the channel administrator creates a new channel. By means of the DirectSensor
(Listing 4) message, the sensor is directed to a channel where it shall publish a particular output. A
service is directed to that channel if, as published in the mediate message (Listing 3), a matching between
the advertised sensor characteristics and the service requirements does exist. The channel administrator
directs the service by means of the DirectService (Listing 5) message.

Listing 4. The direct sensor message.

D i r e c t S e n s o r ∗ <s e n s o r d e s c r i p t i o n URL>
∗ <a d v e r t i s e d s e n s o r o u t p u t>
∗ <channe l>

Listing 5. The direct service message.

D i r e c t S e r v i c e ∗ <s e r v i c e URL>
∗ <r e q u i r e d o b s e r v e d p r o p e r t y>
∗ <channe l>

To publish new data, a sensor adapter transmits a PublishData message (Listing 6) via the Sensor
Bus containing a time and location tag (encoded as ISO 8601 [65] and EPSG 4326), the observed
phenomenon as the sensor’s output, and the data value itself. A service adapter, receiving this
message, first applies the conversion rule(s) to the data and then transforms the message to the service
specific protocol. In case of an SOS service adapter, the publish data message is translated to an
InsertObservation request (see Listing 16 for an example) to upload the data to the SOS.

Listing 6. The publish data message.

P u b l i s h D a t a ∗ <s e n s o r d e s c r i p t i o n URL> ∗ <t ime tag> ∗ < l o c a t i o n tag>
∗ <a d v e r t i s e d s e n s o r o u t p u t> ∗ <da ta>

Sensors 2011, 11 7583

4.2. Realizing a Generic Driver Mechanism with Sensor Interface Descriptors

Before a sensor can be integrated with the Sensor Web, a driver is required which understands the
native sensor protocol and offers a well-defined interface that makes the functionality of the sensing
device available to the outside (Section 3.2). Since there are numerous kinds of environmental sensors
with various interfaces available, we propose the usage of a generic driver mechanism for sensors,
as stated by Requirement 5. The Sensor Interface Descriptor (SID) model described in our previous
work [11,66] can be used to provide this functionality. The SID model supports the declarative
description of sensor interfaces. It is designed as a profile and extension of OGC’s SensorML standard
(Section 2). An instance of the SID model, designed for a particular type of sensor, defines the precise
communication protocol, accepted sensor commands, or processing steps for transforming incoming raw
sensor data. Based on that information, a so-called SID interpreter is able to establish the connection
to a sensor and translates between the sensor protocol and a target protocol. For this work, we have
developed an SID interpreter used to build a generic sensor adapter that converts received sensor data to
the Sensor Bus protocol; see Figure 7.

Figure 7. SID interpreter as a sensor adapter for the Sensor Bus.

SID interpreters can be built independently of particular sensor technology since they are based on
the generic SID model. Figure 8 depicts an excerpt of this model. The blue colored, SID specific
classes extend the beige colored classes defined in SensorML. The SID is strictly encapsulated within
the InterfaceDefinition element of a SensorML document. Since the SID is designed for a certain type
of sensor and not for a particular sensor instance, this encapsulation makes the interface description
independent of the rest of the SensorML document. Consequently, it is easily exchangeable and can also
be reused in SensorML documents of other sensors of the same type.

The SID model extends the elements of the Open Systems Interconnection (OSI) reference model [26]
which are already contained in SensorML and associated with the interface definition. The OSI model
is the basis for designing network protocols and therefore consists of a number of layers. On the lowest

Sensors 2011, 11 7584

layer, the physical layer, the structure of the raw incoming and outgoing sensor data stream is described.
This includes the definition of block identifiers and separator signs within the data stream. Next,
encoding and decoding steps can be applied to the raw sensor data. Therefore, according processes can be
specified and attached to the data link, network, transport, and session layer. Such processing steps are for
example character escaping or checksum validation which are necessary for reliable communication with
sensors. Finally, the application layer can be used to define commands accepted by a sensor, including
their parameters, pre- and post-conditions, as well as response behavior. Those command definitions can
for example be used by a Sensor Planning Service (Section 2) to provide an interoperable interface for
tasking. A detailed description of the model can be found at [11,66].

Figure 8. Overview of SID extension to SensorML.

Sensor interfaces and communication protocols are often complex. Consequently, the design and
manual creation of SID instances is not straightforward. Hence, a visual SID creator has been
developed [67]. This graphical tool supports users in describing the sensor interface and generate SID
instances for their sensors. The creator can be used by sensor manufacturers to create SIDs for their
products and provide them to clients for an easy integration of their sensors with the Sensor Web.

4.3. Realizing a Matchmaking Framework with Semantic Mediators

Based on the matchmaking requirements specified in Section 3.3, we introduce the semantic
alignment, matching, and mediation framework for sensors and their observations.

The channel administrator links sensors and services by directing them to the same channel given that
the offered sensor characteristics match the requirements of the service; see Section 4.1. This match
is determined by mediators subscribed to the management channel. Once a new sensor is advertised
by a ConnectSensor message, a mediator sends the MediatingService message and starts computing the
matchmaking. Each mediator maintains a list of subscribed services and their requested characteristics.

Sensors 2011, 11 7585

The degree of matching is computed by extracting metadata from the sensors’ advertised SensorML
document and validating them against the characteristics requested by the services via SubscribeService
messages (Section 4.1).

The mediators can combine different levels of matchmaking ranging from syntactic, keyword-based
matching to semantic alignment and meditation using Semantic Web ontologies and technologies. In
fact, most existing solutions combine a multitude of approaches [68–74]. On the lowest level, a syntactic
metric such as the Levenshtein distance can be used for the string-based comparison of the sensor’s
advertisement adv and service’s requirements req. The previously specified Requirement 6, however,
calls for extended temporal, spatial, and semantic matching and mediation functionalities. In this work,
we focus on the semantic component; realizing the temporal and spatial matchmaking follows similar
mechanisms based on qualitative or quantitative reasoning. For example, this kind of matching can be
used to determine whether the region covered by a specific sensor is spatially contained within the area
represented by a feature of interest associated with a service. In a quantitative case, features can be
directly compared based on their geometries; in a qualitative setting, a region connection calculus, e.g.,
RCC8 [75], can be used.

Semantic matchmaking requires the advertised and requested characteristics to be expressed in a
formal language supporting inference. The mediator performs two steps, concept creation and semantic
matchmaking, before it publishes the matching response on the Sensor Bus. The first step includes
(1) the creation of the req sensor template (including a set of concepts and individuals) from the
characteristics announced by the service adapter in the SubscribeService message (Listing 2) and
(2) the creation of adv sensor template from sensor characteristics extracted from the SensorML
document. The created ontology elements are aligned with the OWL-based ontology developed by the
W3C SSN-XG [32,36,76], which implements the Sensor-Stimulus-Observation (SSO) ontology design
pattern; see Section 2.2. Those ontologies provide a rich set of concepts and relations and are used
to model measurement properties such as latency, operating properties (e.g., power range), survival
properties (e.g., battery lifetime), and many more.

The semantic matchmaking results can be further improved if the requested and advertised
characteristics are semantically annotated, i.e., extended with references to concepts from shared domain
vocabularies. The SSN ontology does not specify types of observed properties but introduce the generic
Property concept for further subclassing. Properties and feature types can be imported from other
ontologies, e.g., SWEET [77] for environmental terminology or the vocabularies provided by the Marine
Metadata Interoperability Project [78].The concept creation takes semantic annotations into account
by aligning the created concepts with the annotated concepts. The Alignment API and server can
be used to integrate multiple ontologies if no predefined mappings exist, see [73] for details. With
semantic annotations in place, advertised characteristics such as the sensor’s observed property are used
to compute a match with the service requirements template.

In the matchmaking step, the mediator reclassifies [64,79] the service ontology by injecting the adv

sensor concept. The service ontology may already store a list of previously requested sensor concepts.
The reclassification is based on subsumption reasoning and can result in either of the following matches
(see also [80] for a more detailed description of matching types). A detailed example is given in
Section 6 and illustrated in Figure 12:

Sensors 2011, 11 7586

exact match: This occurs if the sensor concept adv, defining the advertised sensor characteristics,
is equivalent to the concept of the service’s sensor template req, defining the required sensor
characteristics, i.e., if adv ≡ req.

plugIn match: In this case, adv has been reclassified as subconcept of req, i.e., adv v req.
Consequently, the characteristics requested by the service are less specific. For example, requested
observed property is Temperature, while the advertised sensor output is a more specific kind of
temperature (e.g., water temperature). Since WaterTemperature is modeled to be a subconcept of
Temperature, the reasoner infers a successful match.

subsumed match: In this case, adv has been reclassified as superconcept of req, i.e., adv w req.
Therefore, req is more specific than adv. For example, a sensor measures temperature with a
sampling rate of 1 measurement per day, whereas the service requires a sampling rate of at least
1 measurement per hour. Hence, the advertised sensor properties do not meet the requirements of
the service and the result is no match.

fail: If none of the cases above can be computed, the result of the matchmaking is negative. More
specifically, no alignment between different property ontologies could be computed or adv and
req are disjoint classes, i.e., adv u req v⊥. For example, a service requests the observed property
Temperature but the advertised output is WindSpeed.

Even if the subsumption reasoning resulted in no match, the advertised and required characteristics
might still match if the sensor’s output can be transformed into the requested format. For example, all
described properties match, but the sensors output is expressed with a unit of measurement incompatible
with the request. If the sensor announces temperature observations measured in degree Celsius, while
the service expects Kelvin, a conversion would add 273.15 to the observed value and forward it to the
service. Rules (e.g., Semantic Web Rule Language, SWRL) can attach these conversion methods to the
individuals resulting from the concept creation phase. The executable conversion instructions are stored
as literals in the ontology. This includes simple arithmetic functions such as the described unit conversion
but also more sophisticated conversions, for example data type transformations, can be supported by this
approach. Coming back to the wind direction example, such a conversion could transform from measured
numeric values (wind direction measured in degree) to required nominal values (wind direction as North,
Northeast, etc.).

The rules are automatically triggered during the reclassification phase. In case of a mismatch,
the mediator checks if conversion instructions have been attached to the requested sensor templates.
Existing conversions result in a match, and the literal containing the conversion instruction is published
in the mediator’s response. An example for a mediate message to announce such a rule is given
in Listing 13. Simple conversions are directly executed on runtime by the service adapter, and are
encoded in MathML [81] with placeholders for the observation value. More complex conversions can
be implemented by remote Web services, for example OGC’s Web Processing Services (WPS) [82]. In
the latter case, the literal contains information how to invoke the service operation. Our implementation
focuses on simple conversions so far. This de-coupling of the semantic matchmaking performed by
the mediators and the conversion execution performed by the service adapters makes the proposed

Sensors 2011, 11 7587

architecture for Sensor Plug & Play more robust and scalable, as the processing steps may be time
consuming and their outcomes are delivered asynchronously.

In this work, we propose a subsumption reasoning-based matching that reclassifies the service
provider’s ontology after injecting the adv sensor concept. However, this design decision does
not exclude the use of other methodologies, e.g., semantic similarity measurement or probabilistic
approaches, in the future. Both can improve the mediation framework by offering ranking information
in addition to the boolean matching used so far. Nevertheless, from an integration point of view,
subsumption-based matching is most universal as it can be applied to any combination of Semantic Web
ontologies (as long at they can be aligned) and any OWL language profile. Finally, all major reasoners
offer highly-optimized taxonomic reclassification as basic service via a DIG or OWLlink API [83].

5. Implementation

This section describes the implementation of the plug & play architecture described in Section 4. All
implemented components are available as open and free source code by the 52◦North Sensor Web [84]
and Semantics [85] communities—the links to the software project websites are stated below.

At the core of the architecture, the Sensor Bus enables the interplay of the developed components.
This is similar to an Enterprise Service Bus [86] which can be used in pure Service Oriented
Architectures to establish a loose coupling between web services. We implemented the Sensor Bus [87]
based on a generic structure of interfaces wrapping the communication between the involved components
and the message protocol (Figure 9). The BusConnector interface provides functionality for both sending
and receiving messages by applying the observer pattern [88]. An implementation of the bus connector
calls onMessage() in case of an incoming message. The message is then decoded and passed on to
observers. Concrete sensor and service adapters act as such observers by implementing the BusListener
interface and registering them at the bus connector by means of the addListener() method. They receive
incoming messages through their implementation of the notify() method, and react on it according to
their specifications. The adapters transmit messages to the bus by using the sendMessage() method of the
bus connector. By providing an according implementation of the bus connector interface, the Sensor Bus
can be adapted to different communication infrastructures. In this work, we realized the bus connector
for the Extensible Messaging and Presence Protocol (XMPP) by providing the XMPPConnector class.
This way, the Sensor Bus can be set up based on an XMPP server for instant messaging.

The SensorAdapter interface encapsulates the connection to a sensor. In general, a sensor adapter is
implemented for a certain sensor type and thus capable of translating between the sensor’s protocol and
the bus protocol. In this work, however, we provide a generic sensor adapter, the SIDBusAdapter which
reuses our SID interpreter implementation [89] developed in previous work [11]. By utilizing the SID
interpreter, the generic senor adapter can perform the protocol translation based on an SID document
(Section 4.2) belonging to the sensor. Such an SID document either already exists for the sensor and
can thus be reused, or it needs to be created. In the latter case, the sensor provider can make use of
our SID creator tool [67]. Figure 10 shows an excerpt of the SID creator while designing a sensor’s
SID document.

The ServiceAdapter interface represents the connection of a service to the Sensor Bus. We have
implemented such service adapters for the Sensor Event Service and the Sensor Observation Service

Sensors 2011, 11 7588

Figure 9. Overview of the class hierarchy of the Sensor Bus implementation.

Figure 10. Sensor data message protocol defined in SID Creator.

(Section 2). Here, we focus on the latter one, the SOSAdapter, which calls the SOS operations
RegisterSensor and InsertObservation (see Listing 16 for an example) of an SOS server in reply to
a received PublishData message (Listing 6). The implementation of the SOS adapter utilizes the
OX-Framework [90,91] as an encoding engine for the SOS operation requests and O&M observations.

Sensors 2011, 11 7589

Also, the classes ChannelAdministrator and Mediator as representations of the respective
management components act as observers on the bus. Thus, they are notified when sensors or services
connect to the bus. The channel administrator directs the registering components to channels and
therefore maintains a map of sensor outputs to bus channels. If necessary it sets up new channels by
calling the createChannel() method of the bus connector.

The mediator maintains a mapping of services to their required characteristics and a list of links to
SensorML documents of the registered sensors, as the document URLs act as identifiers of the sensors.
Further, the mediator comprises methods for the extraction of sensor characteristics from SensorML as
well as the concept creation (createReqConcept() and createAdvConcept()). Also, the functionality of
injecting the advertised sensor concept into a service’s sensor template and reclassifying the concept
hierarchy are encapsulated in their own methods, insertOWL() as well as inferHierarchy(). For the
implementation of concept creation, concept injection, and reasoning, we rely on the OWL API [92] as
well as the OWL reasoner Pellet [93].

6. Application

This section applies our semantically-enabled Sensor Plug & Play approach to the use case of a marine
oil spill in the Norwegian Sea, as introduced in Section 1. A local Sensor Web infrastructure is already
in place and built upon the Sensor Bus. New sensors need to be connected and made available in an
on-the-fly manner. As a proof-of-concept, we demonstrate in the following the plug & play of two CTD
sensors, an RBR XR-420 and a Seabird SBE 37 (see Figure 1), with a Sensor Observation Service.

To connect the two CTD sensors to the Sensor Bus we utilize the generic sensor adapter which
incorporates an SID interpreter (Section 4.2). The SIDs for the two sensors have been designed using
the SID creator tool [67]. This tool follows the wizard user interface pattern. Figure 10 shows the page
of the wizard which allows to define the structure of the data stream coming from the sensor. Here, the
message format of the RBR XR-420 sensor for delivering measured data is defined (Listing 7). This
is done by stating separator signs and associating labels to the six token fields of the message for the
identification of data chunks and further processing. With this information defined and captured in an
SID document the sensor adapter is capable of translating the sensor messages to the bus protocol.

Listing 7. Example of a data message coming from an RBR XR420 sensor and containing
values for time, conductivity, pressure and temperature.

TIM | 110308135423 | 55 .732 | 3 .043 | 1 .542 | FET<cr><l f>

Once the sensor adapter is started and receives data from the sensor, it sends the message
ConnectSensor * http://myserver.org/sensor/s1.xml to register the sensor at the bus. The SensorML
document [94] to which this message points contains the metadata of the sensor. In this case study, we
focus on a selected output of the sensor, namely temperature, and the sensor’s survival range (Listing 8).

The sensor output states its data type (a Quantity, which represents decimal numbers), the unit
of measure (a UCUM [95] code, here, Cel for degree Celsius), and references a phenomenon.
The phenomenon reference can be resolved since it links to the SWEET ontology [77] to retrieve
a description.

Sensors 2011, 11 7590

The survival range, i.e., the sea water depth up to which the sensor can be exposed to without damage,
is stored as a QuantityRange in the generic capabilities element of the SensorML document (Section 2).
Thereby, the semantics of the quantity range are declared by pointing to the concept SurvivalRange of
the W3C SSN-XG ontology. In this example, the sensor states that it can survive up to 100 meters
below sea level. Note that our framework does not enforce which ontologies should be used, e.g., for the
sensor output description. The choice of an appropriate ontology depends on the use case and is up to
the provider.

Listing 8. Excerpt of the used SensorML document.

<sml : c a p a b i l i t i e s >
<swe : SimpleDataRecord>

<swe : f i e l d >

<swe : QuantityRange d e f i n i t i o n =” h t t p : / / p u r l . o c l c . o rg / n e t / s snx / s s n # SurvivalRange”>
<swe : uom code =”m” />
<swe : value>−100 0</swe : value>

</swe : QuantityRange>
</swe : f i e l d >

</swe : SimpleDataRecord>
</ sml : c a p a b i l i t i e s > . . . <sml : output name=” temp”>

<swe : Quanti ty d e f i n i t i o n =” h t t p : / / swee t . j p l . na sa . gov / 1 . 1 / p r o p e r t y . owl# Temperature”>
<swe : uom code =” Cel ” />

</swe : Quantity>
</ sml : output>

In reply to the connect sensor message, the channel administrator directs the sensor adapter to publish
the sensor data for each phenomenon in a separate channel. For the phenomenon temperature, the
according message is (Listing 9):

Listing 9. Example of a direct sensor message.

D i r e c t S e n s o r ∗ h t t p : / / myse rve r . o rg / s e n s o r / s1 . xml
∗ h t t p : / / swee t . j p l . na sa . gov / 1 . 1 / p r o p e r t y . owl# Temperature
∗ channe l 1

To give an overview, Figure 11 shows the above described message sequence for registering a sensor at
the Sensor Bus (Sequence A–D). Also, the figure illustrates the sequence of messages to connect, mediate
and direct an SOS (Sequence 1–6) which are described in the following. First, a service adapter registers
an SOS at the Sensor Bus by, for example, subscribing it for all temperature related observations. To
do so, the concept TemperatureRelatedQuantity is chosen, which is a super type of Temperature within
the SWEET ontology. Further, the SOS restricts the values to Kelvin as unit and requires sensors with a
survival range of at least −50 m. Therefore, the following message is sent (Listing 10):

Sensors 2011, 11 7591

Listing 10. Example of a subscribe service message.

S u b s c r i b e S e r v i c e ∗ h t t p : / / mySOS . org
∗ observedProperty ∗ h t t p : / / swee t . j p l . na sa . gov / 1 . 1 / p r o p e r t y . owl# TemperatureRelatedQuanti ty
∗ uom ∗ K
∗ h t t p : / / p u r l . o c l c . o rg / n e t / s snx / s s n # SurvivalRange
∗ <QuantityRange><uom code = ’m’/><va lue >−50 0</ va lue ></QuantityRange>

Figure 11. Overview of message sequences for connecting, mediating and directing sensor
and service.

Next, a free mediator starts computing the matchmaking between the characteristics advertised by
the sensor and the characteristics required by the service (Section 4.3) and sends the mediate service
message (Listing 11) to inform that it started to process the request. The template representing the sensor
characteristics required by the service has been created before, and is already in the ontology. The sensor
template created during the concept creation phase includes the following concepts and individuals:

AdvertisedObservation: The observation is the root concept of the sensor template. It is observed by
the AdvertisedSensor, and produces an AdvertisedSensorOutput.

AdvertisedSensor: This concept represents the sensing device, which observes a phenomenon such
as temperature or salinity. The sensing device has characteristics such as survival range or
battery lifetime.

AdvertisedSensorOutput: The output of the sensing device links to the observation value.
AdvertisedSensorOutputValue: The output’s value is an individual parametrized by units of measure,

and can also have other parameters e.g., describing the data quality.

Listing 11. Example of a mediate service message.

Media t ingServ ice ∗ h t t p : / / mySOS . org

Sensors 2011, 11 7592

Figure 12 illustrates the different ontology elements constructed by the mediator during ontology
creation phase. The AdvertisedSensor has the property observes pointing to the concept Temperature,
while the RequiredSensor is associated with the TemperatureRelatedQuantity–both are from the SWEET
ontology. Also, the two different units of measure have been included. Further, the survival range is
defined in the advertised document. Hence, during the concept creation the property hasSurvivalRange
is added to the concept AdvertisedSensor. This property links to the concept RangeUpTo100m, which
is a subconcept of RangeUpTo50m (coming from the required sensor template). This example relies on
certain ’knowledge’ of the mediator about how to transform the utilized SWE Common basic types into
according concepts. Here, the mediator knows that it has to transform the data type QuantityRange to
the Range* concepts.

Figure 12. Created concepts for the req sensor and the adv sensor.

The concepts are created via the OWL API [92]. The API is coupled with Pellet [93], an open-source
Java OWL-DL reasoner [96], which supports both, subsumption reasoning and the execution of
SWRL [97] rules [98].

After the concept creation, the matching is determined. The observed phenomenon Temperature
has been defined for the advertising sensor. Since the SOS is requesting sensors which observe the
more general property TemperatureRelatedQuantity, a plugIn match is computed, no conversion of result
values is required.

Taking the requested survival range into account, the service asks for sensors which can work up to
at least 50 m, whereas the advertised sensor survives up to 100 meters below sea level. In Figure 13, a
screenshot of the Protégé [99] ontology editor shows the results of the reclassification performed by the
reasoner. Since RangeUpTo100m is modeled as subconcept of RangeUpTo50m, the advertised sensor is
reclassified as subconcept of the required sensor, i.e., a plugIn match is the result.

Finally, the matching of the unit of measures is computed. This case relies on the SWRL rules
attaching the conversion instructions to the result values. The individual AdvertisedSensorOutput is
modelled to be measured in degree Celsius, whereas the requesting service asks for Kelvin. The
following SWRL rule is an example how a match can still be inferred (Listing 12):

Sensors 2011, 11 7593

Listing 12. SWRL rule attaching a conversion rule.

O b s e r v a t i o n V a l u e (? x) , i s P a r a m e t r i z e d B y (? x , degree−C e l s i u s) −>
a p p l y C o n v e r s i o n R u l e (? x , D e g r e e C e l c i u s 2 K e l v i n)

Figure 13. Example of a plugIn match of the survival range as screenshot in Protégé.

Without the SWRL rule, the reasoning would result in no match due to the conflicting units of
measure. However, applying the SWRL rule adds a new property applyConversionRule to the individual
AdvertisedObservationValue. This new property points to the conversion instructions which have to be
applied before the result values can be processed by the requesting SOS. The mediator extracts this
conversion rule, and includes it in the Mediate message that contains references to sensor output and
required observed property to which the formula needs to be applied (Listing 13).

Listing 13. Example of a mediate message with conversion rule.

Mediate ∗ h t t p : / / myse rve r . o rg / s e n s o r / s1 . xml ∗ h t t p : / / mySOS . org
∗ h t t p : / / swee t . j p l . na sa . gov / 1 . 1 / p r o p e r t y . owl# Tempera tu r e
∗ h t t p : / / swee t . j p l . na sa . gov / 1 . 1 / p r o p e r t y . owl# T e m p e r a t u r e R e l a t e d Q u a n t i t y
∗ <math><mrow><mi>VAL</mi><mo>+</mo><mi>273 ,15</mi></mrow></math>

In response to the mediate message, the channel administrator performs a look up to which
channel sensor s1 has been directed for publishing temperature data. Consequently, the channel
administrator instructs the service to join that particular channel to retrieve measurements of the
TemperatureRelatedQuantity for which it subscribed (Listing 14).

Sensors 2011, 11 7594

Listing 14. Example of a direct service message.

D i r e c t S e r v i c e ∗ h t t p : / / mySOS . org
∗ h t t p : / / swee t . j p l . na sa . gov / 1 . 1 / p r o p e r t y . owl# TemperatureRelatedQuanti ty
∗ channe l 1

For registering the sensor at the SOS, the service adapter calls the RegisterSensor operation which
carries the SensorML document of the sensor. Subsequently, the service adapter inserts received data as
observations into the SOS. An example for a publish data message sent by a sensor adapter is shown in
Listing 15. The service adapter receives this message and transforms the contained temperature value to
Kelvin by executing the conversion rule posted by the mediator. Finally, the service adapter transforms
the received message to an InsertObservation request as shown in Listing 16 and sends it to the SOS.
Thereby, the feature of interest is set as a sampling point with the coordinates received from the sensor.

Listing 15. Example of a publish data message.

Publ ishData ∗ h t t p : / / myse rve r . o rg / s e n s o r / s1 . xml ∗
2011−03−08T13 : 5 4 : 2 3 ∗ 59 .64 3 . 5 2
∗ h t t p : / / swee t . j p l . na sa . gov / 1 . 1 / p r o p e r t y . owl# Temperature ∗ 1 .542

Listing 16. Example of a simplified SOS InsertObservation request generated from a
PublishData message.

<s o s : I n s e r t O b s e r v a t i o n s e r v i c e = ’SOS’ v e r s i o n = ’1.0 .0 ’ >
. . .
<Observation>

<samplingTime>
<gml : t i m e P o s i t i o n >

2011−03−08T13 : 5 4 : 2 3
</gml : t i m e P o s i t i o n >

</samplingTime>
<procedure x l i n k : h r e f =” h t t p : / / myse rve r . o rg / s e n s o r / s1 . xml”/>
<observedProperty

x l i n k : h r e f =” h t t p : / / swee t . j p l . na sa . gov / 1 . 1 / p r o p e r t y . owl# TemperatureRelatedQuanti ty ”/>
<f e a t u r e O f I n t e r e s t>

<sa : SamplingPoint gml : i d =” p1”>
<sa : s a m p l e d F e a t u r e x l i n k : h r e f =””/>
<sa : p o s i t i o n >

<gml : P o i n t>
<gml : pos srsName =” urn : ogc : d e f : c r s : EPSG:4326” >59.64 3.52< / gml : pos>

</gml : P o i n t>
</ s a : p o s i t i o n >

</ s a : SamplingPoint>
</ f e a t u r e O f I n t e r e s t>
<r e s u l t x s i : t y p e =”gml : MeasureType ” uom=”K”>

274 .692
</ r e s u l t>

</ Observation>
</ s o s : Inser tObserva t ion>

Henceforth, the data is stored by the SOS and available to clients via its standardized interface. It can
be accessed and retrieved in a pull-based manner. In a similar way, a Sensor Alert Service or Sensor
Event Service (Section 2) can be registered at the Sensor Bus to provide data in a push-based manner.
Those push-based services receive the incoming data, filter it by certain predefined criteria and forward
it to interested clients.

Sensors 2011, 11 7595

7. Conclusion and Outlook

In this work, we identified the need for methods which facilitate the on-the-fly integration of
sensors with the Sensor Web while minimizing the administration efforts. This functionality is
important for applications such as disaster management where an easy integration of new sensors is
required. For achieving this aim, we conducted a detailed requirements analysis. Three groups of
requirements emerged, which declare the need for (1) publish/subscribe functionality for instantaneous
communication between sensors and services, (2) a driver mechanism for interpreting raw sensor data,
and (3) matchmaking functionality between sensors and domain specific service models. To fulfill these
requirements we designed a standards- and service-based architecture for Sensor Plug & Play.

For realizing Requirements 1 to 5, the architecture comprises results from our previous work, the
Sensor Bus combined with the interpreter for Sensor Interface Descriptors (SIDs). After bringing these
technologies together and enhancing the message protocol of the Sensor Bus for enabling Sensor Plug &
Play, we designed a matchmaking and mediation framework based on Semantic Web methods to fulfill
Requirement 6. This framework is based on mediators which listen as encapsulated and loosely-coupled
components on the bus. They perform the mediation between advertised sensor characteristics (e.g.,
output definition and unit of measure) and service requirements by performing concept creation and
reasoning. For specifying concepts, we make use of the W3C SSN-XG ontology as well as the SWEET
ontologies to represent environmental phenomena (conforming to Requirement 7). Other third-party
ontologies can be integrated as well as long as they are alignable with the SSO pattern. For mediating
between non-matching concepts, we added SWRL rules which define conversions, such as simple unit or
data type transformation. The implemented concepts have been made available as open source software
by the 52◦ North Sensor Web and Semantics communities.

Finally, we demonstrated the applicability of the developed approach by utilizing the implemented
architecture to automatically plug two marine CTD sensors into a Sensor Observation Service. Such
sensors are commonly used in oceanographic research and can for example be applied to monitor oil
weathering after spills. This demonstration has shown that the proposed approach can be used to facilitate
the realization of ocean observing systems [100]. A next step is to evolve our approach and apply it to
further use cases (e.g., flood management).

The necessary steps for providers of services or sensors to make their components available on the
Sensor Web with the presented approach can be summarized as follows. To plug in a sensor, the sensor
provider needs to define the sensor metadata, its advertised characteristics, in SensorML following the
profile for sensor discovery [61]. Additional metadata, not covered by the profile, can be described with
the capabilities elements in the SensorML document. To make use of the generic driver mechanism,
the SensorML document needs to contain a description of the sensor protocol conforming to the SID
specification [66]. Then, the sensor adapter is able to communicate with the sensor based on its SID and
publishes the sensor metadata by pointing to the SensorML document when sending the ConnectSensor
message to the bus. To register a service, the service provider needs to specify the characteristics of
sensors which the service requires. The service adapter will state these required characteristics when
sending the SubscribeService message via the bus. The identifiers of those characteristics are either

Sensors 2011, 11 7596

pre-defined (e.g., for unit of measure and observed property) or are generic and hence compared to the
capabilities elements of the SensorML documents (see Sections 4.1 and 6).

Following the above steps, our approach aims at achieving plug & play for single sensors with the
Sensor Web. Although, those sensors can be part of a network, the network topology is not considered.
Each sensor is registered individually at the system. In future, our approach might be extended to also
support plug and play of entire networks of sensors.

Of course, this article primarily describes the theoretical concepts of the developed approach for
Sensor Plug & Play. In future, when this approach shall be applied in practice or commercial
environments, tools and graphical user interfaces need to be present which support service as well as
sensor providers in defining required/advertised characteristics of their components. This is important
to minimize also the administration efforts in creating service/sensor descriptions. The developed
architecture provides the framework for the development of such tools. A tool that supports a sensor
provider in generating the protocol description of a sensor has already been described in the article,
the SID Creator (Section 6). This SID Creator can be extended in future to also facilitate the semantic
annotation of the sensor’s SensorML file.

To compute the matching between concepts from differing ontologies, we rely on semantic
matchmaking computed by reasoning engines. So far we distinguish between 4 different (mis-)matches,
however only exact and plugIn match allow for direct integration. Our approach may be extended
by non-symmetric semantic similarity measurement to reason about the degree of matching [71]. In
previous work, we have demonstrated that the SIM-DL similarity server can be used to compare classes
to determine their conceptual overlap as fit-for-purpose estimator [101]. The same approach can be
taken by the mediator to quantify the degree by which the sensor is a subclass or superclass of the
service template, respectively. As illustrated in Section 6, the concept creation can also be applied to
quantitative properties such as the sensor’s survival range if it follows nested classes approach [102]. This
might potentially result in large ontologies (since each numeric value results in a new concept), which
can have an impact on the reasoning performance. The performed mediation during the subscription
and transformation during the publication of new observations are not communicated to the end-user.
This might be a problem for complex transformations which, for example, aggregate information from
different sources. Here, the resulting observation data might be extended with data quality parameters
explaining the performed transformation steps. For simple transformation, as the mentioned conversion
in between measurement units, the rules can be embedded as MathML statements in the domain
ontologies. Creating these rules remains the responsibility of the authorities maintaining the domain
ontologies. In future, this burden may be relieved by processes that, for example, automatically integrate
unit conversion rules from public GML unit dictionaries [103] into the ontologies.

In coming applications, the presented semantic matching and mediation approach can be put to use
in on-stream processing. This may include the dynamic fusion of incoming data streams to aggregated
observations, for example the combination of temperature and conductivity data streams measured by
a CTD underwater sensor to derive a stream of salinity measurements. Similar to earlier approaches
(e.g., [53]) where sensor fusion has been done on the web service level, this approach performs the
fusion before the data is ingested by the service. To realize such functionality, the simple MathML

Sensors 2011, 11 7597

encoded conversion rules, which are determined in our current implementation, need to be replaced by a
more powerful transformation language.

A further topic for future developments is to incorporate spatial and temporal reasoning functionality.
In the requirements analysis for a matchmaking mechanism (Section 3.3), we have identified the need
to determine the domain feature which a sensor observes. Although our current implementation does
not support such mediation yet, the proposed matchmaking framework is flexible enough to incorporate
such functionality.

Additionally, mechanisms to assign trust levels to sensors and sensor providers need to be elaborated.
Trust may depend on the quality of observations of previously plugged in sensors. Determining the level
of trust requires validation algorithms that take into account observations from calibrated sensors but
also trust and metrics for deciding whether observations are suitable for the validation process [104].

Scalability is addressed by the architecture design through de-coupling and encapsulating the tasks
of match computation and rule execution. While the first is performed by mediators, the latter is
in responsibility of the service adapters. Mediators as well as service adapters can run on separate
machines. If increasing numbers of sensors register at the Sensor Bus, additional mediators can be
mounted to the bus to avoid latency in match computation. As soon as a mediation needs to be processed,
an idle mediator reacts and declares its responsibility by sending the MediatingService message. Since
potentially unlimited mediators can be mounted to the bus, the architecture scales. Also, the designed
message protocol is kept light-weight to save system resources (e.g., on the sensor side). Due to this
simplicity of the protocol, not only the here used XMPP but also other underlying messaging platforms
are possible.

Alternatively, a future development could built the designed architecture on OGC’s Sensor Event
Service (SES) [20]. The SES realizes a publish/subscribe architecture based on Web Service
Notification [105]. A benefit would be to gain from the SES’s rich filter functionality which enables
Complex Event Processing (CEP) [106] on incoming sensor data. However, since the SES is associated
with a single event processing engine, such an approach would be contrary to the scalability achieved
from the de-coupled mediators.

Acknowledgements

This work has been financially supported by the project Flexible and Efficient Integration of Sensors
and Sensor Web Services funded by the ERDF program for NRW (contract number N 114/2008), the EC
funded project ENVISION (contract number 217951), as well as the 52◦ North Initiative for Geospatial
Open Source Software. Many thanks to Tom O’Reilly and the Monterey Bay Aquarium Research Institute
(http://www.mbari.org) for providing the CTD sensors used in the case study.

References and Notes

1. Nittel, S. A survey of geosensor networks: Advances in dynamic environmental monitoring.
Sensors 2009, 9, 5664–5678.

Sensors 2011, 11 7598

2. Botts, M.; Percivall, G.; Reed, C.; Davidson, J. OGC Sensor Web Enablement: Overview and
High Level Architecture. In Proceedings of the 2nd International Conference on GeoSensor
Networks, GSN 2006, Boston, MA, USA, 1–3 October 2006; Nittel, S., Labrinidis, A.,
Stefanidis, A., Eds.; Springer: Boston, MA, USA, 2008; Volume 4540, pp. 175–190.

3. Chung, L.K.; Baranski, B.; Fang, Y.M.; Chang, Y.H.; Chou, T.Y.; Lee, B.J. A SOA based Debris
Flow Monitoring System—Architecture and Proof-of-Concept Implementation. In Proceedings
of the 17th International Conference on Geoinformatics 2009; Fairfax, VA, USA, 12–14 August
2009.

4. Stasch, C.; Walkowski, A.C.; Jirka, S. A Geosensor Network Architecture for Disaster
Management based on Open Standards. In Proceedings of the Digital Earth Summit on
Geoinformatics 2008: Tools for Climate Change Research, Potsdam, Germany, 12–14 November
2008; Ehlers, M., Behncke, K., Gerstengabe, F.W., Hillen, F., Koppers, L., Stroink, L.,
Wächter, J., Eds.; Wichmann: Berlin, Germany, 2008; pp. 54–59.

5. Schimak, G.; Havlik, D. Sensors anywhere-sensor web enablement in risk management
applications. ERCIM News 2009, 76, 40–41.

6. Jirka, S.; Bröring, A.; Stasch, C. Applying OGC Sensor Web Enablement to Risk Monitoring
and Disaster Management. In Proceedings of the GSDI 11 World Conference, Workshop on
Sensorweb Enablement: Strengthening the SDI, Rotterdam, The Netherlands, 15–19 June 2009.

7. Raape, U.; Tessmann, S.; Wytzisk, A.; Steinmetz, T.; Wnuk, M.; Hunold, M.; Strobl, C.;
Stasch, C.; Walkowski, A.C.; Meyer, O.; et al. Decision support for tsunami early warning in
indonesia: The role of standards. In Cartography and Geoinformatics for Early Warning and
Emergency Management; Springer: Prague, Czech Republic, 2009; Volume 2, pp. 233–247.

8. Bröring, A.; Janowicz, K.; Stasch, C.; Kuhn, W. Semantic Challenges for Sensor Plug and Play. In
Proceedings of the Web & Wireless Geographical Information Systems, W2GIS 2009, Maynooth,
UK, 7–8 December 2009; Carswell, J., Fotheringham, S., McArdle, G., Eds.; Springer: Berlin,
Germany, 2009; Volume 5886, pp. 72–86.

9. Pathan, M.; Taylor, K.; Compton, M. Semantics-based Plug-and-Play Configuration of Sensor
Network Services. In Proceedings of the 9th International Semantic Web Conference, ISWC
2010, Shanghai, China, 7–11 November 2010; Volume 668.

10. Bröring, A.; Foerster, T.; Jirka, S.; Priess, C. Sensor Bus: An Intermediary Layer for Linking
Geosensor Networks and the Sensor Web. In Proceedings of the 1st International Conference on
Computing for Geospatial Research and Application, COM.Geo ’10, Bethesda, MD, USA, 21–23
June 2010; ACM: New York, NY, USA, 2010; pp. 1–8.

11. Bröring, A.; Below, S.; Foerster, T. Declarative Sensor Interface Descriptors for the Sensor Web.
In Proceedings of the WebMGS 2010: 1st International Workshop on Pervasive Web Mapping,
Geoprocessing and Services, Como, Italy, 26–27 August 2010.

12. Daling, P.S.; Strom, T. Weathering of oils at sea: Model/field data comparisons. Spill Sci.
Technol. Bull. 1999, 5, 63–74.

13. Chao, X.; Shankar, J.; Cheong, H.F. Two- and three-dimensional oil spill model for coastal waters.
Ocean Eng. 2001, 28, 1557–1573.

Sensors 2011, 11 7599

14. Wang, S.D.; Shen, Y.M.; Guo, Y.K.; Tang, J. Three-dimensional numerical simulation for
transport of oil spills in seas. Ocean Eng. 2008, 35, 503–510.

15. Topham, D.; Perkin, R. CTD sensor characteristics and their matching for salinity calculations.
IEEE J. Oceanic Eng. 1988, 13, 107–117.

16. Bröring, A.; Echterhoff, J.; Jirka, S.; Simonis, I.; Everding, T.; Stasch, C.; Liang, S.; Lemmens, R.
New generation sensor web enablement. Sensors 2011, 11, 2652–2699.

17. Na, A.; Priest, M. OGC Implementation Specification 06-009r6: OpenGIS Sensor Observation
Service (SOS); Open Geospatial Consortium: Wayland, MA, USA, 2007.

18. Bröring, A.; Stasch, C.; Echterhoff, J. OGC Interface Standard 10-037: SOS 2.0 Interface
Standard; candidate standard. Open Geospatial Consortium: Wayland, MA, USA, 2010,

19. Simonis, I. OGC Best Practices 06-028r3: OGC Sensor Alert Service Candidate Implementation
Specification; Open Geospatial Consortium: Wayland, MA, USA, 2006.

20. Echterhoff, J.; Everding, T. OGC Discussion Paper 08-133: OpenGIS Sensor Event Service
Interface Specification; Open Geospatial Consortium: Wayland, MA, USA, 2008.

21. Simonis, I. OGC Implementation Specification 07-014r3: OpenGIS Sensor Planning Service;
Open Geospatial Consortium: Wayland, MA, USA, 2007.

22. Jirka, S.; Nüst, D. OGC Discussion Paper 10-171: Sensor Instance Registry; Open Geospatial
Consortium: Wayland, MA, USA, 2010.

23. Jirka, S.; Bröring, A.; Foerster, T. Handling the Semantics of Sensor Observables within SWE
Discovery Solutions. In Proceedings of the Workshop on Sensor Web Enablement, SWE 2010,
Chicago, IL, USA, 17–21 May 2010; pp. 322 – 329.

24. Botts, M. OGC Implementation Specification 07-000: OpenGIS Sensor Model Language
(SensorML); Open Geospatial Consortium: Wayland, MA, USA, 2007.

25. Cox, S. OGC Implementation Specification 07-022r1: Observations and Measurements-Part
1—Observation Schema; Open Geospatial Consortium: Wayland, MA, USA, 2007.

26. ISO/IEC. Information Technology— Systems Interconnection—Basic Reference Model: The Basic
Model; ISO/IEC 7498-1; ISO: Geneva, Switzerland, 1996.

27. Vilches-Blazquez, L.M.; Villazon-Terrazas, B.; Leon, A.D.; Priyatna, F.;
Corcho, O. An Approach to Publish Spatial Data on the Web: The GeoLinked Data
Use Case. In Proceedings of the Workshop on Linked Spatiotemporal Data 2010 in
Conjunction with the 6th International Conference on Geographic Information Science,
GIScience 2010, Zurich, Switzerland, 14–17 September 2010; Janowicz, K., Pehle, T., Hart,
G., Maue, P., Eds.; CEUR-WS, ISSN 1613-0073, 2010; Volume 691. Available online:
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-691/ (accessed on 22 July
2011).

28. Sheth, A.; Henson, C.; Sahoo, S. Semantic sensor web. IEEE Int. Comput. 2008, 12, 78–83.
29. Russomanno, D.; Kothari, C.; Thomas, O. Building a Sensor Ontology: A Practical Approach

Leveraging ISO and OGC Models. In Proceedings of the 2005 International Conference on
Artificial Intelligence, IC-AI 2005, Las Vegas, NV, USA, 27–30 June 2005; CSREA Press: Las
Vegas, NV, USA, 2005; pp. 637–643.

Sensors 2011, 11 7600

30. Probst, F. Ontological Analysis of Observations and Measurements. In Proceedings of
the Geographic Information Science, 4th International Conference, GIScience 2006, Munster,
Germany, 20–23 September 2006; Raubal, M., Miller, H.J., Frank, A.U., Goodchild, M.F., Eds.;
Springer: Berlin, Germany, 2006; Volume 4197, pp. 304–320.

31. Bermudez, L. Observation Model for OOSTethys. Available online: http://mmisw.org/ont/mmi/
20090519T125341/general (accessed on 22 July 2011).

32. Neuhaus, H.; Compton, M. The Semantic Sensor Network Ontology: A Generic Language
to Describe Sensor Assets. In Proceedings of the 12th AGILE International Conference on
Geographic Information Science, Workshop on Challenges in Geospatial Data Harmonisation,
Hannover, Germany, 2–5 June 2009.

33. Kuhn, W. A functional ontology of observation and measurement. In GeoSpatial Semantics;
Janowicz, K., Raubal, M., Levashkin, S., Eds.; Springer-Verlag: Berlin, Germany, 2009;
Volume 5892, pp. 26–43.

34. Stasch, C.; Janowicz, K.; Bröring, A.; Reis, I.; Kuhn, W. A Stimulus-centric Algebraic Approach
to Sensors and Observations. In Proceedings of Third International Conference on GeoSensor
Networks, GSN 2009, Oxford, UK, 13–14 July 2009; Trigoni, N., Markham, A., Nawaz, S., Eds.;
Springer: Oxford, UK, 2009; Volume 5659, pp. 169–179.

35. Devaraju, A.; Neuhaus, H.; Janowicz, K.; Compton, M. Combining Process and Sensor
Ontologies to Support Geo-Sensor Data Retrieval. In Proceedings of the 6th International
Conference on Geographic Information Science, GIScience 2010, Zurich, Switzerland, 14–17
September 2010.

36. Janowicz, K.; Compton, M. The Stimulus-Sensor-Observation Ontology Design Pattern and its
Integration into the Semantic Sensor Network Ontology. In Proceedings of the 3rd International
Workshop on Semantic Sensor Networks 2010, SSN10, in Conjunction with the 9th International
Semantic Web Conference, ISWC 2010, Shanghai, China, 7–11 November 2010; Taylor, K.,
Ayyagari, A., Roure, D.D., Eds.; CEUR: Shanghai, China, 2010; Volume 668.

37. Compton, M.; Henson, C.; Neuhaus, H.; Lefort, L.; Sheth, A. A Survey of the Semantic
Specification of Sensors. In Proceedings of the 2nd International Workshop on Semantic Sensor
Networks, SSN09, Washington, DC, USA, 25–29 October 2009; Volume 522, pp. 17–32.

38. McCarthy, J.D.; Graniero, P.A.; Rozic, S.M. An integrated gis-expert system framework for live
hazard monitoring and detection. Sensors 2008, 8, 830–846.

39. Bizer, C.; Heath, T.; Berners-Lee, T. Linked data-the story so far. J. Semant. Web Inf. Syst. 2009,
5, 1–22.

40. Phuoc, D.L.; Hauswirth, M. Linked Open Data in Sensor Data Mashups. In Proceedings of the
2nd International Workshop on Semantic Sensor Networks, SSN09, Washington, DC, USA, 25–29
October 2009; Volume 522, pp. 1–16.

41. Page, K.; De Roure, D.; Martinez, K.; Sadler, J.; Kit, O. Linked Sensor Data: RESTfully
Serving RDF and GML. In Proceedings of the 2nd International Workshop on Semantic Sensor
Networks, SSN09, in Conjunction with the 8th International Semantic Web Conference, ISWC
2009, Washington, DC, USA, 25–29 October 2009; Volume 522, pp. 49–63.

Sensors 2011, 11 7601

42. Sequeda, J.; Corcho, O. Linked Stream Data: A Position Paper. In Proceedings of the 2nd
International Workshop on Semantic Sensor Networks, SSN09, Washington, DC, USA, 25–29
October 2009; Volume 522, pp. 148–157.

43. Schade, S.; Cox, S. Linked Data in SDI or How GML is not about Trees. In Proceedings of the
13th AGILE International Conference on Geographic Information Science-Geospatial Thinking,
Guimaraes, Portugal, 10–14 May 2010.

44. Patni, H.; Henson, C.; Sheth, A. Linked Sensor Data. In Proceedings of the 2010 International
Symposium on Collaborative Technologies and Systems, Chicago, IL, USA, 17–21 May 2010;
pp. 362–370.

45. Janowicz, K.; Bröring, A.; Stasch, C.; Everding, T. Towards Meaningful URIs for Linked Sensor
Data. In Proceedigs of the Towards Digital Earth: Search, Discover and Share Geospatial Data,
Workshop at Future Internet Symposium, Berlin, Germany, 20 September 2010; Devaraju, A.;
Llaves, A.; Maue, P.; Kessler, C., Eds.; CEUR-WS: Berlin, Germany, 2010; Volume 640.

46. Henson, C.A.; Pschorr, J.K.; Sheth, A.P.; Thirunarayan, K. SemSOS: Semantic Sensor
Observation Service. In Proceedings of the International Symposium on Collaborative
Technologies and Systems, CTS 2009, Baltimore, MD, USA, 18–22 May 2009.

47. Janowicz, K.; Schade, S.; Bröring, A.; Kessler, C.; Maue, P.; Stasch, C. Semantic enablement for
spatial data infrastructures. Trans. GIS 2010, 14, 111–129.

48. Anderson, D.; Dzatko, D. Universal Serial Bus System Architecture; Addison-Wesley Longman:
Boston, MA, USA, 2001.

49. Dunbar, M. Plug-and-play sensors in wireless networks. IEEE Instrum. Meas. Mag. 2001,
4, 19–23.

50. Song, E.; Lee, K. Understanding IEEE 1451—Networked smart transducer interface
standard—What is a smart transducer? IEEE Instrum. Meas. Mag. 2008, 11, 11–17.

51. Hu, P.; Robinson, R.; Indulska, J. Sensor Standards: Overview and Experiences. In Proceedings
of the 3rd International Conference on Intelligent Sensors, Sensor Networks and Information
Processing, ISSNIP’07, Melbourne, QLD, Australia, 3–6 December 2007.

52. Walter, K.; Nash, E. Coupling Wireless Sensor Networks and the Sensor Observation
Service—Bridging the Interoperability Gap. In Proceedings of the 12th AGILE International
Conference on Geographic Information Science 2009, Hannover, Germany, 2–5 June 2009.

53. Bleier, T.; Bozic, B.; Bumerl-Lexa, R.; Da Costa, A.; Costes, S.; Iosifescu, I.; Martin, O.;
Frysinger, S.; Havlik, D.; Hilbring, D.; et al. SANY—An Open Service Architecture for Sensor
Networks; SANY-IP; Available oneline: http://sany-ip.eu/publications/3202 (accessed on 28 July
2011).

54. Gigan, G.; Atkinson, I. Sensor Abstraction Layer: A Unique Software Interface to Effectively
Manage Sensor Networks. In Proceedings of the 3rd International Conference on Intelligent
Sensors, Sensor Networks and Information, ISSNIP’2007, Melbourne, QLD, Australia, 3–6
December 2007; pp. 479–484.

55. Taylor, P. OGC Implementation Specification 10-126: WaterML2.0—An O&M Profile for Water
Observations Data; Open Geospatial Consortium: Wayland, MA, USA, 2010.

Sensors 2011, 11 7602

56. Probst, F.; Lutz, M. Giving Meaning to GI Web Service Descriptions. In Proceedings of the
2nd International Workshop on Web Services: Modeling, Architecture and Infrastructure, WSMAI
2004, Porto, Portugal, 14–17 April 2004.

57. Hohpe, G.; Woolf, B. Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions; Addison-Wesley Longman Publishing: Boston, MA, USA, 2003.

58. XMPP Standards Foundation. Available online: http://www.xmpp.org/ (accessed on 22
July 2011).

59. Internet Relay Chat. Available online: http://www.irc.org/ (accessed on 22 July 2011).
60. Bröring, A.; Foerster, T.; Jirka, S. Interaction Patterns for Bridging the Gap between Sensor

Networks and the Sensor Web. In Proceedings of the 8th IEEE International Conference
on Pervasive Computing and Communications Workshops, PERCOM Workshops; Mannheim,
Germany, 29 March–2 April 2010; pp. 732–737.

61. Jirka, S.; Bröring, A. OGC Discussion Paper 09-033-SensorML Profile for Discovery; Open
Geospatial Consortium: Wayland, MA, USA, 2009.

62. Jirka, S.; Bröring, A.; Stasch, C. Discovery mechanisms for the sensor web. Sensors 2009, 9,
2661–2681.

63. Robin, A. OGC Implementation Specification 08-094r1: SWE Common Data Model Encoding
Standard, Version 2.0; Open Geospatial Consortium: Wayland, MA, USA, 2010.

64. Schade, S.; Sahlmann, A.; Lutz, M.; Probst, F.; Kuhn, W. Comparing approaches for semantic
service description and matchmaking. In On the Move to Meaningful Internet Systems 2004:
CoopIS, DOA, and ODBASE; Meersman, R., Tari, Z., Eds.; Springer: Berlin, Germany, 2004;
Volume 3291, pp. 1062–1079.

65. Data Elements and Interchange Formats-Information Interchange-Representation of Dates and
Times; ISO/FDIS 8601; ISO: Geneva, Switzerland, 2004.

66. Bröring, A.; Below, S. OGC Discussion Paper 10-134: Sensor Interface Descriptors; Open
Geospatial Consortium: Wayland, MA, USA, 2010.

67. Bröring, A.; Bache, F.; Bartoschek, T.; van Elzakker, C.P. The SID Creator: A Visual Approach
for Integrating Sensors with the Sensor Web. In Proceedings of The 14th AGILE International
Conference on Geographic Information Science, Utrecht, The Netherlands; Geertmann, S.C.M.,
Reinhardt, W., Toppen, F., Eds.; Springer: Berlin, Germany, 2011; Volume 1, pp. 143–162.

68. Noy, N.F.; Musen, M.A. PROMPT: Algorithm and Tool for Automated Ontology Merging and
Alignment. In Proceedings of the Seventeenth National Conference on Artificial Intelligence,
AAAI-2000, Austin, TX, USA, 30 July–3 August 2000; pp. 450–455.

69. Cruz, I.; Sunna, W. Structural alignment methods with applications to geospatial ontologies.
Trans. GIS 2008, 12, 683–711.

70. Shvaiko, P.; Euzenat, J. Ten challenges for ontology matching. In Proceedings of on the Move
to Meaningful Internet Systems Federated Conferences, OTM 2008; Meersman, R., Tari, Z., Eds.;
Springer: Berlin, Germany, 2008; Volume 5332, pp. 1164–1182.

Sensors 2011, 11 7603

71. Janowicz, K.; Keßler, C.; Schwarz, M.; Wilkes, M.; Panov, I.; Espeter, M.; Baeumer, B.
Algorithm, Implementation and Application of the SIM-DL Similarity Server. In Proceedings of
the Second International Conference on GeoSpatial Semantics, GeoS 2007, Mexico City, Mexico,
29–30 November 2007; pp. 128–145.

72. Maedche, A.; Staab, S. Measuring similarity between ontologies. In Proceedings of 13th
International Conference on Ontologies and the Semantic Web, EKAW 2002, Siguenza, Spain,
October 1–4, 2002; Springer-Verlag: London, UK, 2002; Volume 2473, pp. 251–263.

73. David, J.; Euzenat, J.; Scharffe, F.; dos Santos, C.T. The alignment API 4.0. Semant. Web J.
2011, 2, 3–10.

74. Maué P.; Schade, S. Data integration in the geospatial semantic web. In Cases on Semantic
Interoperability for Information Systems Integration Practices and Applications; IGI Publisher:
Hershey, PA, USA, 2009; Volume 11, pp. 100–122.

75. Renz, J. Qualitative Spatial Reasoning with Topological Information; Springer: Berlin, Germany,
2002; Volume 2293.

76. The W3C Semantic Sensor Network (SSN) incubator group has defined in a consensus process an
ontology to describe the capabilities of sensors and sensor networks independent of a particular
domain. The SSN ontology is aligned with DOLCE Ultra Lite to facilitate the conjunction with
other ontologies.

77. Raskin, R.; Pan, M. Knowledge representation in the semantic web for earth and environmental
terminology (SWEET). Comput. Geosci. 2005, 31, 1119–1125.

78. Bermudez, L.; Graybeal, J.; Arko, R. A Marine Platforms Ontology: Experiences and Lessons.
In Proceedings of the Workshop on Semantic Sensor Networks, SSN 2006, in Conjunction with
5th International Semantic Web Conference, ISWC 2006, Athens, GA, USA, 6 November 2006.

79. Klien, E.; Lutz, M.; Kuhn, W. Ontology-based discovery of geographic information services—An
application in disaster management. Comput. Environ. Urban Syst. 2006, 30, 102–123.

80. Sycara, K.; Paolucci, M.; Ankolekar, A.; Srinivasan, N. Automated discovery, interaction and
composition of Semantic Web services. Web Semant. Sci. Serv. Agents World Wide Web 2003,
1, 27–46.

81. Ausbrooks, R.; Buswell, S.; Carlisle, D.; Dalmas, S.; Devitt, S.; Diaz, A.; Froumentin, M.;
Hunter, R.; Ion, P.; Kohlhase, M. et al. Mathematical Markup Language (MathML) Version 2.0.
W3C Recommendation; World Wide Web Consortium, Boston, MA, USA, 2003.

82. Schut, P. OGC Implementation Specification 05-007r7: OpenGIS Web Processing Service; Open
Geospatial Consortium: Wayland, MA, USA, 2007.

83. Liebig, T.; Luther, M.; Noppens, O.; Wessel, M. OWLlink. Semant. Web 2011, 2, 23–32.
84. 52◦ North Sensor Web Community. Available online: http://52north.org/sensorWeb (accessed on

22 July 2011).
85. 52◦ North Semantics Community. Available online: http://52north.org/semantics (accessed on 22

July 2011).
86. Chappell, D. Enterprise Service Bus; O’Reilly, 2004. Available online: http://oreilly.com/catalog/

9780596006754 (accessed on 22 July 2011).
87. 52◦ North Sensor Bus. Available online: http://52north.org/sensorBus (accessed on 22 July 2011).

Sensors 2011, 11 7604

88. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns: Elements of Resusable
Object-Oriented Software; Addison-Wesley Professional: Boston, MA, USA, 1995.

89. 52◦ North Sensor Interface Descriptors. Available online: http://52north.org/sid (accessed on 22
July 2011).

90. 52◦ North OX-Framework. Available online: http://52north.org/oxf (accessed on 22 July 2011).
91. Bröring, A.; Jürrens, E.H.; Jirka, S.; Stasch, C. Development of Sensor Web Applications with

Open Source Software. In Proceedings of the First Open Source GIS UK Conference, OSGIS
2009, Nottingham, UK, 22 June 2009.

92. Bechhofer, S.; Volz, R.; Lord, P. Cooking the Semantic Web with the OWL API. In Proceedings
of the Second International Semantic Web Conference, The Semantic Web—ISWC 2003, Sanibel
Island, FL, USA, 20–23 October 2003; Springer: Berlin, Germany, 2003; pp. 659–675.

93. Sirin, E.; Parsia, B.; Grau, B.; Kalyanpur, A.; Katz, Y. Pellet: A practical owl-dl reasoner. Web
Semant. Sci. Serv. Agents World Wide Web 2007, 5, 51–53.

94. The complete SensorML documents for the RBR XR-420 and the Seabird SBE 37 can be accessed
at http://purl.oclc.org/net/sensorPnP/sidExamples (accessed on 22 July 2011).

95. Schadow, G.; McDonald, C.J. The Unified Code for Units of Measure; Regenstrief Institute and
UCUM Organization: Indianapolis, IN, USA, 2009.

96. Pellet: OWL 2 Reasoner for Java. Available online: http://clarkparsia.com/pellet/ (accessed on 22
July 2011).

97. Horrocks, I.; Patel-Schneider, P.F.; Boley, H.; Tabet, S.; Grosof, B.; Dean, M. SWRL: A
Semantic Web Rule Language Combining OWL and RuleML; W3C, 2004. Available online:
http://www.w3.org/Submission/SWRL/ (accessed on 22 July 2011).

98. The implementation of examples for exact and plugIn match, as well as a match requiring
conversion rules can be found at http://purl.oclc.org/net/sensorPnP/owlTemplates.

99. Protégé homepage. Available online: http://protege.stanford.edu/ (accessed on 22 July 2011).
100. Bermudez, L.; Delory, E.; O’Reilly, T.; del Rio Fernandez, J. Ocean Observing Systems

Demystified. In Proceedings of the MTS/IEEE Biloxi-Marine Technology for Our Future: Global
and Local Challenges, OCEANS 2009, Biloxi, MS, USA, 26–29 October 2009; pp. 1–7.

101. Janowicz, K.; Maué, P.; Wilkes, M.; Braun, M.; Schade, S.; Dupke, S.; Kuhn, W. Similarity as a
Quality Indicator in Ontology Engineering. In Proceedings of the 5th International Conference
on Formal Ontology in Information Systems, Saarbrucken, Germany, 31 Octember–3 November
2008; Volume 183, pp. 92–105.

102. Gati, I.; Tversky, A. Representations of qualitative and quantitative dimensions. J. Exp. Psychol.
Hum. Percept. Perform. 1982, 8, 325–340.

103. Portele, C. OGC Implementation Specification 07-036: OpenGIS Geography Markup Language
(GML) Encoding Standard, Version 3.2.1; Open Geospatial Consortium: Wayland, MA, USA,
2007.

104. Bishr, M.; Mantelas, L. A trust and reputation model for filtering and classifying knowledge about
urban growth. GeoJournal 2008, 72, 229–237.

Sensors 2011, 11 7605

105. Graham, S.; Hull, D.; Murray, B. Web Services Base Notification 1.3 (WS-BaseNotification);
Organization for the Advancement of Structured Information Standards (OASIS): Billerica, MA,
USA, 2006.

106. Luckham, D. The Power of Events; Addison-Wesley: Reading, Boston, MA, USA, 2002.

c© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/.)

	1 Introduction
	2 Background
	2.1 Sensor Web Enablement
	2.2 Semantic Web Technologies and Ontologies

	3 Requirements for a Sensor Plug & Play on the Sensor Web
	3.1 Requirement for a Publish/Subscribe Mechanism
	3.2 Requirement for a Generic Driver Mechanism for Sensors
	3.3 Requirement for a Matchmaking Mechanism

	4 A Standards-Based Architecture for Semantically-Enabled Sensor Plug & Play
	4.1 Realizing a Publish/Subscribe Mechanism with the Sensor Bus
	4.2 Realizing a Generic Driver Mechanism with Sensor Interface Descriptors
	4.3 Realizing a Matchmaking Framework with Semantic Mediators

	5 Implementation
	6 Application
	7 Conclusion and Outlook

