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Abstract: This paper describes a novel sensor system to estimate the motion of a stereo

camera. Local invariant image features are matched betweenpairs of frames and linked

into image trajectories at video rate, providing the so-called visual odometry,i.e., motion

estimates from visual input alone. Our proposal conducts two matching sessions: the

first one between sets of features associated to the images ofthe stereo pairs and the

second one between sets of features associated to consecutive frames. With respect to

previously proposed approaches, the main novelty of this proposal is that both matching

algorithms are conducted by means of a fast matching algorithm which combines absolute

and relative feature constraints. Finding the largest-valued set of mutually consistent

matches is equivalent to finding the maximum-weighted clique on a graph. The stereo

matching allows to represent the scene view as a graph which emerge from the features

of the accepted clique. On the other hand, the frame-to-frame matching defines a graph

whose vertices are features in 3D space. The efficiency of theapproach is increased by

minimizing the geometric and algebraic errors to estimate the final displacement of the

stereo camera between consecutive acquired frames. The proposed approach has been tested

for mobile robotics navigation purposes in real environments and using different features.
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Experimental results demonstrate the performance of the proposal, which could be applied

in both industrial and service robot fields.

Keywords: visual odometry sensor; stereo vision sensor; robotic; combined constraint

matching algorithm; maximum-weighted clique

1. Introduction

In order to accomplish higher-level tasks, autonomous mobile robots must typically be able to

determine their pose (position and orientation) while moving. To address this problem, absolute

localization approaches usually employ the estimation of the robot’s displacement in the environment

between consecutively acquired perceptions as one of theirinputs. Typically, this relative localization

or pose tracking is performed using wheel odometry (from joint encoders) or inertial sensing

(gyroscopes and accelerometers). However, wheel odometrytechniques cannot be applied to robots with

non-standard locomotion methods, such as legged robots. Besides, it suffers from precision problems,

since wheels tend to slip and slide on the floor [1]. On the other hand, inertial sensors are prone to

drift. Vision is an alternative to these systems which have acquired growing importance in the mobile

robotics community due to their low cost and the informationthey can provide compared to other robotic

sensors. In robotics and computer vision, visual odometry defines the process of estimating the pose

of a robot by analyzing the images provided by the camera(s) mounted on it. As other visual-based

techniques, this issue has come into vogue in these last years. Thus, Nistéret al. [2] proposed an

approach to estimate the motion of a stereo pair or single camera in real-time. This approach employs

Harris corners and uses normalized correlation over an 11× 11 window to evaluate potential matches.

Konolige and Agrawal [3] describes a frame-frame matching in real time to estimate the 3D egomotion

and use this estimate for visual Mapping. Similar work is presented by Kleinet al. [4], which is applied

for the SLAM problem. The MER’s visual odometry (MER-VO) [5] also uses a corner detector and a

pseudo-normalized correlation to determine the best match. It uses the on-board position from wheel

odometry as an initial estimate to decrease run time. With the aim of tracking a large number of features

and still not relying on this initial estimate, the MER-VO has been improved [6]. The visual odometry

implemented for the Mars Science Laboratory (MSL) mission is at least four times more computationally

efficient than the MER-VO, but it follows similar guidelines. These approaches perform a feature-based

stereo matching as a preliminary stage.

The matching process represents a crucial step for an accurate visual odometry sensor. In fact,

it constitutes the main hurdle to overcome in order to achieve a robust approach. In the Nistér’s

proposal [2], corners are matched between consecutive pairs of frames.To obtain the set of accepted

matches both in stereo and in video, all features which are a certain disparity limit from each other are

matched. Only pairs of corners which mutually have each other as the preferred mate are accepted as

valid matches. This algorithm assumes very small robot displacement between frames. The approach

from Prettoet al. [7] employs a similar strategy to estimate the relative cameramotion from two

calibrated views, but it matches interest points between pairs of frames using the Best Bin First (BBF)
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algorithm. This strategy is described as a feature tracking[8]: features are selected and located in the

subsequent frame using spatial correlation search. The MER-VO and MSL-VO also rely on feature

tracking. Other approaches use feature matching rather than tracking [9]. In these approaches, features

are selected and then matched based on a descriptor associated with the feature. These approaches do

not necessarily require an initial motion estimate, but they require salient detectors and stable descriptors

to work well with large robot motions. The Hirchmuller’s [9] and Howard’s [8] approaches employ a

stereo range data for inlier detection.

This paper proposes a visual odometry system which consistsof two consecutive feature matching

stages (see Figure1). The first stage matches points of interest obtained from the left and right images,

achieving stereo matching. This matching will be constrained by the stereo geometry—matched points

must be in the same epipolar line—and considering the feature descriptors. Taken into account these

constraints, a consistency matrix is computed for all pairwise combinations of matches. Weights are

assigned to the non-zero elements of this matrix as a function of the distance between the computed

descriptors of the matched features. These weights are inversely proportional to the distance between

descriptors,i.e., they increase when the distance between descriptors decreases. This matrix is

used to find the largest-valued set of mutually consistent matches. This is equivalent to finding the

maximum-weighted clique on a graph defined by this adjacencymatrix. The aim is to provide a set

of features which will be defined by their 3D world positions in the camera coordinate system. These

features are considered as natural landmarks in the environment and they emerge from the scene as

a graph, not as individual items. Then, the second stage performs matching between sets of natural

landmarks associated to consecutively acquired pairs of stereo images. This matching will be also

constrained by the relative distance between the positionsof the 3D features and the computed difference

between their descriptors. This second matching stage is also stated as a maximum-weighted clique

problem. This last stage allows to track the robot pose usingan Absolute Orientation (AO) technique

and minimizing not only the algebraic error, but also the geometric error [10].

Figure 1. Problem statement: given the pairs of stereo images taken atframest − 1 andt,

the robot motion is estimated from the natural landmarks{L}i. Two graphs emerge from the

stereo and feature matching stages.
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This approach is very related to the works of Hirchmuller [9] and Howard [8]. However, contrary

to these approaches, we do not employ a dense disparity map computed by a separate stereo algorithm.

When computing resources are limited, generating this dense map could be undesirable [6]. Besides,

these approaches usually need images with textures. On the other hand, Howard’s approach employs a

corner detector and uses the sum-of-absolute differences (SAD) between feature descriptors to compute

the score matrix for all pairwise combinations of features in both feature sets. In our experiments, we will

employ different detectors and descriptors. Scale-invariant features, such as the SIFT [11], will allow

to match features although the robot does not move a small distance between subsequently acquired

frames. However, the invariance against rotation and scalechange is computationally very costly with

SIFT. When significant scale changes and rotations around the optical axis is not present, other descriptor

like the Speeded Up Robust Features (SURF) [12] or corner-like image features, has been chosen and

tested (see Section 3). Finally, whereas the Howard’s work uses a maximum clique algorithm to obtain

a structural consistent feature matching, this paper proposes to search for a maximum-weighted clique.

The paper is organized as follows: Section2 describes the proposed approach for stereo visual

odometry. Experimental results and a comparison of the proposed approach with other related methods

are presented in Section3. Finally, the main conclusions and future work are drawn in Section4.

2. Proposed Approach for Stereo Visual Odometry

The aim of the visual odometry sensor is to calculate an estimate of each 6DOF (degree of freedom)

robot pose, with translationT t and rotationRt in the tth frame. In the proposed approach, two

consecutive image pairs acquired by the stereo cameras mounted on the robot are matched to estimate

the displacement of the mobile platform. The quality of thismatching process is crucial to obtain an

accurate estimation. Thus, a significant advance in visual odometry algorithms is the possibility of

improving the matching process using consecutive stages [8]. Our proposal follows this scheme, whose

block diagram is illustrated in Figure2. As shown in the figure, the proposed visual odometry algorithm

consists of two matching processes performed in five steps. Firstly, each new image pair is acquired

and two sets of points of interest and their associated descriptors are obtained. Both sets of features

are the input of the next step, which computes the stereo matching. A robust matching is achieved by

building a consistency matrix for all pairwise combinations of tentative matchings. Then, the algorithm

finds the largest-valued set of mutually consistent matchings by looking for the maximum-weighted

clique on the graph with adjacency matrix equal to the computed consistency matrix. The 3D locations

of these natural landmarks in the environment are calculated in the third step using the output of the

stereo matching process. Next, the 3D landmark associationstep performs matching between the sets of

features which belong to consecutively acquired stereo images. The output of this step is employed to

estimate the robot displacement at current instant of time.Each one of these steps is explained in details

in the next Sections.
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Figure 2. Overview of the proposed visual odometry approach.

2.1. Local Invariant Image Features

Local features are image patterns that differ from its immediate surroundings. They are typically

associated to changes of image properties. LetIrt andI lt be the right and left images captured using the

stereo camera at timet. This first step detects the set of features in the left and right images,F l
t andF r

t,

respectively. As it will show in Section3 we have tested different feature detectors and descriptors, like

corner-like image features (Harris detector [13] and a simple descriptor associated to the corners based

on the correlation window of the neighborhood), SIFT and SURF (see Figure3(a, b)). These features are

associated to vectors which represent the location(x, y) and other properties associated to the particular

descriptor, like scale and orientation (see Figure3). Depending on the final application, like robot speed,

environment, type of robot (e.g., wheel or legged robots), it would be better to choose a specific pair of

detector/descriptor.
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Figure 3. (a) SIFT features found for the left and right images from the stereo image (F l
t

andF r
t). The scale and orientation are indicated by the size and orientation of the vectors;

(b) SURF features calculated using the stereo system in an outdoor environment. Scale are

illustrated by the size of the circles (orientation is not shown in the figure).

2.2. Stereo Matching and Stereo-Based Point Location

In this section, we formulate the stereo matching problem asa graph-theoretic data association

problem. The main advantage of our method with respect to other stereo matching approaches is its

robustness in the data association stage, which will finallyimprove the ego-estimation of the robot

motion. This stereo matching does not provide a dense depth map, which is not necessary for us

since our proposal deals not with mapping but only with relative localization. Contrary to other related

approaches [8], our aim is to deal with good individual matchings, avoiding failures due to scenarios

where a dense stereo map cannot be correctly obtained.

The fundamental data structure of this step is the correspondence graph [14], which represents valid

associations between the two sets of feature descriptors (see Figure4). Complete subgraphs or cliques

within the graph indicate mutual associations compatibility and, by performing a maximum-weight

clique search, the joint compatible association set emanated from the better matchings of descriptors

may be found. Construction of the correspondence graph is performed through the application of relative

and absolute constraints. Thus, vertices of the graph indicate individual association compatibility and

are determined by absolute constraint. On the other hand, the arcs of the correspondence graph indicate

joint compatibility of the connected vertices and are determined by relative constraints. The weight
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associated to each vertex is related to the similarity measure of corresponding descriptors. The method

used to calculate the correspondence graph has three major stages:

Figure 4. Vertices represent tentative matchings when considered individually. Arcs indicate

compatible associations, and a clique is a set of mutually consistent associations (e.g.,

the clique{1, 5, 4} implies that associationsf 1,l
t → f 1,r

t, f 2,l
t → f 2,r

t, f 3,l
t → f 3,r

t

may coexist).

1. Definition of the vertices of the correspondence graph. In the proposed method, graph vertices

are associated to tentative matchings of features fromF l
t andF r

t after applying an absolute

constraint. Let|F l
t| and |F r

t| be the number of feature descriptors for left and right images,

respectively. Firstly, the algorithm generates the matrixTt (|F l
t| × |F r

t|) for all pairwise

combinations calculating the Euclidean distance between their associated descriptors. Therefore,

the matrix item associated to the matching of two similar features presents a low value. On the

other hand, high values atTt correspond to dissimilar features. Besides, this matrix ismodified

at the same time to satisfy some of the constraints describedin Seet al. [15] (epipolar, disparity,

unique match constraints, and, if these parameters are available, orientation and scale). Pairwise

matched features whose matrix values are lower than a fixed thresholdU t
T constitute the set of
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tentative matchings. Thus, graph vertices are defined as theset of all possible combinations

of these pairwise descriptors (e.g., vertex 1 in Figure4 is valid if descriptorF 1,l
t is a possible

correspondence ofF 1,r
t). A weight array whose items are equal to the inverse of the tentative

matchings ofTt is also stored. These weights will be used to find the largest-valued set of mutually

consistent matches.

2. Definition of the arcs of the correspondence graph. For all pairwise combinations of matchings in

Tt, a relative constraint matrix is calculated,Rt. To do that, a relative constraint on the image

coordinates is used. This relative constraint takes into account feature parameters that allow

to reference one feature with respect to the other. For instance, if SIFT descriptors are used,

the vector will be defined byω = (o, s)T , whereo and s are the orientation and scale values

associated to the descriptor. In this particular case, a pair of matched descriptors is consistent if

the Euclidean distance between theω vectors from two SIFT descriptors in the left image is similar

to the Euclidean distance between the corresponding vectorin the right image. That is, a pair of

matches (f i,l
t, f i,r

t) and (f j,l
t, f j,r

t) are consistent iff they satisfy the relative constraint:

‖ωl
t − ωr

t ‖ ≤ U t
R, (1)

being

ωl
t =

√

(oi,lt − o
j,l
t )2 + (si,lt − s

j,l
t )2

ωr
t =

√

(oi,rt − o
j,r
t )2 + (si,rt − s

j,r
t )

2
(2)

where (o, s)i and (o, s)j denote the orientation and scale values of a SIFT descriptorandU t
R is a

threshold defined by the user. Thus, the corresponding entryin the relative constraint matrixRt

contains a 1 value if the constraint is satisfied (arc in the graph), and 0 otherwise. For instance, in

Figure4, the relative constraint between (f 1,l
t, f 3,l

t) and (f 1,r
t, f 3,r

t) matches, and then vertex

1 is connected to vertex 5. On the contrary, the relative constraint between (f 4,l
t, f 3,l

t) and

(f 4,r
t, f 3,r

t) does not match. Hence, vertices 6 and 5 are not connected.

3. Maximum-weight clique detection.The set of mutually consistent matches which provides a

largest total weight is calculated. This is equivalent of finding the maximum-weight clique on

a graph with adjacency matrixRt. Specifically, the approach to solve the maximum-weight clique

problem implements the algorithm proposed by Kumlander [16]. This algorithm is based on the

classical branch and bound technique, but employing the backstracking algorithm proposed by

Ostergard [17] and a vertex-coloring process to define a more efficient pruning strategy. After

applying the maximum-weight clique algorithm, this stage obtains a set of mutually compatible

associations, that is, a set of matched features. In this way, the algorithm takes into account

structural relationships to avoid bad associations, whichcould result in erroneous displacement

estimates. Figure5 shows the pairwise descriptors after using the proposed stereo matching

algorithm. As it is illustrated in the figure, the quality of the matching process is guaranteed

even though the number of features is high. In the example in this figure, the number of matched

features was 21.

Each detected feature is readily characterized by the Cartesian localization of the point of interest

provided by the stereoscopic vision system.
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Figure 5. Matched SIFT features between left and right images from thestereo pair shown

in Figure3. Red line represents matched points.

2.3. 3D Feature Association

Let I
l,r
t−1 and I

l,r
t represent the pairs of stereo images taken with the robot camera at two

consecutive intervals of time. For each pair of images, the approach detects the points of interest

and computes their descriptors, performing the stereo matching as it is described in Section2.2.

This process will provide two sets of natural landmarks,Lt−1 andLt. Then, the proposed approach

performs the 3D feature matching using the same data association technique described in Section2.2,

that is, the correspondence problem is achieved between thetwo sets of 3D features applying

absolute and relative constraints. Firstly, a measure distance between feature descriptors is used

to obtain the matrixTF . Thus, entries inTF whose value are lower than a fixed thresholdU
f
T

constitute the set of tentative matchings. The inverse of these values are stored in a weight

array. Next, the relative constraint is used to generate theadjacency matrixRf from the set of

possible pairwise landmarks. Similar to the stereo matching stage, this relative constraint takes into

account features parameters that will allow to reference one landmark with respect to the other.

Thus the relative constraint associated to the location of each pair of landmarks, (Li
t−1, L

j
t−1) and

(Li
t, L

j
t ), is used:

‖Li
t−1 − L

j
t−1‖ − ‖Li

t − L
j
t‖ ≤ U

f
R (3)

where ‖Li
t − L

j
t‖ is the Euclidean distance between landmark locations andU

f
R is an user-defined

threshold. Finally, the maximum-weight clique algorithm is applied to the adjacency matrixRF and the

set of mutually consistent matchings is computed. Figure6 illustrates the feature association between

two consecutive framest− 1 andt. The output of this stage provides a set of accurate pairwisematched

features, which are used to obtain the displacement estimate.
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Figure 6. Feature association results for two different displacements. After applying the

maximum-weighted clique algorithm the number of pairwise matched features is 7 and 13 for

the left and right images, respectively (3D coordinates of the landmarks are also included).

2.4. Stereo Head Pose Estimation

The purpose of the two-stages matching process described inprevious Sections is to provide a set

of 3D landmark matchings between consecutive frames. LetM denote the set ofNM 3D landmark

matchings,M = {(mi
t−1, m

i
t)}i=1:NM

. This set will allow to estimate the robot’s displacement between

two consecutive acquired frames. In the related literature, this problem is typically accomplished by

means of absolute orientation techniques. The solution of this problem consists of minimizing the

error function

E(Rt, T t) =

NM
∑

i=1

NM
∑

j=1

ηij
∥

∥mi
t−1 − (R∆θm

j
t +∆T )

∥

∥

2
(4)

wheremi
t−1 andmj

t are matched landmarks belonging toM , ηij is a binary value defined as1 if mi
t−1

andmj
t have been matched or0 otherwise, andRt andT t are the rotation and translation matrices whose

values are sought. As it was shown in [18], SVD decomposition and quaternion techniques produce

the best results. In this work, we use the well-known SVD technique described in [19]. This method

estimates the 6DOF robot pose decoupling the parameters by centering each of the points sets about their

centroids. However, this computation of motion minimizes an error on the 3D feature location (algebraic

error). It produces a permanent motion bias. In order to reduce it, an image based error (i.e., geometric

error) should be minimized [10]. Thus, the previous result based on the SVD technique is used as initial

estimate,T0, of the iterative process for minimizing this geometric error. Nonlinear LSE optimization

(Gauss–Newton), starting from this initial guessT0 in order to ensure convergence, is used for estimating

the final robot pose [10].
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3. Experimental Results

In this section, the proposed visual odometry sensor has been analyzed. The main novelty of this work,

the combined constraint matching algorithm which includesthe search for the maximum-weight clique

on the graphs, is evaluated in terms of robustness and computational load for different descriptors, and

it is compared with other three feature matching approaches. Thus, results of the proposed approach are

compared against (i) a matching algorithm based on the geometric transformation model [20] (RANSAC

+ epipolar geometry), (ii) the Best-bin-first (BBF) search method proposed by Beis and Lowe [21], which

is a modification of the k-d tree algorithm, and (iii) the matching approach also based on the combined

constraint algorithm which uses the search for the maximum clique described in our previous work [22].

Feature matching accuracy is very important and depends on the feature types. Choice of algorithms

to extract features and descriptors depends on the environment and application. In order to evaluate

the proposed Visual Odometry method, different detectors and descriptors have been used in different

real scenarios: corner-like image features (Harris corners [13]), faster but less stables, and SIFT [11]

or SURF [12], more stables but higher computational load. Typically, the major problem of the SIFT

feature detector is the long time taken to extract the features from the images when compared to other

approaches. Implementation of SIFT for GPU (SiftGPU) [23] has been used in this paper as a previous

stage to detect features from the stereo image pair. The corner-like image descriptor is based on the

correlation window of the neighborhood surrounding the Harris corners. Rest of the methods have been

implemented in C++. To compare the proposed approach against our previous work, the same parameters

employed to build the emerged graphs have been used. Finally, we describe a set of experiments

conducted in real robot environments (indoor and outdoor) to demonstrate the validity of the visual

odometry sensor. These scenarios include dynamic elements(e.g., persons), occlusions, ambiguities and

situations where the robot closes a loop while moving. Besides, in order to validate our results, the robot

was moved in a closed loop on a typical indoor environment, calculating the error between the start and

end poses.

Previously, to properly evaluate the matching stages, it isnecessary to carry out a correct selection

of a set of parameters. Specifically, these parameters are associated to thresholds in the graph emerging

stages. Next subsection explains the method used for estimating these parameters. Then, Sections3.2

and3.3describe the features matching algorithms and the visual odometry application, respectively.

3.1. Estimation of Parameters

Our approach needs to adjust a set of thresholds which determines the reliability of the composed

graph. The values of these design parameters are associatedto the absolute and relative constraints of

the graph emerging steps. Therefore, these thresholds are described according to the matching stage in

where they are used (i.e., stereo or feature matching).

Stereo Matching Stage

• TheU t
T threshold is related to the nodes of the graphGt for the stereo matching stage. Given two

features, this parameter determines the higher value for being considered as pairwise matched
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features, according to absolute constraint (i.e., the similarity of the descriptor or the epipolar

constraints).

• TheU t
R threshold is related to the arcs of the graphGt. This parameter evaluates the consistence

of two nodes of the graph (two pairwise matched features) according to local constraints. In

this stage, this relative constraint will depend on the feature type (e.g., the orientation and scale

information associated to the descriptors or the distance of the features).

Feature Matching Stage

• TheUf
T threshold is defined as the higher value for considering two landmarks acquired in different

instants of time as candidate to be a correct match using absolute constraint (i.e., the similarity of

the descriptors). Similar to the stereo matching stage, this threshold is related to the nodes of the

graphGf for the feature matching stage.

• TheUf
R threshold is also related to the arcs of the graphGf , that is, its adjacency matrix. Given

two pair of candidates for being real matched landmarks,U
f
R is the higher value for determining

their consistence according to local constraints (3D location of the features).

The benchmark performed to set them correctly has been similar for the two stages. This step is

based on Blanco’s work [24]. For both descriptors, SIFT and SURF, optimal thresholds are calculated by

minimizing the probabilityPerr of misclassifying a association as a valid (v) or an invalid (w) candidate.

It is described as:

Perr(UT , UR) = P (w)Perr(UT , UR|w) + P (v)Perr(UT , UR|v)

= P (w)P (dij < UT , δij < UR|w)

+ P (v)[1− P (dij < UT , δij < UR|v)]

(5)

Where a misclassification will occurs when: (i) a distancedij is less than both thresholdsUT and

UR, and it was a wrong correspondence, or (ii) a valid pairing does not pass the thresholdsUT andUR.

Considering no a priori information about the probability of being in a valid or invalid association, that

is P (v) = P (w) = 1/2, the method evaluates the joint conditional densitiesp(dij, δij|v) andp(dijδij |w)

from histograms according to a set of 40 pairs of images with 10 landmarks for which is known the

ground-truth (i.e., its location in 3D space). Table1 summarizes the thresholds for the minimum

classification errorPerr for the SIFT and SURF descriptors.

Table 1. Estimation of parameters for the visual odometry algorithm.

Parameter Stereo matching SIFT (SURF) Parameter Feature matching SIFT (SURF)

U
t
T 200 (150) U

f
T 200 (150)

U
t
R 0.5 (0.5) U

f
R 100 (100)

3.2. Evaluation of the Robustness and Time Processing

Robustness and computational load of the proposed matchingalgorithm have been evaluated and

compared against three different matching methods: the BBFalgorithm [21], the matching method
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based on the geometric transformation model [20] and the matching approach presented in our previous

work [22]. To validate the approach, a set of images collected by a camera has been used. These images

correspond to regular combinations of camera movements (e.g., rotation or translation), scenes where

there is a significant change (e.g., dynamic object) and captures where there are significant ambiguities

(e.g., similar objects). This set consists of 100 pairs of 320× 240 images acquired in indoor and outdoor

environments. Figure7(a–c) show a representative selection for each case of study.

Figure 7. A set of 320× 240 images acquired by the camera has been used to evaluate

the robustness and time processing of the matching algorithm. (a) a camera movement

(translation and rotation);(b) a significant change in the scene; and(c) ambiguities due

to similar objects in the scene.

For each image, the SIFT features are computed [11] and matched using each particular matching

method. Using this set of pairwise matched features, we havemanually selected 50 correct matches of

them, or the maximum number of correct matches, if there are less than 50 correct matches (this value is

considered asTotal positives). Next, incorrect pairwise matched features are randomly generated. These

outliers are added to the positive set in increasing amounts, so that they are going to represent from 10%

to 90% of the total resulting set in increments of 10%. Next, the matching algorithms are applied to

the final set of matched features. For every percentage of outliers, this process is repeated 100 times

(100 times× 100 images = 10,000 samples per each percentage of outliers).

To evaluate the robustness of the matching algorithm which is included in the proposed visual

odometry system, we defines the following measurements:

TruePos = NumberTrueMatches
Totalpositives

Precision = NumberFalseMatches
NumberFalseMatches+NumberTrueMatches

(6)
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whereNumber True Matchesis the number of correct matches,Number False Matchesis the number of

incorrect matches, andTotal positivesis the number of correct matches selected at the beginning ofthe

tests. The average performance of the matching methods after the total experiment is given in Figure8

and summarized in Table2. Figure8(a) represents the evolution of theTruePosagainst the percentage of

outliers. From this figure, it can be noted that the averageTruePosvalue is high for each algorithm when

the percentage of outliers is lower than 50%. After this value, due to the high number of outliers, the

efficiency of the algorithms decreases. However, it can be appreciated that the structure-based features

matching algorithm used in this work presents a strong ability to eliminate incorrect matches, even

with a very high percentage of outliers. This is also illustrated in Figure8(b), where the evolution of

the precisionhas been drawn. Similar to theTruePosvalue, the precision rapidly decreases for all the

matching algorithms analyzed in this comparative study, being this decreasing less pronounced in the

proposed structure-based features matching algorithm. These two graphs show the high performance

of the weighted maximum clique strategy for solving matching problems. Figure9(a–c) illustrate three

visual examples of the proposed matching algorithm for 80% of outliers (results of the matching process

proposed in this work for the images of the Figure7(a–c), respectively).

Figure 8. Performance of the matching algorithms used in the comparative study for

various percentage of outliers.(a) True Positives against to different percentage of outliers;

(b) Evolution of the precision against to different percentageof outliers; and(c) Time

processing against the percentage of outliers. See the textfor more details.
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Table 2. Performance of the matching algorithms used in the comparative study for various

percentage of outliers.

Algorithm Statistical Percentage of outliers [%]

10 30 50 70 90

Weighted

True positive 0.945 0.921 0.916 0.813 0.687

Precision 0.912 0.871 0.843 0.812 0.771

Time processing (s) 0.011 0.024 0.098 0.145 0.321

Non-weighted

True positive 0.919 0.904 0.818 0.587 0.189

Precision 0.900 0.861 0.811 0.525 0.231

Time processing (s) 0.021 0.082 0.114 0.438 0.969

BBF

True positive 0.921 0.919 0.803 0.564 0.169

Precision 0.879 0.801 0.717 0.561 0.220

Time processing (s) 0.081 0.102 0.377 0.691 1.141

RANSAC + epipolar

True positive 0.951 0.948 0.912 0.781 0.521

Precision 0.952 0.947 0.829 0.711 0.328

Time processing (s) 0.010 0.018 0.111 0.599 1.990

Figure 9. Illustrative examples of the matching algorithm proposed in our visual odometry

system for three different image tests used in the comparative study (results of the matching

process for the images of the Figure7(a–c), respectively). On the top, the initial matching

which includes the 80% of outliers is shown. Below, results of the matching algorithm used

in our approach have been drawn.
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On the other hand, computational load of the matching algorithm has been also tested using these

same experiments. Figure8(c) draws the time processing for the algorithm against the percentage of

outliers (all the experiments in this section were executedin a 1.66 GHz Pentium PC computer with

1 Gb of RAM). As is noted in the figure, for low percentage of outliers, the performance of all the

algorithms is similar, but they diverge when the percentageof outliers is incremented (up to 50%). From

the Figure8(c), it can be appreciated that the matching algorithm basedon structure used in our visual

odometry system provides the best time processing results.

3.3. Evaluation of the Visual Odometry Application

To test the validity of the whole visual odometry system, we use an ActiveMedia Pioneer 2AT robot

equipped with a stereoscopic camera (see Figure10(a)) and a 1.66 GHz Pentium PC, equipped with

a graphic processing unit NVIDIA 8800. The stereo head is theSTH-MDCS from Videre Design, a

compact, low-power color digital stereo head with an IEEE 1394 digital interface. The camera was

mounted at the front and top of the vehicle at a constant orientation, looking forward. Images obtained

were restricted to 320× 240 pixels. Images were rectified before using the proposed approach.

Figure 10. Activmedia P2AT robot used in the experiments.(b–e) four different image pair

acquired by the stereo camera across the robot motion in the first test. Stereo and feature

matching are shown in the figure (red and green lines, respectively).

Our robot was teleoperated through two different scenarios, indoor and outdoor, while capturing

real-life stereo images. In each scenario, the robot followed different trajectories in order to compose a

set of tests with which to evaluate the proposed visual odometry approach. Real tests for the indoor

scenario are located at the research laboratories of the ISIS group in Málaga, a typical office-like

environment where dynamic objects like persons were present. In this scenario, two different tests were

achieved. On the other hand, real tests for the outdoor scenario are located at the campus of Teatinos

at University of Málaga, a semi-structured environment with a high presence of people in the robot

surrounding, and a sequence acquired by a stereo pair mounted on a moving car [25].
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In the first test, the robotic platform starts in a room, is driven across a corridor and finishes its

motion in a new room. The total distance traveled is about 40 m. In a similar experiment, the robot

is teleoperated, and it moves from a room, across the corridor, closes a loop and finishes its motion in

the same initial room. The total distance traveled in this test is about 80 m. The main novelty of this

experiment is the presence of persons moving along the robottrajectory. On the other hand, in the test

for the outdoor environment, the robot starts in the hall of the faculty, is driven across the faculty and

it finish the motion, after closing a loop, in other place of the initial hall (the total distance traveled in

this test is about 150 m). People and dynamic objects are highly present in this scenario. For each test,

the experiment have been repeated 10 times trying to drive the robot by a similar path until the end of

its motion.

Figure 11. Trajectories estimated by visual (Harris, SIFT and SURF) and wheel odometry

(black, red, cyan and green line, respectively) for the firsttest. Blue lines define the trajectory

estimated by the laser scan matching. Robot poses at the captured times shown in Figure10

are labeled.

The experimental results have been focused on the accuracy of the proposed algorithm. For all the

experiments at the University of Málaga, the robot motion starts in the poseptr = (0, 0, 0o)T and it was

teleoperated across the environment. In the Figure10(b–e), we have illustrated four different captures

from this real environment. Each image in the figure represents the stereo pair at two consecutive frames,

top and bottom of the image, and the images used for the feature matching process (right image). The

stereo matching and the feature matching is shown with red and green lines, respectively). The wheel

odometry is also saved and compared to the visual odometry using Harris, SIFT or SURF features, and

the results are also compared to the estimate of the robot trajectory using the results of the scan matching

algorithm proposed by the authors [26]. This last algorithm was demonstrated to be an accurate and

robust method for estimating the robot trajectory. We consider this laser odometry the ground truth of

the robot motion (i.e., statistical evaluation of our method is calculated using the results of the scan

matching algorithm, which error was demonstrate to be lowerthan 1.2% and 0.8% for translation and

rotation motions, respectively). Figure11 shows the trajectories estimated by the proposed algorithm

(black, red and cyan line for Harris, SIFT and SURF features,respectively) for this first trial. The wheel

odometry (green line) and the trajectory estimated by the scan matching algorithm (blue line) are also
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drawn in the figure. Besides, the robot poses at the capture times shown in Figure10(a–d) have been

marked over this trajectory. As it is drawn in the figure, the visual odometry obtains an reliable estimate

of the robot displacement, more similar to the trajectory estimated by the scan matching algorithm, and

improving the internal odometry at the end of the experiment. There are small differences between the

visual odometry obtained using SIFT, SURF or Harris corners, but the final error is similar.

For the second trial, the final location estimate by the proposed algorithm was, for Harris,

SIFT and SURF, respectively,(3, 752mm,−210mm,−89.45o)T , (4, 340mm,−135mm,−92.15o)T and

(4, 410mm, −143mm, −92.0o)T , while the odometry estimate by the wheel odometry was (3, 484mm,

−1, 392mm, 66.15o)T . In Figure 12(a–d), four different stereo captures from this second real

environment have been included, similar to Figure10, where the stereo matching results are represented

by red and green color, respectively. The trajectories estimated by the visual odometry algorithm

proposed in this work, by the robot wheel odometry and by the scan matching algorithm have been

shown in Figure13 (the robot poses at the capture times shown in Figure12 is also marked over this

figure).

On the other hand, the results for the test in the outdoor scenario is shown in Figure14(a) (i.e.,

trajectories estimated by the visual odometry, wheel odometry and scan matching algorithms are drawn

using black, green, red, cyan and blue colors, respectively). As is shown in the figure, the pose

estimated by the wheel odometry differs from the pose estimated by both visual and scan matching

algorithm. The wheel odometry accumulates a high error at the end of the robot motion. However,

results from the proposed approach are very similar to the pose estimated by the scan matching algorithm.

Figure14(b, c) show two different captures from this real environment (the robot poses at the instant time

of this capture are marked in Figure14(a)).

Figure 12. (a–d)Four different image pairs acquired by the stereo camera across the robot

motion in the second reported trial. Stereo and feature matching are shown in the figure (red

and green line, respectively).
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Figure 13. Trajectories estimated by visual (Harris, SIFT and SURF) and wheel odometry

(black, red, cyan and green lines, respectively) for the second reported test. Blue line defines

the trajectory estimated by the laser scan matching. Blue dots represent the map obtained

using the scan data acquired by the laser range finder. Robot poses at the captured times

marked over Figure12.

Figure 14. (a)Trajectories estimated by visual and wheel odometry (black, red, cyan and

green line, respectively) for the third test (outdoor scenario). Blue lines define the trajectory

estimated by the laser scan matching; and(b), (c) two captures from the stereo camera and

the results of the both matching processes.

Table3 summarizes the results described in this section. The accuracy of the visual odometry in

each test is indicated by the 2D root-mean-square distance (RMS) at the final robot pose, taking into

account the estimate given by the scan matching algorithm. Results of these experiments demonstrate

the accuracy of the visual odometry algorithm. The resulting error is less than 1.5% of the traveled

distance, or lower if the used descriptors are SIFT or SURF. Besides, the time processing of the matching
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stages (less than 20 ms) allows the robot to use this algorithm for estimating the robot displacement

between consecutive frames. As is shown in the results, the accuracy of the visual odometry based on

Harris corner is slightly lower than SIFT or SURF features, but appropriate for this type of application.

However, the improvement on the computational load is remarkable compared to SIFT or SURF

descriptors. These results associated to the visual odometry based on corner-like image features can

be improved using other type of descriptor more complex. (Videos of these and more experiments are

available in the address: http://robolab.unex.es/videos/visualodometry).

Table 3. Evaluation of the algorithm for real experiments in indoor and outdoor

environments (average values).

Visual odometry SIFT (SURF) [Harris] Dead reckoning

Run Distance (m) Frames Average time (ms) 2D RMS error % 2D RMS error %

Indoor

1 41.3 615 14.4 0.16 m (0.26 m) [0.62 m] 0.38% (0.6%) [1.5%] 1.67 m 4.05%

2 79.12 1018 17.2 0.61 m (0.54 m) [1.2m] 0.77% (0.68%) [1.5%] 2.12 m 2.67%

Outdoor

1 148.66 2508 20.7 0.88 m (0.85 m) [1.34 m] 0.59% (0.58%) [0.9%] 12.1 m 8.1%

We have evaluated the use of the SIFT descriptor in the proposed visual odometry algorithm when

it is used on a vehicle, like a car, which moves at velocity higher than the previous robot. Thus, a

sequence of 865 image pairs taken from a stereo camera mounted on a moving vehicle has been used.

This sequence is available on [25]. The acquisition device is a Videre Design MEGA-D stereo camera

pair installed near the rearview mirror. The sequence is 15 fps, 320× 240, color. The ground-truth of the

motion is not included in the dataset. Besides, there is not loop-closing. Thus, it is not possible to obtain

statistical information about the experiments. We have only evaluated the number of false positives and

true positives detected in the stereo images. For the entiresequence, we have aleatory selected 50 frames

at the instant timet and the next frame (i.e., at the instant timet + 1). For each pair, the number of

false positives and true positives has been evaluated respect to the total number of correspondences.

The percentage of true positives was high, (96%–98%), and weobtains low values of false positives

(0.2%–0.4%).

Finally, in order to validate our results, the robot was moved in a closed loop on a typical indoor

environment (the same used in previous experiments) over 30m, and used the error in start and end

poses. Table4 compares this error for vehicle odometry and visual odometry (using different features)

for five loops.

Table 4. Loop closure error in percentage.

Run Number 1 2 3 4 5

Distance (m) 30.2 62.30 95.0 128.5 155.2

Dead reckoning 2.25% 11.25% 21.5% 33.0% 51.25%

SIFT descriptor 0.70% 1.2% 0.9% 1.1% 1.2%

SURF descriptor 0.75% 1.1% 1.8% 1.5% 1.7%

Harris corners 1.2% 1.4% 1.7% 1.5% 2.1%
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4. Conclusions and Future Work

This paper has presented a new approach to solve the visual odometry problem. The main novelty

of this proposal is that the matching stage has been conducted by means of a structural matching which

combines absolute and relative feature constraints in two consecutive stages. The first stage solves the

stereo matching problem and returns a set of natural landmarks characterized by their features descriptors

and their 3D positions on the camera coordinate system. Then, the second stage matches the sets of

natural landmarks detected at two consecutive instants of time (i.e., frames). The set of matchings

provided by this second stage allows to find an estimate of therobot displacement between both frames.

Both stages obtain the set of accepted matchings taken into account the structural configuration of the

involved features. This is implemented at both stages usinga graph approach: given the consistency

matrix which stores all pairwise combinations of matchingsbetween the two set of features, this matrix

is considered as an adjacency matrix and then the set of mutually consistent matchings with the large

weight is computed. This maximum-weight clique is found using a fast algorithm based on the classic

branch and bound strategy. This algorithm employs a heuristic vertex-coloring to implement the pruning

criteria [16] and a backtracking search by color classes [17]. Experimental results demonstrate the

accuracy and robustness of the matching stage and the visualodometry algorithm for different detectors

and descriptors.

Future work will be focused on the integration of all steps into programmable logic devices such as

FPGAs, in order to reduce the computational time. The GPU could be also employed to solve other

tasks different from the SIFT or SURF detection and description. With respect to the theoretical aspects,

the algorithm for the maximum-weight clique problem could be compared to other approaches such

as the ones that formulate the problem as a continuous quadratic optimization problem with simplex

constraints [27]. Other features can be also tested.
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26. Núñez, P.; Vázquez-Martı́n, R.; Bandera, A.; Sandoval,F. Fast laser scan matching approach based

on adaptive curvature estimation for mobile robots.Robotica2009, 27, 469-479.

27. Motzkin, T.S.; Straus, E.G. Maxima for graphs and a new proofof a theorem of Turán.Can. J.

Math. 1965, 17, 533-540.

c© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/.)


