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Abstract: A single low cost inertial measurement unit (IMU) is often used in conjunction 

with GPS to increase the accuracy and improve the availability of the navigation solution 

for a pedestrian navigation system. This paper develops several fusion algorithms for using 

multiple IMUs to enhance performance. In particular, this research seeks to understand the 

benefits and detriments of each fusion method in the context of pedestrian navigation. 

Three fusion methods are proposed. First, all raw IMU measurements are mapped onto a 

common frame (i.e., a virtual frame) and processed in a typical combined GPS-IMU 

Kalman filter. Second, a large stacked filter is constructed of several IMUs. This filter 

construction allows for relative information between the IMUs to be used as updates. 

Third, a federated filter is used to process each IMU as a local filter. The output of each 

local filter is shared with a master filter, which in turn, shares information back with the 

local filters. The construction of each filter is discussed and improvements are made to the 

virtual IMU (VIMU) architecture, which is the most commonly used architecture in the 

literature. Since accuracy and availability are the most important characteristics of a 

pedestrian navigation system, the analysis of each filter’s performance focuses on these 

two parameters. Data was collected in two environments, one where GPS signals are 

moderately attenuated and another where signals are severely attenuated. Accuracy is 

shown as a function of architecture and the number of IMUs used.  
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1. Introduction 

As GPS markets continue to expand and new applications are found every day, any new application 

must abide by a key requirement, namely direct line-of-sight between the satellites and the receiver. So 

stringent is this requirement that the simple occlusion of satellites renders many navigation systems 

useless or highly degraded. As users travel in urban canyons, parkades, indoors or in high foliage 

areas, the ability for GPS to provide a navigation solution is compromised. Although High Sensitivity 

GPS (HSGPS) receivers can track weak signals through fading, this renders them susceptible to high 

noise and multipath errors [1]. Thus, researchers are examining other sensors to integrate with GPS.  

Inertial measurement units (IMU) are a common complement to GPS, although it is technically 

more correct to state that GPS augments an inertial navigation system (INS). The advantage being that 

together the GPS and inertial sensors can provide a continuous navigation solution, where GPS alone 

cannot. As competitive consumer markets drive the price of mobile navigation devices lower, an 

increasingly common choice for IMUs is micro electro-mechanical systems (MEMS). Their size, cost, 

weight and low power consumption make them an attractive grade of IMU; however their in-run 

biases, scale factors and high noise require an effective integration scheme to mitigate these errors [2]. 

While existing INS research has involved one IMU, the purpose of this paper is to investigate the 

use of multiple IMUs in tandem with GPS. In particular, this paper will investigate various approaches 

to integrate multiple IMUs with several filter architectures and constraints that can be used to further 

improve the accuracy and availability of the navigation solution, with emphasis on pedestrian navigation. 

The objectives of this paper, which is based on [3], are to: 

(1) Discuss the implementation and test results of the following techniques to utilize multiple IMUs 

and GPS observations for pedestrian navigation: 

(i) Virtual IMU observation fusion 

(ii) Centralized filter design 

(iii)Federated filter design 

(2) Assess fault detection capability on the IMU and GPS measurements, discussing any limitations. 

(3) Analyze and compare the performance of the different estimation architectures selected and the 

number of IMUs used. 

(4) Analyze the performance of each architecture in residential and indoor conditions. 

1.1. Pedestrian Navigation 

Potential pedestrian navigation users include: first responders (e.g., emergency search and rescue), 

cellular phone users (E911 and navigation), health and activity monitoring, recreational users (e.g., 

hikers, climbers, skiers), self-guided tourists, athletes and athletic trainers, consensual tracking (e.g., 

elderly, parolees, employees), navigation for the visually impaired and police/military forces. 

A key to the success of many INS pedestrian navigation applications is the placement of the IMU 

on a foot (e.g., [4]) where the IMU experiences the repetitive and predictable motion of the human gait 

during walking. This allows for zero velocity updates while the foot in is contact with the ground, 
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which plays a critical role in maintaining the long term accuracy of the system. Examples of this 

method can be found in [5-15]. 

This configuration reduces the necessity for magnetometers, although these can be used to aid with 

attitude determination as in [12]. The INS method also allows for direct analysis of sport and 

biomedical applications such as gait kinematics and posture analysis [16-19]. However, a disadvantage 

to this approach is the time varying lever arm between the GPS antenna and IMU(s). To date, this error 

has been ignored and thus the magnitude of the lever arm’s effect has not been quantified. Another 

limitation to the foot-mounted INS is the degraded accuracy over extended time periods. This result is 

common to all low cost INS setups and is primarily due to heading errors [5].  

GPS and IMUs have been successfully integrated since the formal introduction of GPS. More 

recently, attention has been placed on integration with MEMS IMUs to reduce cost, but still provide 

robust navigation solutions. A natural progression is to use more IMU sensors and thus capitalize on 

the decreasing cost of MEMS sensors in order to improve overall accuracy. As such, researchers 

commonly fuse multiple IMU measurements in the raw observation (i.e., specific force and angular 

velocity) domain, but have not pursued any other fusion methods. Thus, multi-IMU fusion can either 

occur in two categorical domains: the observation or estimation domain.  

2. Raw IMU Observation Fusion 

Numerous studies have taken an observation domain approach to redundant IMU (RIMU) 

integration whereby the observations of several IMUs are fused, generating a single virtual IMU 

measurement [20-29]. The term virtual IMU (VIMU) will be used herein to describe fusion 

architectures in the observation domain. RIMU is commonly used in the literature and can be confused 

with reduced IMU which has the same acronym.  

In the development of VIMU theory, optimizing the configuration of the IMU sensor axes is an 

important consideration. Pejsa mathematically determined the optimal configuration for sensor axes; 

with sensors in a skewed formation rather than an orthogonal one (although the ideal 3-axis sensor is 

orthogonal) [30]. This optimal setup was named the Skew Redundant IMU (SRIMU). Further work 

derived the GDOP (Geometric Dilution of Precision) for a multi-sensor cluster to provide theoretical 

estimations, incorporating correct weighting schemes and providing fault detection through statistical 

misclosure testing [20,21]. 

The prominent method of RIMU fusion fuses raw IMU observations using least squares estimation, 

mapping each IMU observation to a virtual IMU frame (which requires a priori knowledge of the 

transformation into the virtual fame). The methodology is described in [23,24,29]. However, this 

methodology is fundamentally flawed in that the IMU observations contain un-modeled errors prior to 

fusion and fault testing thus negating fundamental rules of input/output covariance estimation. Figure 1 

shows the VIMU observation fusion and integration with GPS. 
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Figure 1. Virtual IMU Observation Fusion Architecture. 

Often, the purpose of virtual IMU integration is not to improve the accuracy (although this is a 

desirable outcome), but rather to facilitate the detection and exclusion of faulty observations [20,22]. 

In many cases, such as aviation multi-IMU navigation systems, the purpose of adding additional IMUs 

to a navigation system is to facilitate IMU fault detection rather than improving accuracy. For 

pedestrian navigation applications, the opposite is true. Improving accuracy and availability are more 

important than high levels of reliability, although the latter also becomes important as soon as accuracy 

and availability requirements are met. This is most often the case because most pedestrian applications 

are not generally required to meet strict safety-of-life standards. Therefore, it will be shown herein that 

accuracy is improved through the use of a virtual IMU architecture. However, the validity and 

practicality of FDE may not be acceptable for low cost IMUs and their applications. 

Another benefit of the virtual IMU scenario is a direct real time estimate of the VIMU process 

noise, as derived from each IMU [31]. This is beneficial when the IMUs have time variant process 

noise characteristics or filter tuning is not possible for each application or data set.  

Averaging of IMUs’ observations is simple and the least computationally burdensome method of 

forming a VIMU, however because each IMU is located at a different point on the body, the IMUs 

measure different specific forces relative to the location of the VIMU origin. Consequently, the fusion 

must be performed in the same reference frame and the transformation of each gyro and accelerometer 

observation set into this frame must be performed. The transformation is assumed to be known a priori 

from pre-surveyed parameters, namely the vector between the IMUs and VIMU origin and the rotation 

from one IMU’s frame to the VIMU’s frame. From Kane and Levinson [32], the rigid body equations 

of the angular velocity from a VIMU are: 

 (1)  

where  is the angular velocity of the n
th

 IMU in its body frame,  is the rotation matrix from the 

VIMU body frame to the body frame of the n
th

 IMU (known a priori) and  is the angular velocity 

of the VIMU in the VIMU body frame.  
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The specific force, as derived from a VIMU relative to a rigidly attached body, is given as [32]: 

 (2)  

where  is the specific force vector of the n
th

 IMU, is the specific force vector of the virtual IMU, 

 is the angular acceleration of the VIMU, and is the lever arm vector between the n
th

 IMU and 

VIMU origins within the VIMU body frame. 

To the authors’ knowledge, the second and third term on the right hand side of Equation (2) have 

been neglected in previous VIMU systems proposed in the literature. This adjustment to the mapping 

equation presents an important improvement in accuracy. Equation (2) uses the angular acceleration of 

the virtual frame, which may or may not be output by an IMU. In the event that the angular 

acceleration is not output by the IMU (as is the case herein), the angular acceleration must be 

estimated as an additional component of the VIMU fusion procedure in order to correctly determine 

the specific force. A nine-state estimation model is now described for the estimation of angular 

accelerations, in addition to the angular velocities and specific forces.  

2.1. Nine-Parameter VIMU Least-Squares Estimator 

In the VIMU least-squares model, the unknown parameters are the angular velocity, angular 

acceleration and specific force vectors of the VIMU. As a result of the cross products within Equation 

(2), the 9 state model is non-linear and therefore the system must be linearized. The linearized 

observation equation is:

 
, 

 
(3)  

where 
 
and N is the number of IMUs. The form  refers to the skew 

symmetric matrix of the vector , which has the form a3×1 × b3×1 = [a ×]3×3b  [33].  

The nine parameter least-squares estimation operates in a standard fashion. It uses all gyro and 

accelerometer measurements as observations and provides an estimation of the virtual IMU 

accelerometer and gyro measurements. If five IMUs are used, then the system has 30 observations and 

operates at the same frequency as the incoming observations. Measurements were weighted equally 

because the IMUs are all the same brand and model, although this is not a requirement.  
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2.2. Nine-Parameter VIMU Kalman Filter  

The angular acceleration is the time derivative of the angular velocity and therefore a differential 

equation exists that relates these states. This forms the basis of a VIMU Kalman filter. A VIMU 

Kalman filter further reduces noise and can enhance navigation performance. The differential 

equations of the nine states are as follows: 

 (4)  

 (5)  

 (6)  

where 
 
is the process noise of the uncertainty in the time derivative of the specific force vector and 

 
is the process noise of the uncertainty in the time derivative of the angular acceleration.  

Determining the optimal values for and  is challenging, given the time variant dynamics of 

the foot throughout the gait cycle. To resolve this issue, an adaptive Kalman filter is used to determine 

the process noise in real time. A 0.5 s window is used to determine the process noise. The observation 

variance is not derived from the adaptive filter, but is held constant to a pre-determined value. 

The filter predicts and updates at the same frequency as the incoming measurements (i.e., 100 Hz) 

which makes this version of the VIMU fusion the most computationally expensive. Updates are 

performed in an ―epoch‖ mode (all measurements at a given epoch), although it is conceivable to 

process them sequentially for optimal processing speed. 

The VIMU filter must operate with IMUs which are time synchronized. The adaptive Kalman filter 

could still function if the IMUs are synchronized but output observations at different data rates or if the 

observations had different time stamps. The required time synchronization is related to the angular 

dynamics, specifically the angular acceleration, and will incorrectly determine the specific force at the 

VIMU location.  

2.3. Fault Detection and Exclusion (FDE) of VIMU Errors 

This section will demonstrate that FDE is not always a viable option for MEMS IMUs with large 

biases, scale factors and acceleration-based gyroscope errors, in particular when IMUs experience 

significant accelerations and angular velocities. Fault detection works on the premise that the 

misclosure or innovation sequence is zero mean. As the biases and scale factors of each IMU have not 

been estimated, and therefore not removed from the observations, the observation model is not zero 

mean and therefore FDE effectiveness is compromised.  

Residuals computed from a nine-state least-squares estimation of each sensor axis are shown in 

Figure 2. The period shows a complete gait cycle when all the IMUs are rigidly mounted on the foot. 

The residuals are shown with the raw IMU measurements of each sensor in the VIMU frame. The 

residuals for the accelerometer have a peak magnitude of about 4 m/s
2
, which corresponds to the 

highest acceleration within the gait cycle. Large gyro residuals of nearly 20 °/s are also observed and 

also correspond to high dynamics. During the stance phase of the gait, the residuals are much smaller, often 

in the range of the biases. Therefore, the magnitude of the residuals is clearly correlated to high dynamics.  

   
b b

v vib ib
ω α

v ff η

v α η

fη

αη

fη αη



Sensors 2011, 11                            

 

 

6777 

Figure 2. Specific Force Residuals from a Virtual IMU Computed from Least-Squares Estimation. 

 

Because the magnitude of the residuals is a function of dynamics rather than sensor errors, the input 

covariance matrix must accommodate these large variations, otherwise faults will be detected during 

every gait cycle (or whenever the IMU experiences high dynamics). With a VIMU architecture, each 

IMUs sensor error cannot be modeled individually. Thus, if FDE was to be performed, the input 

covariance matrix would not be a function of sensor noise, but rather have to contain an increased 

amount of error to account for uncorrected sensor errors. Therefore it is a recommendation herein that 

FDE not be performed on MEMS-based VIMU fusion.  

3. Centralized Filter Fusion 

This multi-IMU approach uses a centralized filter that is composed of several individual block 

filters (e.g., [5,7,24,34]). The technique allows for the inclusion of relative geometry constraints, such 

as relative position, velocity and attitude between IMUs. The use of these constraints represent  

an advantage over the VIMU estimation techniques since VIMU architectures fail to utilize this 

valuable information.  

The centralized filter proposed in this paper is referred to as a stacked filter, consisting of several 

individual INS filters. In this manner several ―block‖ filters (i.e., Single INS filters) are contained 

within one centralized filter, ultimately operating as one.  

The stacked filter contains parameters for position, velocity, attitude, accelerometer and gyro biases 

and accelerometer and gyro scale factors for each IMU. If five IMUs are used, then there are five  

21-states filters contained within one centralized 105 state filter. Each block filter can be updated at the 

same time or individually, but the entire filter prediction cycle must be synchronized (to avoid different 

block times, within the stacked filter). An advantageous characteristic of the stacked filter (and federated 

filters) is that each block filter could contain additional or different IMU error states, thus facilitating 

varying types and qualities of IMUs and error state models, which the VIMU architecture does not. Since 
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the IMUs are all the same brand and model, the block filters are identical with slightly varied input 

process noise parameters for each IMU. The block form of the stacked filter is: 

 (7)  

 (8)  

where 
 
is the n

th
 block filter transition matrix, is the n

th
 block filter states (21 state model), 

is the misclosure vector from the n
th

 block filter of the observations, 
 
is the process driving 

noise of the n
th

 block filter, and 
 
is the measurement noise of the n

th
 block filter. 

The stacked transition matrix of (7) and the design matrix of (8) are block diagonal. This important 

characteristic makes the block filters operate independently, unless additional updates are applied. 

Thus, if the stacked filter operated without additional updates, the block results would theoretically be 

identical to independent INS filters. In practice however, round off errors and small computational 

correlations between block filters result in small differences (i.e., the position varies by a few centimetres). 

During a GPS update, each block filter requires its own misclosure vector, derived from the GPS 

observations. However, if each block requires its own misclosure vector, the GPS observations must be 

repeatedly used for each IMU, thereby directly violating fundamental Kalman filter theory [35]. The 

stacked filter innovation vector would have the form: 

 (9)  

where  is the GPS observation vector of output by the receiver and
 
is the predicted 

observation vector derived from the observation equation using the n
th

 block state vector of the k
th

 epoch. 

3.1. Stacked Filter Relative Updates 

Because the stacked filter contains multiple position, velocity and attitude states, one for each IMU, 

the filter can be updated with relative position, velocity and attitude (PVA) information that is known a 

priori. A relative update does not constrain the absolute value of the parameters within the block 

filters, but constrains relative PVA between the IMUs. It also aids in the estimation of the bias and 

scale factors of the IMUs. 
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The inter-IMU vector is measured in one of the IMU’s body frame and is computed by differencing 

the lever arms (i.e., the vector from the GPS antenna to the IMU in the body frame). The relative 

position observation equation is given by:  

 (10)  

where 1
r̂ is the estimated position vector of the 1

st
 block filter and 2,1

L
 
is the a priori known vector 

between the IMUs. 

It is important to note that by differencing the lever arms to generate the inter-IMU vector, the lever 

arms must be in the same frame and not their respective body frames. Since the Earth Centered Earth 

Fixed (ECEF) frame was used as the navigation frame, the inter-IMU vector must be rotated into that 

frame. Consequently, there is an inherent relationship between the efficacy of the relative position 

update (RUPT) and the error in the orientation of the body frame relative to the ECEF frame. 

The update is applied periodically to facilitate a convergence of the block INS filter, reduces 

numerical computations and limits the inter-block correlation accumulation. Using experimental filter 

tuning, a periodicity of 6 s and a standard deviation of 1 cm (a diagonal matrix) provided the  

best performance. 

The relative velocity of a point on a moving rigid body is given by Marion & Thornton [36]. In the 

context of two rigidly mounted IMUs, the relative velocity is expressed as: 

 (11)  

where 
 
is the relative velocity between the IMUs 2 and 1,  is the angular velocity vector 

measured by IMU 1, and  is the vector between IMUs 1 and 2. 

The vector between the IMUs is assumed to be known a priori and the angular velocity vector is 

observed by the first inertial unit. This update therefore derives its input from the observation of the 

IMU. The accuracy is a function of the noise characteristics of the IMU and the filter’s ability to 

correctly estimate the systematic IMU errors. The relative velocity observation equation is given by: 

 (12)  

where 
 
is the velocity vector of the 1

st
 block filter and 

 
is the velocity vector of the 2

nd
  

block filter. 

As with the relative position update, the relative velocity observation is derived in the body frame 

and must be rotated into the navigation frame, thus creating a similar relationship between the error of 

the rotation and the RVUPT. The standard deviation used for RVUPTs was 2 cm/s and was derived 

using the propagation of variances of Equation (11), assuming nominal values of the IMUs noise 

characteristics and the accuracy of the known lever arm. 

The relative attitude update follows a similar procedure to the relative position update. The 

misclosure vector is formed using the difference in estimated Euler angles of each IMU and the  

pre-surveyed Euler angles describing the rotation between them. In this research the IMUs are fixed on 

the same platform and mounted on adjacent faces thereby allowing simple Euler angle identification. 

The relative attitude observation equation is given by: 
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(13)  

where 
 
is the roll between the first and second IMU body frames,  is the pitch between the 

first and second IMU body frames, 
 
is the yaw between the first and second IMU body frames and 

𝜃𝐵1, 𝜑𝐵1 , 𝜓𝐵1  is the roll, pitch and yaw of the first IMU, respectively. The standard deviation of this 

observation is 0.1 rad (i.e., 5.7°).  

3.2. Stacked Filter Fault Detection and Exclusion of GPS Measurements 

Since GPS observations are repeated within the stacked filter, the FDE process is slightly modified 

for GPS observations. The modification eliminates the possibility that GPS observations may be 

rejected for one block filter and accepted for another, while at the same time improving the reliability 

of the fault detection scheme. The effect of the blunder vector and its mapping matrix on the observation 

vector can be described as: 

 (14)  

where 
 
is the blunder mapping matrix and the vector of known blunders. 

It is in this equation that the FDE algorithm will be modified to test a series of observations 

(corresponding to a single GPS measurement) rather than elements of the innovation sequence. The M 

matrix is generated based on the GPS observations and number of IMUs used. For example, the M 

matrix with three pseudoranges, repeated for two block filters in a stacked filter, with a single fault in 

the first observation will be M = [1 0 0 1 0 0 ]
T 

. The test statistic is then computed from with direct 

reference to the GPS observations as [37]:  

 (15)  

The test statistic is a chi-squared distribution. The null and alternate hypotheses are: 

 (16)  

 
(17)  

where d is the degree of freedom (the number of times an observation is used) and δ0 is the  

non-centrality parameter. With these hypotheses, the test is conducted by rejecting the null hypothesis 

if .  

The MDB of the stacked filter can then be determined as: 

 (18)  

Assuming that the innovation covariance matrix is equivalent between block filters, the 

improvement in the MDB versus a SINS MDB is 1/√n. 
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4. Federated Filter Fusion 

To the authors’ knowledge, there has been no published work in the domain of decentralized filters 

incorporating multiple IMUs. Federated filters were introduced in the late 1980s and early 90s for GPS 

and INS integration (e.g., [38,39]), but have not been extended to the multi-IMU case. Federated filters 

utilizing several other navigation systems such as radar altimeters, terrain aided navigation systems 

and synthetic aperture radar have been discussed, but not restricted to IMUs [40,41].  

Federated filtering is defined herein as a decentralized filter that incorporates information sharing 

between local and master filters. References [41] and [42] show that the information conservation 

principle within the federated filter is optimally equal to the centralized version, although practically 

this may not always be the case. A rigorous derivation is available in [38]. The method of sharing 

information varies, depending on the type of local and master filters, but there are typically four genres 

of sharing information: no reset, fusion reset, zero reset and cascaded. Federated No Reset (FNR) and 

Federated Fusion Reset (FFR) are used herein as the other methods of sharing information are not 

conducive to inertial navigation systems.  

The federated filters discussed herein contain common states. Specifically, the shared states are 

position (r), velocity (v) and the Euler angles representing the rotation from the body frame to the 

ECEF frame (α).The local filters estimate these parameters as part of their 21-state filters. The master 

fusion filter (or least squares estimator as the case may be) also contains the same shared states (r, v 

and α). In this manner, only these states are shared, all biases and scale factors within the local filters 

remain unmodified. It is important to note that the Euler angles of each IMU are rotated into a virtual 

IMU frame and this rotation is assumed to be known a priori. 

The reference data of the local filters can be formed by one of two methods. The first method is to 

use GPS observations, whereby each local filter operates in a tightly coupled manner (i.e., GPS 

observations are used in each of the local filters). The second method is to use one of the IMUs to form 

an INS aided by the GPS observations, the output thereof providing updates to the local filters. In this 

manner, the federated filter operates in a loosely coupled architecture. If the INS provides the reference 

to the local filter, it also provides a time correlated input into the observations of the local filters. This 

time correlation violates the rules of observation input into a filter and therefore would generate an 

overly optimistic variance of the states. The federated filter architecture for multiple IMUs is shown in 

Figure 3. The dashed line represents the sharing information algorithm.  

4.1. Federated No Reset Filter 

The FNR filter is fundamentally equivalent to running each IMU through an INS filter and 

combining the final results of each solution via least squares. The master fusion is performed via least 

squares with each local filter’s PVA providing the observations.  

Thus, if there are five IMUs, the master estimator contains 45 observations and correspondingly, a 

45 × 45 observation covariance matrix. The master’s input observation covariance matrix is block 

diagonal, however the internal PVA correlation remains within the off diagonal elements (i.e.,  is 

not diagonal). The PVA of the local filters is in reality correlated as a result of using the same GPS 

observations and moreover by potentially similar dynamics if the IMUs are rigidly mounted together. 

 
9 9n x
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Therefore the input observation covariance matrix is scaled by n
−1

 to reduce the weight of each 

correlated observation. 

Figure 3. Federated Filter Architecture of Multiple IMUs. 

 

4.2. Federated Fusion Reset Filter 

The FFR filter has a similar structure to the FNR filter, but the master filter parameters (and its 

corresponding covariance matrix) are shared with the local filters. The information factor for each 

local INS filter is n
−1

 because the IMUs are all the same brand and model. The input to the master 

fusion is the same as the FNR filter. Furthermore, since the states of the INS extended Kalman filter 

are zero, the PVA of the master fusion replaces the PVA used to provide the expansion point, rather 

than the actual values in the state vector. The covariance information of the local filters, however, is 

replaced with the actual values from the local and master filters. Additionally, because correlation 

develops within the local filter PVA states and IMU error states, these intra filter correlations must be 

set to zero, otherwise the filter will diverge. Further, the covariance replacement of the i
th

 local filter 

with the master state covariance matrix is as follows, the first nine states representing the PVA having 

been replaced: 

 (19)  

where  represents the covariance matrix of the i
th

 local filter and  represents the covariance matrix 

of the master filter.  remains unmodified during the covariance replacement because it contains 

the bias and scale factors of the i
th

 IMU which are not shared between the local and  

master filters.  
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4.3. Comparison of Architectures 

Table 1 shows a comparison of the different architectures described in the chapter and each 

architecture’s strengths and weaknesses. 

Table 1. Comparison of the Various Architectures. 

Filter/Estimation Characteristic VIMU Centralized Federated Filter 

Enhanced GPS Observation FDE No Yes No 

IMU Observation FDE Not Recommended No No 

Reduced Noise at Mechanization Input Yes No No 

Constrains Estimator using Relative PVA No Yes No 

Estimates Each IMUs Bias and Scale Factor No Yes Yes 

IMU Time Synchronization Not Required No Yes Yes 

4.4. Filter Tuning 

Tuning the filters presented a significant (and time consuming) problem. There are five tunable 

parameters for each sensor (i.e., axis) within an IMU. With a five-IMU configuration there are 

potentially over 120 potential parameters to tune, aside from parameters customized for each 

architecture (e.g., federated filter sharing information rate). It should be noted that in the VIMU case, 

only one IMU (i.e., the VIMU) requires tuning. For the stacked and federated filters, achieving a high 

level of tuning for each parameter is simply unrealistic given the quantity. It is conceded that there 

could be better results with more customized filter tuning for each architecture type. However, the 

results are more representative to those available in an industrial environment where each sensor could 

not be individually tuned.  

Therefore, a generic set of tuning parameters was used for each data set for all IMUs. Only minor 

modifications to the spectral densities were allowed to accommodate each sensor noise range. 

Consequently, the same parameters used in the single IMU solution were used in every other  

multi-IMU solution. Although the solutions may be somewhat sub-optimal, the methodology facilitates 

better filter performance comparisons, rather than tuning performance comparisons.  

5. Data Collection Environments 

Data was collected in two environments: a typical North American residential home and inside the 

Olympic Oval of the University of Calgary. The residential home, as shown in Figure 4, provided an 

excellent example of an area where GPS is attenuated by 4 to 18 dB and delivers standalone horizontal 

accuracies of several metres. Although GPS could provide reasonable accuracy in such an 

environment, the benefit of an integrated system to reject multipath is valuable and the ability to 

position an individual in a specific room of the home can be of great value to first responders. 

The Olympic Oval, shown in Figure 5, is an ideal location for indoor testing as GPS signals are 

attenuated by 25 to 35 dB, but yet can be tracked with high sensitivity receivers. The oval running 

track is 450 m long. Because of the severe signal attenuation and the building characteristics, the 

effects of multipath and noise are large, often to a point where the GPS solution is completely 
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unreliable and unusable. In this environment there must be an integrated system to provide useful 

navigation information.  

Figure 4. Residential House used for Data Collection.  

 

Figure 5. Olympic Oval (Left: roof top with trajectory in red, Right: inside showing track 

and ice level). 

 

5.1. Data Collection Set Up 

To collect the data, the test subject carried a rigid aluminum backpack to house a tactical grade 

reference INS, two laptops to collect the GPS and IMU data, and batteries to power the equipment. A 

NovAtel SPAN system was used to provide the reference solution. It consists of a Honeywell HG1700 

AG58 IMU and a NovAtel OEM4 GPS receiver. The data in this case was differentially  

post-processed with a nearby (<1 km) reference station to provide a reference trajectory. The data was 

processed with NovAtel’s Inertial Explorer software in forward and reverse directions, smoothed using 

RTS smoothing [43] and then combined for the final reference solution. The reference solution was 

accurate to within a few metres in the Oval, and better than 0.5 m in the residential house.  

The high sensitivity GPS receiver used was a u-blox Antaris 4 Precision Timing AEK-4T 

evaluation kit with firmware 5.0. The antenna was a u-blox ANN-MS, designed and manufactured by 

Allis Communications Co Ltd as antenna M827B [44]. The antenna was attached to the top of the 

backpack, rather than the head, to avoid the effects of antenna detuning [45]. All GPS data was 
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differentially processed to eliminate satellite position and clock errors and reduce the effect of 

atmospheric errors. This enabled a clear analysis of the multi IMU method rather than errors derived 

from single point (GPS) positioning. The IMUs used were Cloudcap Technology’s Crista IMUs. The 

error characteristics of the Crista IMU and the HG1700 AG11-58 tactical grade are shown in Table 2. 

Figure 6 shows a picture of the IMUs rigidly mounted on a platform attached to the author’s foot.  

Table 2. Reference and MEMS Grade IMU Maximum Errors. 

 
HG1700 AG11-58 

Tactical Grade IMU 

Cloudcap Crista 

MEMS Grade IMU 

Accelerometer 

In Run Bias (mg) 1 51 

Turn on Bias (mg) - 30 

Scale Factor (PPM) 300 10,000 

Random Walk (g/√Hz) 2.16 × 10
−6

 370 × 10
−6

 

Gyro 

In Run Bias (°/h) 1 2,160 

Turn on Bias (°/h) - 5,400 

Scale Factor (PPM) 150 10,000 

Random Walk (°/h/√Hz) .5 226.8 

Figure 6. Rigidly Mounted IMUs on the Foot. 

 

Although the lever arm is time variant, the variation is symmetric about the fixed lever arm. It is 

under this assumption that solutions can be compared to within a decimetre error envelope.  

6. Residential House Data Set 

6.1. VIMU Results 

Figure 7 shows the time series’ horizontal errors for the three VIMU fusion methods, and the 

standalone GPS and typical Single INS (SINS) for comparison. The horizontal error RMS values are 

shown in the legend and indicate that moving to the adaptive filter provides a 10.1% and 6.6% 

improvement in accuracy than averaging and the Least-Squares (LSQ) methods, respectively. At time 

100 s in Figure 7, the user encounters open sky and the Adaptive Kalman Filter (AKF) quickly accepts 
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the GPS observations, whereas the VIMU and SINS solutions take nearly 35 s longer to converge. 

When in the house basement where standalone GPS has a six metre horizontal error, the VIMU filters 

maintain a two metre accuracy whereas the SINS solutions achieve only a three to four metre accuracy.  

Figure 7. VIMU Horizontal Errors (Five IMUs Used in Residential Data Set).  

 

The VIMU solutions contain more noise as a result of the decreased spectral densities used within 

the filter. This effect was amplified when GPS measurements were stronger (i.e., signal power 

increased) and the filter weighed the observations more heavily, thus shifting the position. As the filter 

de-weighed the GPS measurements as signal power decreased, the navigation solution displayed a 

smoother trajectory.  

The cumulative densities (CDs) of the horizontal and vertical errors are shown in Figure 8. The 

VIMU AKF performance was best in the horizontal plane and poorest in the vertical axis. In the latter, 

the VIMUs behaved similarly to the SINS solution, although it was clear that there was no 

improvement with the VIMU average and VIMU LSQ solutions.  

Figure 8. CD of Horizontal and Vertical Errors (Residential Data Set). 
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6.2. Stacked and Federated Filter Accuracy 

The stacked filter, FNR and FFR filter’s horizontal errors are shown in Figure 9. The FNR (GPS) 

filter (FNR (GPS) refers to the federated filter with GPS observations as the reference) provided the 

best solution between the stacked and federated filters but only by less than one percent.  

Figure 9. Stacked and Federated Filter Horizontal Errors (Residential Data Set). 

 

Figure 10. CD of Horizontal and Vertical Errors for Stacked and Federated (Residential Data Set). 

 

Since the GPS signal strength is still reasonable in this environment, the additional information 

contained within the relative updates did not further improve the accuracy of the final solution. This 

indicates that the filter’s biases and scale factors had been resolved and other unmodeled error sources 
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begin to dominate the solution’s accuracy. The FNR (INS) performed 6.3% worse than the FNR (GPS), 

which indicates that using the raw ranges of the GPS receiver as input to each local filter is superior.  

Figure 10 shows the CDs of the horizontal and vertical errors. The horizontal distributions have a 

slightly improved performance with more results better than 1 m. For example, the SINS filter solution 

is better than 1 m 38.5% of the time, whereas the corresponding stacked filter value is 58.3% and that 

for the FNR (GPS) filter is 56.5%. In the vertical channel the stacked filter had the best CD with  

41.5% of errors less than 1m compared to the FNR (GPS) at 33.9% less than 1 m error.  

6.3. Filters Position Accuracy vs. Number of IMUs 

Figure 11 shows the RMS percent improvement relative to that of a standalone GPS solution as a 

function of IMUs. The AKF method had the largest increase when a second IMU was added, although 

this dramatic increase was not sustained with the addition of the third, fourth and fifth IMU. This is a 

direct result of estimating the angular acceleration within its filter. Interestingly, applying the 

averaging technique with five IMUs was less accurate than with two IMUs using the LSQ or AKF 

method. This confirms that estimating the angular acceleration had a positive impact on the accuracy 

of the navigation solution, even more so than the number of IMUs used. This was an important 

practical finding, which makes the use of a dual inertial system considerably more attractive.  

Figure 11. VIMU Accuracy as a Function of IMUs Used (Residential Data Set). 

  

The stacked filter showed the largest percent increase with two IMUs, but then decreased with the 

addition of the third and fourth IMU. The third and fourth IMUs were among the least accurate SINS 

solutions. Thus, when the filter combined the block filter solutions, the final solution was degraded. 

This contradicts the hypothesis that the relative updates would have provided additional information to 

improve the accuracy of each block filter. This contradiction is refuted with the data set from the 

Olympic Oval, which shows that in the absence of reasonable GPS observability, the relative updates 

significantly improve the navigation solution. 
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The FNR (GPS) results followed a similar trend to that of the block filter, again suggesting that the 

relative updates were providing little improvement to navigation solutions in this case. The FFR (INS) 

filter performance plateaued at the third IMU and had similar results with three to five IMUs, only 

increasing 0.1% per additional IMU. The FNR (INS) percentage improvement was minute with only 

0.3, 0.4 and 1.2% for each additional IMU. 

Consistent with the results of the VIMU architecture in Section 6.1, the addition of the second IMU 

had the largest percentage increase, even more so than the third, fourth or fifth IMU. This suggests that 

if two IMUs are used, the stacked, FNR (GPS) or VIMU AKF all show similar performance. However, 

when using more than two IMUs, the solution accuracy improves at a lower rate. 

7. Olympic Oval Data Set 

The Olympic Oval presents a different approach to that of Section 6 as in this environment, GPS 

will not provide acceptable performance for most applications and an integrated system is needed. 

Figure 12 shows an average power drop of 24 dB inside the Oval while the HDOP occasionally 

doubles. In addition, due to the material used during construction and the geometry of the building, 

multipath is high. This figure also shows the relative power increases when the user is located outside 

to allow the reference solution to re-estimate the IMU errors (i.e., 500 to 750 s). 

Figure 12. Average C/No and HDOP (Olympic Oval Data Set). 

 

7.1. VIMU Results 

The VIMU horizontal errors are shown in Figure 13. The horizontal error improvement is more 

significant than that of the residential data set (e.g., Section 6.1). The VIMU average provided a 37.7% 

improvement, and the LSQ and AKF methods were similar with 40.1% and 42.1% improvements, 

respectively. Further investigation showed that the results are also hindered by time tagging issues due 

to several unsynchronized IMUs.  

Indoor 

Indoor 
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Figure 13. VIMU Horizontal Errors (Five IMUs Used in Olympic Oval Data Set). 

 

Figure 14. CD of VIMU Horizontal and Vertical Errors (Five IMUs Used in Olympic Oval Data Set). 

 

 

The VIMU tends to diverge much more slowly when entering the indoors and converges much 

more quickly when exiting, compared to the SINS solution. That said, at time 185 s, the solution very 

quickly diverged from a 6 m error to nearly a 40 m error. This was a direct result of a strong multipath 

signal that had a high C/No. The filter consequently overweighed the pseudorange and the VIMU 

filters were unable to reject this information. This effect has been seen in all the filters during this 

research and presents a problem that could not be solved without manual intervention of the 

observation covariance matrix.  

Figure 14 shows the CD of the horizontal and vertical errors. The VIMU’s horizontal errors showed 

superior performance at a 40% error. This revealed a distinct advantage over the SINS solutions. 

However, beyond 40% the advantage was less pronounced and provided only marginal improvement 

Indoor 
Indoor 
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compared to the SINS solution. In the vertical axis the LSQ and the AKF drifted but then slowly 

converged when GPS was less attenuated. This convergence was much slower than in the SINS and 

VIMU average solutions. 

7.2. Stacked and Federated Filter Results 

Figure 15 provides the stacked and federated filter horizontal error results. The best solution was the 

stacked filter which outperformed its FNR (GPS) counterpart by 8.9%. This is evidence of the 

effectiveness of the relative updates providing more information to the filter assisting in constraining 

the divergence of the system when GPS is providing poor observations. The FNR (GPS) filter again 

provided more accurate results to the FNR (INS) and FFR (INS), which provided similar results as the 

SINS solutions.  

The SINS and the FFR (INS) error profiles in Figure 15 show a similar result. This occurred 

because the reference INS in the FFR was the same single INS plotted in Figure 15. This introduces a 

concept where the reference local filter was aiding the other local filters to follow its trajectory because 

the input ―observations‖ were time correlated. This, in some cases, is to the detriment of a federated 

filter using one local filter as its reference solution for other local filters. This result confirmed that the 

reference system data must yield to assumptions of the Kalman filter namely that there is no time 

correlation of the measurement errors [35]. 

Figure 15. Horizontal Error of Stacked and Federated Filters (Five IMUs Used in Olympic 

Oval Data Set). 

 

Figure 16 shows the CD of the horizontal and vertical errors. The stacked filter provided a 

reasonable improvement at 90% CD where it outperformed the FNR (GPS), but followed a similar 

trend at lower percentages. Both the FNR (GPS) and stacked filter behaved similarly below 80%, 

which showed that, in terms of the distribution, the relative updates were providing improvement at 

times when the FNR (GPS) did not.  

Indoor Indoor 
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Figure 16. CD of Horizontal and Vertical Errors for Stacked and Federated Filters 

(Olympic Oval Data Set). 

 

To compare the results of each filter, Figure 17 shows a map with the trajectories of each 

architecture best solution (i.e., least amount of RMS error). A standalone GPS solution and a SINS 

solution are also provided for context. During the test the subject walked around the Oval in a 

clockwise direction. In this trajectory, the SINS was originally correctly providing a good heading, but 

had acquired an along-track error that provided the large horizontal error shown. By the time the user 

exited the track, the SINS solution contained the largest heading error. This was indicative of the 

heading degrading during the time indoor, which was less prominent in the multi-IMU architectures. 

With remarkable accuracy, the FNR (GPS) and the stacked filter had aligned themselves with the truth 

trajectory at the north east corner and appear to have a very accurate heading, better than 10 degrees 

after nearly 350 s. 

For the Oval data, the user entered and exited the track at the same point and therefore provided an 

interesting metric to compare the solutions. The FNR (GPS) filter only deviated by 2.5 m, the SINS 

difference was 13.5 m and the standalone GPS solution had a 49.3 m difference. The same check of the 

reference system yielded a 5.1 m difference.  

 

7.3. Position Accuracy versus Number of IMUs 

 

The accuracy of each architecture as a function of the number of IMUs is shown in Figure 18. This 

figure provides an indication of the weakness of the VIMU time tagging as discussed in [3]. Because 

of this issue, the incremental improvement for the VIMU fusion methods was modest. In this case the 

VIMU AKF provided the best solution, despite marginal time synchronization issues.  
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Figure 17. Loop 2 (Clock Wise) Map View of Best Performing Filters—Truth Solution 

(—), Standalone GPS Solution (—), SINS (—), VIMU (AKF) (—), Stacked Filter (—), 

FNR (GPS) (—). 

 

Figure 18. VIMU Accuracy Improvement as a Function of IMUs Used (Olympic Oval Data Set). 
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The stacked filter had a linear improvement for each additional IMU of about 3 to 7% per IMU 

added. This again indicates the value of the relative updates, as each additional IMU provided 

additional relative information to improve the accuracy of the solution and the error states within the 

block filters. The FNR (INS) and the FFR (INS) results did not increase linearly, but plateaued similarly 

to the results of two IMUs. The FNR (GPS) slightly decreased with each additional IMU in excess of two.  

The FNR (INS) and FFR (INS) results were very similar to the residential data set with very 

moderate improvements as each IMU was added. The FNR (GPS) also had similar results between 

data sets with a slight decrease in performance with more IMUs. The two data sets confirm that the 

federated filter architecture did not increase the accuracy, but merely processed the data in a similar 

manner to that of the centralized version. 

8. Processing Speed of Architectures and Number of IMUs 

There is a large difference in the computer processing speed of each architecture and for the number 

of IMUs used. An exact comparison of the computational load is beyond the scope of this paper, but 

Figure 19 shows the processing rate of each architecture and the number of IMUs added for the 

software developed by the author.  

 

Figure 19. Processing Speed of Various Architectures. 

 

 

All data was processed on an Intel Core 2 Quad CPU with 3.25 GB of RAM. This analysis is 

merely intended to be comparative, since there are numerous factors that determine processing speed. 

The slowest architecture was the stacked filter. This was mostly due to the inversion required for the 

gain matrix computation, which has n times m rows and columns (n is the number of IMUs and m is 

the number of GPS observations); propagating the filter forward was also a burden. This was the only 

filter that could not run in real time. For those interested in operating a stacked filter in real time, 

several processing enhancements could be made to reduce the computational load. These include 

processing observations sequentially, using integer based data types, reducing the IMU data rates, 
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propagating the filter for longer intervals rather than shorter more frequent ones or using factorization 

methods such as Cholesky decomposition. Readers are referred to [46] for other optimization techniques. 

The VIMU AKF was able to process faster than the federated filters, an interesting note considering the 

VIMU AKF produced solutions at 100 Hz whereas the federated filters operate at 20 Hz. These results 

are largely influenced by I/O processes such as the input and output of the filters data, which include 

PVA navigation parameters and estimated variances, biases and scale factors for each IMU with their 

respective variances, MDB information, satellite number and DOP information. Thus, in the event of a 

five IMU federated filter, the output was five times greater than that of a SINS filter. 

9. Conclusions 

Three architectures were proposed for which multi-IMU data can be fused to provide improved 

navigation performance. The filters proposed specifically assess the integration schemes within the 

scope of pedestrian navigation. The objective was to compare the results of three architectures and 

provide insight into the advantages and disadvantages of each, providing a better understanding of the 

accuracy and availability for each filter.  

The stacked filter provided better results compared to its federated reset free counterpart, which 

showcases the use of relative updates and a better fault detection algorithm. Although the improvement 

was minor in the residential data set, the filter was already operating at a high performance level with 

the use of only moderately attenuated GPS signals. In the Olympic Oval data set, the stacked filter 

performed 9% better with five IMUs than the federated reset free filter. The multi-IMU federated 

filters accuracy reached a maximum with two IMUs, whereas the stacked filter accuracy linearly 

increases 3 to 7% with each additional IMU. This suggests that the relative updates provide a linear 

relationship with the number of IMUs, at least up to five units.  

When GPS measurements were used as the reference information for the local filters of the 

federated filter, the performance was 15% better than when a single INS solution was used as the 

reference for the federated filter. The time correlation of the output of the INS solution resulted in a 

dramatic decrease in performance of the local filters. 

Within the VIMU scope, FDE is not practical unless the systematic errors have been removed prior 

to testing for faults. Performance within the FDE is severely hindered by the dynamics of the IMU and 

the magnitude of the scale factors, biases and acceleration based gyroscope errors. There is also no 

evidence within this research to suggest that FDE on IMU measurements would increase navigation 

accuracy or availability; the primary interests of pedestrian navigation.  

Processing times of the filters differ, but the stacked filter requires the most processing time, 

followed by the federated filters, VIMU AKF, VIMU LSQ and VIMU average.  

References  

1. Lachapelle, G. Advanced GNSS Theory and Design, ENGO 625 Course Notes; Department of 

Geomatics Engineering, University of Calgary: Calgary, AB, Canada, 2007. 

2. Titterton, D.H.; Weston, J.L. Strapdown Intertial Navigation Technology, 2nd ed.; The Institution 

of Electrical Engineers: Hertfordshire, UK, 2004. 



Sensors 2011, 11                            

 

 

6796 

3. Bancroft, J.B. Multiple Inertial Measurement Unit Integration for Pedestrian Navigation. Ph.D. 

Thesis, Department of Geomatics Engineering, The University of Calgary: Calgary, AB, Canada, 

2010. 

4. Mezentsev, O. Sensor Aiding of HSGPS Pedestrian Navigation. Ph.D. Thesis, Department of 

Geomatics Engineering, University of Calgary: Calgary, AB, Canada, 2005. 

5. Bancroft, J.B.; Lachapelle, G.; Cannon, M.E.; Petovello, M.G. Twin IMU-HSGPS Integration for 

Pedestrian Navigation. In Proceedings of ION GNSS 2008, Savannah, GA, USA, 16–19 

September 2008. 

6. Beauregard, S. Omnidirectional Pedestrian Navigation for First Responders. In Proceedings of 4th 

IEEE Workshop on Positioning, Navigation, and Communication 2007 (WPNC’07), Hannover, 

Germany, 22 March 2007. 

7. Brand, T.; Phillips, T. Foot-to-Foot Range Measurement as an Aid to Personal Navigation. In 

Proceedings of 59th Annual Meeting and CIGTF 22nd Guidance Test Symposium, Albuquerque, 

NM, USA, 23–25 June 2003. 

8. Foxlin, E. Pedestrian tracking with shoe-mounted inertial sensors. IEEE Comput. Graphics Appl. 

2005, 25, 38-46. 

9. Godha, S.; Lachapelle, G. Foot mounted inertial system for pedestrian navigation. Meas. Sci. 

Technol. 2008, 19, 1-9. 

10. Godha, S.; Lachapelle, G.; Cannon, M.E. Integrated GPS/INS System for Pedestrian Navigation 

in a Signal Degraded Environment. In Proceedings of ION GNSS 2006, Fort Worth, TX, USA, 

26–29 September 2006. 

11. Grejner-Brzezinska, D.A.; Toth, C.K.; Jwa, Y.; Moafipoor, S.; Jwa, Y.; Kwon, J. Seamless and 

Reliable Personal Navigator. In Proceedings of ION NTM 2006, Monterey, CA, USA, 18–20 

January 2006. 

12. Groves, P.D.; Pulford, G.W.; Littlefield, C.A.; Nash, D.L.J.; Mather, C.J. Inertial Navigation 

Versus Pedestrian Dead Reckoning: Optimizing the Integration. In Proceedings of ION GNSS 

2007, Forth Worth, TX, USA, 25–28 September 2007. 

13. Kasameyer, P.W.; Hutchings, L.; Ellis, M.F.; Gross, R. MEMS-based INS Tracking of Personnel 

in a GPS-denied Environment. In Proceedings of ION GNSS 2005, Long Beach, CA, USA, 13–16 

September 2005. 

14. Lachapelle, G.; Mezentsev, O.; Collin, J.; MacGougan, G. Pedestrian and Vehicular Navigation 

under Signal Masking using Integrated HSPG and Self Contained Sensor Technologies. In 

Proceedings of 11th
 
IAIN World Congress, Berlin, Germany, 21–24 October 2003. 

15. Mather, C.J.; Groves, P.D.; Carter, M.R. A Man Motion Navigation System Using High 

Sensitivity GPS, MEMS IMU and Auxiliary Sensors. In Proceedings of ION GNSS 2006, Fort 

Worth, TX, USA, 26–29 September 2006. 

16. Kwakkel, S.P. Human Lower Limb Kinematics Using GPS/INS. M.Sc. Thesis, Department of 

Geomatics Engineering, University of Calgary: Calgary, Canada, 2008. 

17. Renaudin, V.; Yalak, O.; Tomé, P. Hybridization of MEMS and Assisted GPS for Pedestrian 

Navigation. InsideGNSS 2007, January/February, 34-42. 



Sensors 2011, 11                            

 

 

6797 

18. Kwakkel, S.P.; Godha, S.; Lachapelle, G. Foot and Ankle Kinematics During Gait Using Foot 

Mounted Inertial System. In Proceedings of ION NTM 2007, San Diego, CA, USA, 22–24 

January 2007. 

19. Kwakkel, S.P.; Lachapelle, G.; Cannon, M.E. GNSS Aided In Situ Human Lower Limb 

Kinematics During Running. In Proceedings of ION GNSS 2008, Savannah, GA, USA, 16–19 

September 2008. 

20. Sturza, M. Navigation system integrity monitoring using redundant measurements. J. Inst. Navig. 

1988, 35, 69-87. 

21. Brown, A.; Sturza, M. The Effect of Geometry on Integrity Monitoring Performance. In 

Proceedings of ION GPS 1990, Atlantic City, NJ, USA, 26–28 June1990. 

22. Sukkarieh, S.; Gibbens, P.; Grocholsky, B.; Willis, W.; Durrant-Whyte, H.F. A Low-Cost 

Redundant Inertial Measurement Unit for Unmanned Air Vehicles. Int. J. Rob. Res. 2000, 19, 

1089-1103. 

23. Allerton, D.J.; Jia, H. An Error Compensation Method for Skewed Redundant Inertial 

Configuration. In Proceedings of ION 58th Annual Meeting/CIGTF 21st Guidance Test 

Symposium, Albuquerque, NM, USA, 24–26 June 2002. 

24. Colomina, I.; Giménez, M.; Rosales, J.J.; Wis, M.; Gómez, A.; Miguelsanz, P. Redundant IMUs 

for Precise Trajectory Determination. In Proceedings of XXth ISPRS Congress, Istanbul, Turkey, 

12–23 July 2004. 

25. Giroux, R.; Sukkarieh, S.; Bryson, M. Implementation of A Skew Redundant Low Cost INS in a 

Fast Prototyping Enviroment. In Proceedings of ION NTM 2004, San Diego, CA, USA, 26–28 

January 2004. 

26. Pittelkau, M.E. Calibration and attitude determination with redundant inertial measurement units. 

J. Guidance Control Dyn. 2005, 28, 743-752. 

27. Osman, A.; Wright, B.; Noureldin, A.; El-Sheimy, N. Multi-Sensor Inertial Navigation Systems 

Employing Skewed Redundant Inertial Sensors. In Proceedings of ION GNSS 2006, Fort Worth, 

TX, USA, 26–29 September 2006 

28. Pittelkau, M.E. Cascaded and decoupled RIMU calibration filters. J. Astronaut. Sci. 2006, 54, 

449-466. 

29. Waegli, A.; Guerrier, S.; Skaloud, J. Redundant MEMS-IMU integrated with GPS for 

Performance Assessment in Sports. In Proceedings of IEEE Position Location and Navigation 

Symposium 2008, Monterey, CA, USA, 5–8 May 2008. 

30. Pejsa, A.J. Optimum skewed redundant inertial navigators. AIAA J. 1974, 12, 899-902. 

31. Guerrier, S. Integration of Skew-Redundant MEMS-IMU with GPS for Improved Navigation 

Performance. M.Sc. Thesis, Geodetic Engineering Laboratory: Lausanne, Switzerland, 2008; p. 93. 

32. Kane, T.R.; Levinson, D.A. Dynamics—Theory and Applications; Cornell University Library: 

Ithaca, NY, USA, 2005. 

33. Jekeli, C. Inertial Navigation Systems with Geodetic Applications, 1st ed.; de Gruyter: Berlin, 

Germany, 2001. 

34. Bancroft, J.B. Multiple IMU Integration for Vehicular Navigation. In Proceedings of ION GNSS 

2009, Savannah, GA, USA, 22–25 September 2009. 



Sensors 2011, 11                            

 

 

6798 

35. Gao, Y. Advanced Estimation Methods and Analysis, ENGO 629 Course Notes; Department of 

Geomatics Engineering, University of Calgary: Calgary, AB, Canada, 2008. 

36. Marion, J.B.; Thornton, S.T. Classical Dynamics of Paritcles and Systems, 4th ed.; Saunders 

College Publishing: Philadelphia, PA, USA, 1995. 

37. Petovello, M. Real-Time Integration of a Tactical-Grade IMU and GPS for High- Accuracy 

Positioning and Navigation. Ph.D. Thesis, Department of Geomatics Engineering, The University 

of Calgary: Calgary, Canada, 2003. 

38. Carlson, N.A. Federated square root filter for decentralized parallel processes. IEEE Trans. 

Aerosp. Electron. Syst. 1990, 26, 517-525. 

39. Wei, M.; Schwarz, K.P. Testing a Decentralized Filter for GPS/INS Integration. In Proceedings of 

IEEE Position Location and Navigation Symposium 1990, Las Vegas, NV, USA, 20–23 March, 

1990. 

40. Allerton, D.J.; Jia, H. A review of multisensor fusion methodologies for aircraft navigation 

systems. J. Navig. 2005, 58, 405-417. 

41. Carlson, N.A. Federated Filter for Distributed Navigation and Tracking Applications. In 

Proceedings of ION 58th Annual Meeting/CIGTF 21st Guidance Test Symposium, Albuquerque, 

NM, USA, 24–26 June 2002 

42. Brown, R.G.; Hwang, P.Y.C. Introduction to Random Signals and Applied Kalman Filtering,  

3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1997. 

43. Gelb, A. Applied Optimal Estimation; The Massachusetts Institute of Technology Press: 

Cambridge, MA, USA, 1974. 

44. M Series Magnetic GPS Antenna Data Sheet; M827B Data Sheet. Allis Communications Co., 

Ltd.: Taipei, Taiwan, 2006; p. 11. 

45. Bancroft, J.B.; Lachapelle, G.; Williams, T.; Garrett, J. GPS Observability and Availability for 

Various Antenna Locations on the Human Body. In Proceedings of ION GNSS 2010, Portland, 

OR, USA, 21–24 September 2010. 

46. Bierman, G.J. Factorization Methods for Discrete Sequential Estimation, 1st ed.; Dover 

Publications, Inc.: Mineola, NY, USA, 1977. 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


