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Abstract: This paper presents a novel VLSI architecture for image segation. The
architecture is based on the fuzzy c-means algorithm wittiapconstraint for reducing
the misclassification rate. In the architecture, the usiembiive operations for updating
the membership matrix and cluster centroid are merged iméosingle updating process to
evade the large storage requirement. In addition, an eftipipelined circuit is used for the
updating process for accelerating the computational speggderimental results show that
the the proposed circuit is an effective alternative fot-teae image segmentation with low
area cost and low misclassification rate.

Keywords: fuzzy c-means; image segmentation; fuzzy clustering;yflerdware; FPGA,
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1. Introduction

Image segmentation plays an important role in computeoriand image analysis. The segmentation
results can be used to identify regions of interest and tbjat¢he scene, which is very beneficial to the
subsequent image analysis or annotation. The fuzzy c-nmagosthm (FCM) [L] is one of the most
used technique for image segmentation. The accuracy of @M to the employment of fuzziness for
the clustering of each image pixel. This enables the fuzzgteting methods to retain more information
from the original image than the crisp or hard segmentation.

Although the original intensity-based FCM algorithm fuoas well on segmenting most noise-free
images, it fails to segmentimages corrupted by noise,aatéind other imaging artifacts. The FCM with
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spatial constraint (FCM-S) algorithm24] have been proposed to solve this problem by incorporating
spatial information into original FCM objective functioHowever, as compared with the original FCM
algorithm, the FCM-S algorithms have higher computatiamahplexities for membership coefficients
computation and centroid updating. In addition, similarthe original FCM algorithm, the size of
membership matrix grows as the product of data set size ambauof classes in the FCM-S. As a
result, the corresponding memory requirement may prewendligorithm from being applied to images
with high dimension.

To accelerate the computational speed and/or reduce th@mesguirement of the original FCM,

a number of algorithms5F8] have been proposed. These fast algorithms can be exteoddtef
implementation of FCM-S. However, most of these algorittaresimplemented by software, and only
moderate acceleration can be achieved. 9l]], hardware implementations of FCM are proposed.
Nevertheless, the design i9][is based on analog circuits. The clustering results tloeeedre difficult to

be directly used for digital applications. Although thelatecture shown in0] adopts digital circuits,
the architecture aims for applications with only two clasda addition, it may be difficult to extend the
architecture for the hardware implementation of FCM-S. ditohitecture presented ih]] operates with
only a fixed degree of fuzziness = 2 for the original FCM. The flexibility for selecting other degs

of fuzziness may be desired to further improve the FCM paréorce. In addition, similar tdlp], the
architecture presented ifi]] cannot be directly used for the hardware implementatioR@¥1-S.

The objective of this paper is to present an effective digh€M-S architecture for image
segmentation. The architecture relaxes the restrictionhendegree of fuzziness. The relaxation
requires the employment efth root and division operations for membership coeffigearid centroid
computation. A pipeline implementation for the FCM-S tHere may be difficult. To solve the
problem, in the proposed architecture, th¢h root operators and dividers are based on simple table
lookup, multiplication and shift operations. Efficient plme circuits can then be adopted to enhance
the throughput for fuzzy clustering.

To reduce large memory size for storing membership matrexproposed architecture combines the
usual iterative updating processes of membership matmkcumster centroid into a single updating
process. In the architecture, the updating process is a&eplinto three steps: pre-computation,
membership coefficients updating, and centroid updatirtge @re-computing step is used to compute
and store information common to the updating of differentmhership coefficients. This step is
beneficial for reducing the computational complexity fag tipdating of membership coefficients.

The membership updating step computes new membership aeefsi based on a fixed set of
centroids and the results of the pre-computation step.h&lihhembership coefficients associated with a
data point will be computed in parallel in this step. The catagion time of the FCM-S therefore will
be effectively expedited.

The centroid updating step computes the centroid of clssising the current results obtained
from the membership updating step. The weighted sum of daitgpand the sum of membership
coefficients are updated incrementally here for the ceshttcomputation. This incremental updating
scheme eliminates the requirement for storing the entiralpeeship coefficients.

The proposed architecture has been implemented on fieldrggrogable gate array (FPGA)
devices 2] so that it can operate in conjunction with a softcore CR3|.[ Using the reconfigurable
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hardware, we are then able to construct a system on progralamhbip (SOPC) system for image

segmentation. The proposed architecture attain lowesifilgation error rate in the presence of noise.
In addition, compared with its software counterpart rugnam the 3.0 GHz Pentium D, our system
has significantly lower computational time. All these fadismonstrates the effectiveness of the
proposed architecture.

2. Preliminaries

We first give a brief review of the FCM algorithm. L&t = {z,, ..., 2;} be a data set to be clustered
by the FCM algorithm inta: classes, where is the number of data points in the design set. Each
classi,1 < i < ¢, is characterized by its centroigd. The goal of FCM is to minimize the following
cost function: o

J =3 ulllen — vl (1)
i=1 k=1
whereu, ; is the membership aof;, in classi, andm > 1 indicates the degree of fuzziness. The cost
function J is minimized by a two-step iteration in the FCM. In the firgstthe centroids,, ..., v., are
fixed, and the optimal membership matfix; ., = 1, ...,c,k = 1, ..., ¢} is computed by

c

wige = (O (law — vill/ ||z — vyl 0) ! (@)
j=1
After the first step, the membership matrix is then fixed, amel new centroid of each clagsis
obtained by

A variant of FCM for image segmentation is FCM-S, whose dijedunction is P]

c t
J:ZZ“%H%—%H”OGM ZZ%kZH% vil[* 4)
i=1 k=1 i=1 k=1 jer
wherel is the set of neighbors associated with and theC'ard(T") is the cardinality of the sdt. The
parametery determines the degree of penalty. The necessary conditoally minimizing J are then
given by
(o — vill® + o2 Ser |2y — i)~/

" “ (5)
e (ke — oall? + o2 Tier |l — val[?) VD

Us J =

Skt Uik (Th + Gy Zjer )
(1+ @) Shoy ufl

The disadvantages of Equation®) (and @) are the high computational complexities for

computingu, ; andv;. To accelerate the computation, observe fr@hthat by simple manipulation,

Garam) Ljer |77 — vil[* can be equivalently written as

(6)

v; =

S 2l = vl = (s =l = aull) + 1z = ™

JGF JEF
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where
1

jer
Note thatz, can be computed in advance, and the minimizatios of Equation ) is equivalent to the
minimization of the following cost function.

c t c t
J =233 ulllee —vill* + D" > wil|ze — vl 9)
i=1 k=1 i=1 k=1
Necessary conditions an ; andv; for locally minimizingJ can be derived are follows.

(|lzr — vl |2 + |z — ] [2) "/ =D
< (lzx — ]2+ al|z), — v;|2)"Y/m=D

Uik = (10)
o S ult (x4 o)
o+ a) T (R
The FCM and FCM-S algorithms requires large number of flgapoint operations. Moreover,
from Equations 1), (3), (10) and (1), it follows that the membership matrix needs to be stored fo
the computation of cost function and centroids. As the sfz® membership matrix grows with the
product oft andc, the storage size required for the FCM may be impracticallge when the data set
size and/or the number of classes become high.

(11)

3. The Proposed Architecture

The goal of the proposed architecture is to implement the FEkIgorithm in hardware. The
architecture is based on a novel pipeline circuit to providgh throughput for fuzzy clustering. It is
also able to eliminate the requirement for storing the langenbership matrix for the computation of
cost function and centroids.

As shown in Figure 1, the proposed FCM-S architecture candoerdposed into four units: the
pre-computation unit, the membership coefficients updatinit, centroid updating unit and cost
function computation unit. These four units will operatencorrently in pipeline fashion for the
clustering process.

Figure 1. The basic VLSI architecture for realizing the proposed FAgbathm.
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For sake of simplicity, the architecture of these four ufmsthe original FCM are presented first.
Their extensions to the FCM-S will then be discussed.

3.1. Pre-Computation Unit for Original FCM

The pre-computation unit is used for reducing the companali complexity of the membership
coefficients calculation. Observe that, in Equation @) can be rewritten as

Wi = ||z — oD (12)

where

c

Py =3 (1 [y — vy |20 (13)

j=1
Given z; and centroidsy, ..., v., membership coefficients, 4, ..., u., have the samé’,. Therefore,
the complexity for computing membership coefficients canréduced by calculating?, in the
pre-computation unit. Without loss of generality, the aegof fuzzinessn can be expressed as

m=a/b (14)
where both: andb are integers. Because should be larger than 1, it follows that> b > 0. Let
r=bn=a—> (15)

We then can rewrite Equatiodd) as

C

Pe =Y (|lzx — vyl[)>7/" (16)

J=1

Based on Equationl@), we see that the-th root operation is required for the implementatiorpf
In the proposed architecture, a noveth root circuit is adopted so thd?, can be implemented in a
pipelined fashion. In the proposesth root circuit, the goal is to comput&Y’, where

Y =1 + 271y1 + 272y2 + ...+ 2*(2q71)y2q_1.

That is,Y is a2¢-bits real number such that< Y < 2. We separat&” into two portionsY;,, andY; as
shown below

Vi = 1427427+ . +270 Dy, (17)
Y, = 2@ty oty oy o Cely, (18)

For the sake of simplicity, we first consider the computatiby/’Y". Observe that

e Y o ymt oy on 8
(Y2 (YY) 2y, 8y

By retaining the first two terms of the Taylor seriedy” can be approximated by

Y Y, YV, —Y,/2)
VY ~= (1 ) = v

~N— T

Y, 2y,
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From EquationsX7) and (8), we conclude that}, > 2?Y;. Therefore, the maximum error of the
approximation is less thar 2. Following the same procedure, it can also be found that

oY R 72 7 N 4 a 2, )NY(Yh—ZYl/S)
(Vi + Y028 (L Y/V2P  y23 3y, vl

These results can be extended for any 2 as follows:

UV A Y Yy — (n—1)Y;/n)
Y(2n—1)/n
h

(19)

The n-th root circuit based on Equatiod9) is shown in Figure 2, which consists of two tables, two
multipliers, and one adder. The tables stpre- 1)Y;/n andY,*" /" for all the possible values df;
andY,. Although it is possible to construct a table directly #/, the number of entries in the table
would be2%~! becaus&” contains2q bits. By contrast, botfy;, andY; consist of onlyg bits. The
number of entries in each table shown in Figure 2 is axly. Consequently, the proposed circuit is
able to perform fast and accurate computation while maiimgilow area cost.

Figure 2. The architecture ofi-th root unit.
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Observe from Equatiorl) that the computation af, can be separated intderms, where thg-th
term involves the computation ¢fz;. — v;||)~2/". The basic circuit for calculating|z;, — v;||)~%"/"
is shown in Figure 3(a). In addition to theth root circuit, it contains squared distance unith power
unit and inverse operation unit. Both the squared distamieamd ther-th power circuit are based
on multipliers. Similar to the:-th root circuit, the inverse operation circuit is also mhea tables,
multipliers and adderslH].

The basic circuit for calculating||z; — v;||)~*/" can be separated into a number of stages for
pipeline implementation. Figure 3(b) shows an example fstagje pipeline implementation. It can
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be observed from the figure that two training vectoysz,_1, x;,_» andxy_s are operated concurrently
in the pipeline, where the first, second, third and fourtlyssaare used for computing:;. — v;||* and

([|re—1 — vy]]

AV (||og—g — vy||2)/™, and(||zx—_s — v;]|?)~"/", respectively.

To computeP;, the accumulation of the results @fz;, — v;||)~2/ for j = 1, ..., ¢, is required. This
can be accomplished by the employment of an accumulatoedothith stage, as shown in Figure 3(b).
Consequently, we can cascade the circuit shown in Figuref8(lalculating eactt||z) — v;||)~2/,
j=1,..., ¢ toadc-stage pipeline for computing,. Figure 4 shows the architecture of the pipeline. The
(47 — 1)-th stage4i — 2)-th stage(4i — 3)-th stage, and4: — 4)-th stage of the pipeline are the first,
second, third and fourth stage of the circuit in Figure 3(&3pectively.

Figure 3. The circuit for evaluating||z, — v;||)~*/". (a) Basic circuit; (b) 4-stage
pipeline architecture.
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Figure 4. Architecture of Pre-computation unit.
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When z;, enters the(4i — 1)-th stage, the accumulator at the-th stage receives the sum of
(||zp—s — 01 [|2)77™, oo, (||2h—s — vi1||?) 77/, from its precedent accumulator. It then adds the results of
(||zx—s — vi|[>)7"/ to the sum, and then propagates the results to the subsesfages. As the
computation at théc-th stage for data point, is completed, the output of the pre-computation unit,is

3.2. Membership Coefficients Updating Unit for Original FCM

The membership coefficients updating unit receivesithealue from the pre-computation unit, and
then compute., fori = 1, ..., ¢, concurrently. From Equation&®), (14) and (L5), it follows that

= (|, — v| )Y BTy =) (20)

The basic circuit for computingy;, is shown in Figure 5(a). Based on Equati@g)( it follows that
the circuit contains squared distance unith root andn-th root circuits,(n + r)-th power circuit, and
inverse unit. From the figure, we observe that — v;||? is first computed. This is accomplished by the
squared distance unit. Following that, th¢h root circuit andr-th root circuit are used for computing
P and (||zy — vi|[?)V/", respectively. Theén + r)-th power circuit is then adopted for computing
((||z, — v;|[2)/"PY")@+)  Finally, the inverse unit is employed for evaluating},. Similar to the
pre-computation unit, the basic circuit for computirffy can also be implemented in a pipeline fashion.
An example of 5-stage pipeline implementation is shown guFe 5(b).

Becauseu;), for i = 1,...,¢, can be computed in parallel, there aredentical modules in the
membership coefficients updating unit. The module the unit is used for computing;’,. The
architecture of the moduleof the unit is shown in Figure 5(b). Therefore, in the membigrsoefficients
updating unit, the.; fori = 1,..., ¢, can be obtained in 5 clock cycles afteris presented at the input
of the unit.
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Figure 5. The circuit for evaluatingu]’.. (a) The basic circuit; (b) 5-stage
pipeline architecture.
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3.3. Centroid Updating Unit for Original FCM

The centroid updating unit incrementally computes theroghof each cluster. The major advantage
for the incremental computation is that it is not necessargtore the entire membership coefficients
matrix for the centroid computation. To elaborate this fagt first define the incremental centroid for
thei-th cluster up to data point, as

When k&

) = (3 b/ (3

t, v;(k) then is identical to the actual centroigd given in Equation J).
Equation 21), it can be observed that the computationgk) is based on-*!

U Ty S

(21)

Based on

um
zk

Z’I’L’

andz;. To computey;(k), as shown in Figure 6, two accumulators can be used for gt@‘jjll u Ty,
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and Y5 —} ul", respectively. When.; andx, are received, bot")_, vz, and>-"_, u!", can be
obtained by adding;},r; andv], to the two accumulators, respectively. Based on the outptitese
two accumulatorsy; (k) can then be computed by the divider. In the incremental coatiom scheme, it
is therefore not necessary to store membership coeffici¢htand training vectors,,, n = 1,...,k — 1,
for the computation of; (k). The two accumulators already have the partial resufts! ug, vy, and
Skt u;,, for the computation. In addition, after addingj,r, andu]}, to the two accumulators, both
uy, andz; are no longer required in the circuit. Based on the updateéputsi of the accumulators
Yk U T and>_, u;,, and new incoming membership coefficients and trainingorsciwe are
able to compute; (/) for [ > k. Thus, no membership coefficients matrix is needed in ougdes

The centroid updating unit containgdentical modules. All modules operate concurrently. Thalg
of each modulé is to computey; (k). Therefore, each modutgs implemented by the circuit shown in
Figure 6. Note that the;(k) at the output is only the incremental centroid. Thereforejsed by the
pre-computation unit and membership coefficients updatimigwill not be replaced by; (k) until the
v;(t) is obtained.

Figure 6. The basic circuit for calculating; (k).
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3.4. Cost Function Computation Unit for Original FCM

As shown in Figure 1, the cost function computation unit apes in parallel with the centroid
updating unit. Similar to the centroid updating unit, thetcfunction unit incrementally computes the
cost function/. Define the incremental cost functiolik) up to data point; as

c k
J (k) zzlijluzf?onn—wHQ (22)

As shown in Figure 7, the circuit receiveg), and ||z, — v||* i = 1,...,¢, from the membership
coefficients updating unit. The produetg, ||z — v;||*,7 = 1, ..., c are then accumulated for computing
J(k) in Equation R2).

Whenk = t, J, then is identical to the actual cost functidngiven in Equation I). Therefore,
the output of the circuit becomeg as the cost function computations for all the training vesto
are completed.
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Figure 7. The architecture of cost function computation unit.
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3.5. FCM-S Architecture

Figure 8 shows the architecture of FCM-S, which consistsvofunits: the mean computation unit
and the fuzzy clustering unit. The goal of the mean computatinit is to evaluate the mean valag
defined in Equation8). The main architecture of FCM-S is the fuzzy clustering,wvhich computes
the membership coefficients and centroids of FCM-S. Thesefaur discussion in this subsection will
focus on the fuzzy clustering unit of the FCM-S. Using Equagi 14) and (L5), we can rewrite the
membership coefficients of FCM-S defined in Equatib®) @s

ult = ((lze — vl |* 4 of |7 — v )Y/ Py ) (23)

where .
Py =" (|lor — v5])* + af |z — v;]]) " (24)

j=1

Similar to the original FCM, it follows from Equatior24) that the computation of’, can also be
separated inteterms, where thg-th term involves the computation 0f z;, — v;||> + a|Z), — v;][2) ~"/™.
Figure 9 shows the architecture for the computation of feh — v,||> + |z, — v;]|>)~"/". From
Figure 9, we see that the architecture can also be implechasta 4-stage pipeline, similar to that shown
in Figure 3(b) for computing||x; — v;||)~%/". Therefore, the pre-computation unit for FCM-S can be
realized as dc stage pipeline shown in Figure 4.

Both pipelines in Figures 3(b) and 9 have similar architesgu The only difference is that the first
stage of the pipeline in Figure 9 has higher area and compnghicomplexities. There are two squared
distance calculation units and one adder at the first stageegdipeline in Figure 9. By contrast, there
is only one squared distance unit at the first stage of thdipgm Figure 3(b). In fact, Observe from
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Equations 16) and @4) that theP, for FCM-S can be viewed as the generalized versiaR.dbr original
FCM by replacing the squared distari¢e, — v;|| in Equation L6) with ||z). — v;||* + ||z — v;]|%
Hence, the pipeline in Figure 9 is also an extension of thatgare 3(b) by replacing the simple squared
distance calculatiofjz; — v,||* at the first stage withz, — v;||* + a||Zx — v;]]*.

Figure 8. The FCM-S architecture.
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Figures 10-12 depict the architecture for membership coefiis updating, centroids updating and
cost function computation for FCM-S based on Equati@s (1) and @3), respectively. Similar to
the original FCM algorithm, the proposed FCM-S architeettmmputes the centroids and cost function
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incrementally. In the FCM-S, the incremental centroid fog#th cluster up to data point, is defined

as
k k
vi(k) = (3 ui(zn + 0Z0))/ (1 + ) (D ully)). (25)
n=1 n=1
In addition, the incremental cost functioiik) up to data point,, is defined as
c k
J(k) =323 ui (e — vil* + al|z, — v ]*). (26)

i=1n=1

As shownin Figures 11 and 12, the goals of the centroids upglanit and the cost function computation
unit are to compute; (k) and.J(k), respectively. As: = ¢, thewv, (i) and.J(k) in Equations 25) and ©)
will becomesu (i) in Equation (1) and.J in Equation 0), respectively.

Figure 10. The circuit for evaluating:;, for FCM-S.

Ist stage L ndstage 3rd stage
P, 1 [ | T
» Reg »| root Pki: Reg Pk—2 r i
Xk u circuit | - - N
| piof I e
V; istance ‘ i > >
— Unit o
» root » Reg —
L ~ n
‘ Adder | circuit L (HXH o+ aHxH B V'HZJI
3» Squared [ ] s v + aH; v HZ
g 53TV k=3 =V,
- Bls.ttancg _f R Reg - 2: Regt= " » Reg = >
nit an — : 2 — 5 —
Lk Multiplier aka B v"H et =vl + aHXH B V‘H L ka—z - v,.H + "YH)C“*2 - V;H
4th;stage - Sth stage
ir 1P ‘ P n ) 5 - o\ Anr)n
Pis (HXH v +04‘T"’3 VxH ) Pk*r*(mr)/'(ka—z—V,-Hz-*- 04‘%73_““2)(”#)/ Py "™ U‘xk vl +04‘XH —v,.H j
| n+rth L
: I Uik-5
" "'X;L)l?lriltent » Reg —- Ii}lreéfe » Reg AN
B L § i
kafz _V,'HZ +a x:eiz —V,»H ] H)Ck,4 — Vin + aHXk—Al - vin ’—‘ ka,S - ViHZ + aH)Ckfs - v,HZ
- » Reg » Reg >

Figure 11. The circuit for calculating); (k) for FCM-S.
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Figure 12. The circuit for calculating cost functiosi(k) for FCM-S.

2 — 2
I e
S0

m Multiplier
Uy
—_—

2 — 2
L -

\4

J(k) J(k-1)

Adder

\4

Register

m Multiplier
U i
e

A\ 4

2 — 2
Y ey

m Multiplier

We can view the membership coefficients, centroids and cositibn for FCM-S as the extension
of those for original FCM by replacingz, — v;||* with ||z, — v;||* + af|Zx — v;||>. Therefore, the
membership coefficients updating unit, centroids updatimidy and cost function computation unit for
FCM-S also have similar architectures to those of their tenparts in original FCM. The circuits in
FCM-S require only additional squared distance unit aneéafttt computing |z, — v;||* 4+ | |z — v;||*.

3.6. The SOPC System Based on the Proposed Architecture

The proposed architecture is used as a custom user logic @PLystem consisting of softcore
NIOS CPU, DMA controller and SDRAM, as depicted in Figure TBe set of training vectors is stored
in the SDRAM. The training vectors are then delivered to treppsed circuit by the DMA controller.
The softcore NIOS CPU is running a simple software for FCMokes not participate in the partitioning
and centroid computation processes. The software onlyatet the DMA controller for the delivery
of training vectors. The CPU then receives the overall digto of clustering from the proposed circuit
after the completion of DMA operation. The same DMA openafiar delivering the training data to the
proposed circuit will be repeated until the cost functiboonverges. The CPU then collects the centroid
of each cluster from the proposed circuit as the clustersglts.
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Figure 13. The SOPC system for FCM-based image segmentation.

Ethernet PHY
Chip

A

Altera FPGA

¥

Y

Processor

Nios Il

[

¢ ]

DMA

Controller

Ethernet
MAC

A
¥

v

A

\ A

A

Y

Avalon Switch Fabric (Avalon Bus)

i

1

1

1

6711

s S S s
Avalon Tristate
i Bridge SDRAM Other
User Logic m Controller Circuits
3
y v Y
S S E’ Avalon Master Port
Flash SRAM ;E::::,
Memory Memory Chip E] Avalon Slave Port
Chip Chip

4. Experimental Results

This section presents some numerical results of the prdp&$&M-S architecture for image
segmentation. The design platform of our system is Alterar@s Il with SOPC Builder and NIOS
Il IDE. The target FPGA device for the hardware implemeptais Altera Stratix I| EP2S60L5]. All
the images considered in the experiments in this sectioofaige320 x 320. Each pixel of the images
is corrupted by i.i.d. noise with uniform distribution ingtinterval[—b, b].

For sake of brevity, the images considered in this sectiengaay-level images. Each data point
xy represents a pixel with gray level values in the range betvieand 255. For color images, each
pixel x;, becomes a vector consisting of three color components:gregén and blue. In the proposed
architecture, each data poir can be a scalar or a vector. Therefore, the proposed arthiéezan be
directly applied to color image segmentation by implemanti, as a 3-dimension vector.

The performance of the image segmentation is measured byesggtion error rate, which is equal to
the number of misclassified pixels divided by the total nundigixels. Table 1 shows the segmentation
error rate of the original FCM algorithm and the FCM-S algfun for variousb values for the images
“Apple” and “Strawberry”. The number of classescis= 2. The degree of membership is given by
m = 1.5.

Table 1. The segmentation error rate of the original FCM algorithna &ne FCM-S
algorithm for varioug values for the images “Apple” and “Strawberry”.

b values 10 20 40 60 80
FCM for image “Apple” 0.020 0.022 0.028 0.041 0.074
FCM-S for image “Apple” 0.019 0.020 0.021 0.024 0.029
FCM for image “Strawberry” 0.024 0.025 0.033 0.050 0.066
FCM-S for image “Strawberry” 0.020 0.021 0.022 0.025 0.029
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From the Table 1, we see that FCM-S has lower segmentationrate as compared with the original
FCM. In addition, their gap in the error rate increases asnthise becomes larger. The FCM-S is
able to attain lower segmentation error rate because th@bpdormation is used during the training
process. However, in the original FCM, the spatial inforiorats not used. Figures 14 and 15 show
the segmentation results of the images “Apple” and “Strawfidor various b values. Table 2 and
Figure 16 show the segmentation error rate and segmentasuits of FCM-S for the image “Pear
& Cup”, respectively. The image contains three classes ¢ = 3). We can see from Table 2 and
Figure 16 that the FCM-S performs well for the noisy imagethwiore than two classes.

Figure 14. Segmentation results of the image “Appled) ¢ = 80; (b) b = 60; (c) b = 40;

(d) b = 20; (¢ b = 10. The first column represents corrupted images, the second
column shows results using FCM algorithm and the third coluaveals the segmentation
performance of FCM-S algorithm.

(b)
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Figure 15. Segmentation results of the image “Strawberrfa) b = 80; (b) b = 60;
(©)b = 40; (d) b = 20; (e)b = 10. The first column represents corrupted images, the second
column shows results using FCM algorithm and the third colueveals the segmentation

performance of FCM-S algorithm.

(b)

(€)

Table 2. The segmentation error rate of the FCM-S algorithm for ussiovalues for the
images “Pear & Cup”.

b values 10 20 40 60 80
FCM-S forimage “Pear & Cup” 0.023 0.024 0.033 0.039 0.054
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Figure 16. Segmentation results of the image “Pear & Cugéd) b = 80; (b) b = 60;
(©) b = 40; (d) b = 20; (e) b = 10. The first column represents corrupted images, and the
second column shows results using the FCM-S algorithm.

(d)

(e)

Table 3 compares the segmentation error rate of the FCM-tBéamages “Apple” and “Strawberry”
for various degree of fuzziness. It can be observed from the table that the FCM-S with= 1.5 has
lowest segmentation error rate. In fact, the segmentation ete of FCM-S withn = 1.5 is lower than
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that of FCM-S withm = 2.0 for all theb values considered in this experiment. Note that whes 2.0,

the FCM circuit design can be simplified. In this case= » = 1. Therefore, na:-th root andr-th
power circuits are required. Table 4 shows the area cost M-BGor variousm values withc = 2. It

IS not surprising to see that FCM-S with = 2.0 consumes the least hardware resources. In fact, when
m = 2, the number of adaptive look-up tables (ALUTS) used by tlebigecture is only 9% of that of the
target FPGA device. Consequently, when hardware resoaregie important concern, we can select
the degree of fuzziness as = 2. On the other hand, when more accurate segmentation iedegsie

can adopt the proposed architecture with otheralues at the expense of possible increase in hardware
resources consumption.

Table 3. The segmentation error rate of the FCM-S algorithm for wssia values for the
images “Apple” and “Strawberry”.

b values 10 20 40 60 80

m = 1.5 for image “Apple” 0.019 0.020 0.021 0.024 0.029
m = 2.0 for image “Apple” 0.020 0.020 0.022 0.025 0.031
m = 2.5 for image “Apple” 0.020 0.021 0.023 0.027 0.031

m = 1.5 for image “Strawberry”
m = 2.0 for image “Strawberry”
m = 2.5 for image “Strawberry”

0.020 0.021 0.022 0.025 0.029
0.021 0.022 0.023 0.026 0.030
0.022 0.022 0.023 0.027 0.031

Table 4. Hardware resource consumption of the FCM-S architectutedifferentm values.

m values ALUTs Embedded memory bits DSP blocks
15 8246 (17%) 63684 (3%) 72 (25%)
1.75 9256 (19%) 112048 (4%) 100 (35%)

2 4152 (9%) 38944 (2%) 20 (7%)
2.25 8500 (18%) 112048 (4%) 100 (35%)
25 9106 (19%) 112048 (4%) 80 (28%)

Table 5 compares the hardware resource consumption of idfear=CM with FCM-S withc = 2.
Given the samen value, we can see from Table 5 that the FCM-S only has slighitiyher area
costs as compared with FCM. The FCM-S architecture has higaelware costs because it needs
more squared distance computation circuits, multiplierd/ar adders at the pre-computation unit,
membership coefficients updating unit and centroid contjmurtanit.

Table 5. Comparisons of hardware resource consumption of the aligi&@M and FCM-S
architectures for different: values.

m values ALUT Embedded memory bits DSP blocks
FCM FCM-S FCM FCM-S FCM FCM-S
15 5270 8246 63684 63684 56 72
2.0 3468 4152 38944 38944 20 20
25 8371 9106 112048 112048 80 80
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The proposed architecture is adopted as an hardware atoelef a NIOS |l softcore processor.
Table 6 shows the area costs of the entire SOPC system basieel mmoposed FCM-S architectures with
differentm values. Because the NIOS Il processor also consumes hardesources, the consumptions
of ALUT, embedded memory bits and DSP blocks of the entire S@FR higher than those of FCM-S
architecture, as shown in Tables 4 and 6. Nevertheless umber of ALUTS, embedded memory bits
and DSP blocks used by the SOPC system are lower than 40%s# tfithe target FPGA device.

Table 6. Hardware resource consumption of the entire SPOC systeed lmasthe FCM-S
architecture with different: values.

m values ALUTs Embedded memory bits  DSP blocks

1.5 17960 (37%) 955936 (38%) 80 (28%)
1.75 19415 (40%) 1004336 (39%) 108 (38%)
2 14214 (29%) 931488 (37%) 28 (10%)
2.25 19355 (40%) 1004336 (39%) 108 (38%)
2.5 19234 (40%) 1004336 (39%) 88 (31%)

The computation speed of the FCM and FCM-S architecturesttagid software counterparts are
shown in Table 7 for various: values. The softcore processor of the SOPC systems aretiogera
at 50 MHz. The software implementation of FCM and FCM-S atpons are based on 3.0 GHz
Pentium D processor with 2.0 Gbyte DDR2. Because the FCMg8riéhm has higher computation
complexities, the algorithm has longer computation timecasipared with the original FCM. The
increase in computation time may be large for software imgletation. For example, whem = 1.5, the
computation time of FCM and FCM-S algorithms implementeddigware are 152.9 ms and 196.09 ms,
respectively. The employment of FCM-S in software therefesults in 28.28% increase in computation
time. By contrast, the computation time of FCM and FCM-S athms implemented by hardware are
0.5703 ms and 0.5815 ms, respectively. Hence, only 1.96%ase in computation time is observed
when FCM architecture is replaced by FCM-S architectureait also be observed from Table 6 that
the FCM and FCM-S architectures have high speedup over ftwae counterparts. The proposed
architectures have high speedup because the architeeidmsed on high throughput pipelines. In
particular, whenn = 2.0, the speedup is 342.51. The proposed architecture thensfarell-suited for
realtime segmentation of noisy images with low error rate laa hardware resource consumption.

Table 7. Comparisons of computation speed of the original FCM and F&EMchitectures
for differentm values.

m values FCM FCM-S

Software  Hardware Speedup Software Hardware Speedup
1.5 1529ms 0.5703ms 268.10 196.09ms 0.5815ms 337.21
2.0 153.09ms 0.5683ms 269.38 199.0ms 0.5810ms 342.51

2.5 149.09ms 0.5745ms 259.51 190.73ms 0.5865ms 325.20
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5. Concluding Remarks

The proposed FCM-S architecture has been found to be efefcti image segmentation. To lower
the segmentation error rate, in the proposed architedheespatial information is used during the FCM
training process. The architecture can also be designedifferent values of degree of fuzziness to
further improve the segmentation results. In addition atehitecture employs high throughput pipeline
to enhance the computation speed. ®ké root circuits and inverse operation circuits in the &sediure
are designed by simple lookup tables and multipliers forelomg the hardware resource consumption.
Experimental results reveal that the proposed architedgiable to achieve segmentation error rate
down to 1.9% for noisy images. In addition, the SOPC architecattains speedup up to 342.51 over
its software counterpart. The proposed architecture therés an effective alternative for applications
requiring realtime image segmentation and analysis.
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