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Abstract: This paper presents a novel VLSI architecture for image segmentation. The

architecture is based on the fuzzy c-means algorithm with spatial constraint for reducing

the misclassification rate. In the architecture, the usual iterative operations for updating

the membership matrix and cluster centroid are merged into one single updating process to

evade the large storage requirement. In addition, an efficient pipelined circuit is used for the

updating process for accelerating the computational speed. Experimental results show that

the the proposed circuit is an effective alternative for real-time image segmentation with low

area cost and low misclassification rate.

Keywords: fuzzy c-means; image segmentation; fuzzy clustering; fuzzy hardware; FPGA;

reconfigurable computing; system on programmable chip

1. Introduction

Image segmentation plays an important role in computer vision and image analysis. The segmentation

results can be used to identify regions of interest and objects in the scene, which is very beneficial to the

subsequent image analysis or annotation. The fuzzy c-meansalgorithm (FCM) [1] is one of the most

used technique for image segmentation. The accuracy of FCM is due to the employment of fuzziness for

the clustering of each image pixel. This enables the fuzzy clustering methods to retain more information

from the original image than the crisp or hard segmentation.

Although the original intensity-based FCM algorithm functions well on segmenting most noise-free

images, it fails to segment images corrupted by noise, outliers and other imaging artifacts. The FCM with
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spatial constraint (FCM-S) algorithms [2–4] have been proposed to solve this problem by incorporating

spatial information into original FCM objective function.However, as compared with the original FCM

algorithm, the FCM-S algorithms have higher computationalcomplexities for membership coefficients

computation and centroid updating. In addition, similar tothe original FCM algorithm, the size of

membership matrix grows as the product of data set size and number of classes in the FCM-S. As a

result, the corresponding memory requirement may prevent the algorithm from being applied to images

with high dimension.

To accelerate the computational speed and/or reduce the memory requirement of the original FCM,

a number of algorithms [5–8] have been proposed. These fast algorithms can be extended for the

implementation of FCM-S. However, most of these algorithmsare implemented by software, and only

moderate acceleration can be achieved. In [9–11], hardware implementations of FCM are proposed.

Nevertheless, the design in [9] is based on analog circuits. The clustering results therefore are difficult to

be directly used for digital applications. Although the architecture shown in [10] adopts digital circuits,

the architecture aims for applications with only two classes. In addition, it may be difficult to extend the

architecture for the hardware implementation of FCM-S. Thearchitecture presented in [11] operates with

only a fixed degree of fuzzinessm = 2 for the original FCM. The flexibility for selecting other degrees

of fuzziness may be desired to further improve the FCM performance. In addition, similar to [10], the

architecture presented in [11] cannot be directly used for the hardware implementation ofFCM-S.

The objective of this paper is to present an effective digital FCM-S architecture for image

segmentation. The architecture relaxes the restriction onthe degree of fuzziness. The relaxation

requires the employment ofn-th root and division operations for membership coefficients and centroid

computation. A pipeline implementation for the FCM-S therefore may be difficult. To solve the

problem, in the proposed architecture, then-th root operators and dividers are based on simple table

lookup, multiplication and shift operations. Efficient pipeline circuits can then be adopted to enhance

the throughput for fuzzy clustering.

To reduce large memory size for storing membership matrix, the proposed architecture combines the

usual iterative updating processes of membership matrix and cluster centroid into a single updating

process. In the architecture, the updating process is separated into three steps: pre-computation,

membership coefficients updating, and centroid updating. The pre-computing step is used to compute

and store information common to the updating of different membership coefficients. This step is

beneficial for reducing the computational complexity for the updating of membership coefficients.

The membership updating step computes new membership coefficients based on a fixed set of

centroids and the results of the pre-computation step. All the membership coefficients associated with a

data point will be computed in parallel in this step. The computation time of the FCM-S therefore will

be effectively expedited.

The centroid updating step computes the centroid of clusters using the current results obtained

from the membership updating step. The weighted sum of data points and the sum of membership

coefficients are updated incrementally here for the centroid computation. This incremental updating

scheme eliminates the requirement for storing the entire membership coefficients.

The proposed architecture has been implemented on field programmable gate array (FPGA)

devices [12] so that it can operate in conjunction with a softcore CPU [13]. Using the reconfigurable
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hardware, we are then able to construct a system on programmable chip (SOPC) system for image

segmentation. The proposed architecture attain lower classification error rate in the presence of noise.

In addition, compared with its software counterpart running on the 3.0 GHz Pentium D, our system

has significantly lower computational time. All these factsdemonstrates the effectiveness of the

proposed architecture.

2. Preliminaries

We first give a brief review of the FCM algorithm. LetX = {x1, ..., xt} be a data set to be clustered

by the FCM algorithm intoc classes, wheret is the number of data points in the design set. Each

classi, 1 ≤ i ≤ c, is characterized by its centroidvi. The goal of FCM is to minimize the following

cost function:

J =
c∑

i=1

t∑

k=1

um
i,k||xk − vi||2 (1)

whereui,k is the membership ofxk in classi, andm > 1 indicates the degree of fuzziness. The cost

functionJ is minimized by a two-step iteration in the FCM. In the first step, the centroidsv1, ..., vc, are

fixed, and the optimal membership matrix{ui,k, i = 1, ..., c, k = 1, ..., t} is computed by

ui,k = (
c∑

j=1

(||xk − vi||/||xk − vj ||)2/(m−1))−1 (2)

After the first step, the membership matrix is then fixed, and the new centroid of each classi is

obtained by

vi = (
t∑

k=1

um
i,kxk)/(

t∑

k=1

um
i,k) (3)

A variant of FCM for image segmentation is FCM-S, whose objective function is [2]

J =
c∑

i=1

t∑

k=1

um
i,k||xk − vi||2 +

α

Card(Γ)

c∑

i=1

t∑

k=1

um
i,k

∑

j∈Γ

||xj − vi||2 (4)

whereΓ is the set of neighbors associated withxk, and theCard(Γ) is the cardinality of the setΓ. The

parameterα determines the degree of penalty. The necessary conditionslocally minimizingJ are then

given by

ui,k =
(||xk − vi||2 + α

Card(Γ)

∑
j∈Γ ||xj − vi||2)−1/(m−1)

∑c
n=1(||xk − vn||2 + α

Card(Γ)

∑
j∈Γ ||xj − vn||2)−1/(m−1)

(5)

vi =

∑t
k=1 u

m
i,k(xk +

α
Card(Γ)

∑
j∈Γ xj)

(1 + α)
∑t

k=1 u
m
i,k

(6)

The disadvantages of Equations (5) and (6) are the high computational complexities for

computingui,j andvi. To accelerate the computation, observe from [3] that by simple manipulation,
1

Card(Γ)

∑
j∈Γ ||xj − vi||2 can be equivalently written as

1

Card(Γ)

∑

j∈Γ

||xj − vi||2 = (
1

Card(Γ)

∑

j∈Γ

||xj − x̄k||2) + ||x̄k − vi||2 (7)
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where

x̄k =
1

Card(Γ)

∑

j∈Γ

xj (8)

Note thatx̄k can be computed in advance, and the minimization ofJ in Equation (4) is equivalent to the

minimization of the following cost function.

J =
c∑

i=1

t∑

k=1

um
i,k||xk − vi||2 + α

c∑

i=1

t∑

k=1

um
i,k||x̄k − vi||2 (9)

Necessary conditions onui,j andvi for locally minimizingJ can be derived are follows.

ui,k =
(||xk − vi||2 + α||x̄k − vi||2)−1/(m−1)

∑c
j=1(||xk − vj||2 + α||x̄k − vj ||2)−1/(m−1)

(10)

vi =

∑t
k=1 u

m
i,k(xk + αx̄k)

(1 + α)
∑t

k=1 u
m
i,k

(11)

The FCM and FCM-S algorithms requires large number of floating point operations. Moreover,

from Equations (1), (3), (10) and (11), it follows that the membership matrix needs to be stored for

the computation of cost function and centroids. As the size of the membership matrix grows with the

product oft andc, the storage size required for the FCM may be impractically large when the data set

size and/or the number of classes become high.

3. The Proposed Architecture

The goal of the proposed architecture is to implement the FCM-S algorithm in hardware. The

architecture is based on a novel pipeline circuit to providehigh throughput for fuzzy clustering. It is

also able to eliminate the requirement for storing the largemembership matrix for the computation of

cost function and centroids.

As shown in Figure 1, the proposed FCM-S architecture can be decomposed into four units: the

pre-computation unit, the membership coefficients updating unit, centroid updating unit and cost

function computation unit. These four units will operate concurrently in pipeline fashion for the

clustering process.

Figure 1. The basic VLSI architecture for realizing the proposed FCM algorithm.

Pre-computation Unit

Membership coefficients updating unit

Centroid updating unit
Cost function

 computation unit

JCentroid of each cluster
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For sake of simplicity, the architecture of these four unitsfor the original FCM are presented first.

Their extensions to the FCM-S will then be discussed.

3.1. Pre-Computation Unit for Original FCM

The pre-computation unit is used for reducing the computational complexity of the membership

coefficients calculation. Observe thatui,k in Equation (2) can be rewritten as

ui,k = ||xk − vi||−2/(m−1)P−1
k (12)

where

Pk =
c∑

j=1

(1/||xk − vj ||2)1/(m−1) (13)

Given xk and centroidsv1, ..., vc, membership coefficientsu1,k, ..., uc,k have the samePk. Therefore,

the complexity for computing membership coefficients can bereduced by calculatingPk in the

pre-computation unit. Without loss of generality, the degree of fuzzinessm can be expressed as

m = a/b (14)

where botha andb are integers. Becausem should be larger than 1, it follows thata > b > 0. Let

r = b, n = a− b (15)

We then can rewrite Equation (13) as

Pk =
c∑

j=1

(||xk − vj ||)−2r/n (16)

Based on Equation (16), we see that then-th root operation is required for the implementation ofpk.

In the proposed architecture, a noveln-th root circuit is adopted so thatPk can be implemented in a

pipelined fashion. In the proposedn-th root circuit, the goal is to computen
√
Y , where

Y = 1 + 2−1y1 + 2−2y2 + ...+ 2−(2q−1)y2q−1.

That is,Y is a2q-bits real number such that1 < Y < 2. We separateY into two portionsYh andYl as

shown below

Yh = 1 + 2−1y1 + 2−2y2 + ... + 2−(q−1)yq−1 (17)

Yl = 2−(q+1)yq+1 + 2−(q+2)yq+2 + ... + 2−(2q−1)y2q−1 (18)

For the sake of simplicity, we first consider the computationof
√
Y . Observe that

√
Y =

Y

(Yh + Yl)1/2
=

Y/Y
1/2
h

(1 + Yl/Yh)1/2
=

Y

Y
1/2
h

(1− Yl

2Yh

+
3Y 2

l

8Y 2
h

...)

By retaining the first two terms of the Taylor series,
√
Y can be approximated by

√
Y ≈=

Y

Y
1/2
h

(1− Yl

2Yh

) =
Y (Yh − Yl/2)

Y
3/2
h
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From Equations (17) and (18), we conclude thatYh > 2qYl. Therefore, the maximum error of the

approximation is less than2−2q. Following the same procedure, it can also be found that

3
√
Y =

Y

(Yh + Yl)2/3
=

Y/Y
2/3
h

(1 + Yl/Yh)2/3
=

Y

Y
2/3
h

(1− 2Yl

3Yh
+ ...) ≈ Y (Yh − 2Yl/3)

Y
5/3
h

These results can be extended for anyn ≥ 2 as follows:

n

√
Y ≈ Y (Yh − (n− 1)Yl/n)

Y
(2n−1)/n
h

(19)

Then-th root circuit based on Equation (19) is shown in Figure 2, which consists of two tables, two

multipliers, and one adder. The tables store(n − 1)Yl/n andY (2n−1)/n
h for all the possible values ofYl

andYh. Although it is possible to construct a table directly forn

√
Y , the number of entries in the table

would be22q−1 becauseY contains2q bits. By contrast, bothYh andYl consist of onlyq bits. The

number of entries in each table shown in Figure 2 is only2q−1. Consequently, the proposed circuit is

able to perform fast and accurate computation while maintaining low area cost.

Figure 2. The architecture ofn-th root unit.

Observe from Equation (16) that the computation ofPk can be separated intoc terms, where thej-th

term involves the computation of(||xk − vj ||)−2r/n. The basic circuit for calculating(||xk − vj ||)−2r/n

is shown in Figure 3(a). In addition to then-th root circuit, it contains squared distance unit,r-th power

unit and inverse operation unit. Both the squared distance unit and ther-th power circuit are based

on multipliers. Similar to then-th root circuit, the inverse operation circuit is also based on tables,

multipliers and adders [14].

The basic circuit for calculating(||xk − vj||)−2r/n can be separated into a number of stages for

pipeline implementation. Figure 3(b) shows an example for 4-stage pipeline implementation. It can
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be observed from the figure that two training vectorsxk, xk−1, xk−2 andxk−3 are operated concurrently

in the pipeline, where the first, second, third and fourth stages are used for computing||xk − vj||2 and

(||xk−1 − vj||2)1/n, (||xk−2 − vj||2)r/n, and(||xk−3 − vj ||2)−r/n, respectively.

To computePk, the accumulation of the results of(||xk − vj ||)−2r/n for j = 1, ..., c, is required. This

can be accomplished by the employment of an accumulator at the fourth stage, as shown in Figure 3(b).

Consequently, we can cascade the circuit shown in Figure 3(b) for calculating each(||xk − vj ||)−2r/n,

j = 1, ..., c, to a4c-stage pipeline for computingPk. Figure 4 shows the architecture of the pipeline. The

(4i − 1)-th stage,(4i− 2)-th stage,(4i− 3)-th stage, and(4i− 4)-th stage of the pipeline are the first,

second, third and fourth stage of the circuit in Figure 3(b),respectively.

Figure 3. The circuit for evaluating(||xk − vj||)−2r/n. (a) Basic circuit; (b) 4-stage

pipeline architecture.
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Figure 4. Architecture of Pre-computation unit.

When xk enters the(4i − 1)-th stage, the accumulator at the4i-th stage receives the sum of

(||xk−4−v1||2)−r/n, ..., (||xk−4−vi−1||2)−r/n, from its precedent accumulator. It then adds the results of

(||xk−4 − vi||2)−r/n to the sum, and then propagates the results to the subsequentstages. As the

computation at the4c-th stage for data pointxk is completed, the output of the pre-computation unit isPk.

3.2. Membership Coefficients Updating Unit for Original FCM

The membership coefficients updating unit receives thePk value from the pre-computation unit, and

then computeum
i,k for i = 1, ..., c, concurrently. From Equations (12), (14) and (15), it follows that

um
i,k = ((||xk − vi||2)1/nP 1/r

k )−(n+r) (20)

The basic circuit for computingum
i,k is shown in Figure 5(a). Based on Equation (20), it follows that

the circuit contains squared distance unit,r-th root andn-th root circuits,(n + r)-th power circuit, and

inverse unit. From the figure, we observe that||xk − vi||2 is first computed. This is accomplished by the

squared distance unit. Following that, ther-th root circuit andn-th root circuit are used for computing

P
1/r
k and (||xk − vi||2)1/n, respectively. The(n + r)-th power circuit is then adopted for computing

((||xk − vi||2)1/nP 1/r
k )(n+r). Finally, the inverse unit is employed for evaluatingum

i,k. Similar to the

pre-computation unit, the basic circuit for computingum
i,k can also be implemented in a pipeline fashion.

An example of 5-stage pipeline implementation is shown in Figure 5(b).

Becauseum
i,k for i = 1, ..., c, can be computed in parallel, there arec identical modules in the

membership coefficients updating unit. The modulei in the unit is used for computingum
i,k. The

architecture of the modulei of the unit is shown in Figure 5(b). Therefore, in the membership coefficients

updating unit, theum
i,k for i = 1, ..., c, can be obtained in 5 clock cycles afterxk is presented at the input

of the unit.
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Figure 5. The circuit for evaluatingum
i,k. (a) The basic circuit; (b) 5-stage

pipeline architecture.
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3.3. Centroid Updating Unit for Original FCM

The centroid updating unit incrementally computes the centroid of each cluster. The major advantage

for the incremental computation is that it is not necessary to store the entire membership coefficients

matrix for the centroid computation. To elaborate this fact, we first define the incremental centroid for

thei-th cluster up to data pointxk as

vi(k) = (
k∑

n=1

um
i,nxn)/(

k∑

n=1

um
i,n) (21)

When k = t, vi(k) then is identical to the actual centroidvi given in Equation (3). Based on

Equation (21), it can be observed that the computation ofvi(k) is based on
∑k−1

n=1 u
m
i,nxn,

∑k−1
n=1 u

m
i,n, um

i,k

andxk. To computevi(k), as shown in Figure 6, two accumulators can be used for storing
∑k−1

n=1 u
m
i,nxn,
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and
∑k−1

n=1 u
m
i,n, respectively. Whenum

i,k andxk are received, both
∑k

n=1 u
m
i,nxn and

∑k
n=1 u

m
i,n can be

obtained by addingum
i,kxk andum

i,k to the two accumulators, respectively. Based on the output of these

two accumulators,vi(k) can then be computed by the divider. In the incremental computation scheme, it

is therefore not necessary to store membership coefficientsum
i,n and training vectorsxn, n = 1, ..., k− 1,

for the computation ofvi(k). The two accumulators already have the partial results
∑k−1

n=1 u
m
i,nxn, and

∑k−1
n=1 u

m
i,n for the computation. In addition, after addingum

i,kxk andum
i,k to the two accumulators, both

um
i,k andxk are no longer required in the circuit. Based on the updated outputs of the accumulators

∑k
n=1 u

m
i,nxn, and

∑k
n=1 u

m
i,n, and new incoming membership coefficients and training vectors, we are

able to computevi(l) for l > k. Thus, no membership coefficients matrix is needed in our design.

The centroid updating unit containsc identical modules. All modules operate concurrently. The goal

of each modulei is to computevi(k). Therefore, each modulei is implemented by the circuit shown in

Figure 6. Note that thevi(k) at the output is only the incremental centroid. Therefore,vi used by the

pre-computation unit and membership coefficients updatingunit will not be replaced byvi(k) until the

vi(t) is obtained.

Figure 6. The basic circuit for calculatingvi(k).
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3.4. Cost Function Computation Unit for Original FCM

As shown in Figure 1, the cost function computation unit operates in parallel with the centroid

updating unit. Similar to the centroid updating unit, the cost function unit incrementally computes the

cost functionJ . Define the incremental cost functionJ(k) up to data pointxk as

J(k) =
c∑

i=1

k∑

n=1

um
i,n||xn − vi||2 (22)

As shown in Figure 7, the circuit receivesum
i,k and ||xk − vi||2 i = 1, ..., c, from the membership

coefficients updating unit. The productsum
i,k||xk − vi||2, i = 1, ..., c are then accumulated for computing

J(k) in Equation (22).

Whenk = t, Jk then is identical to the actual cost functionJ given in Equation (1). Therefore,

the output of the circuit becomesJ as the cost function computations for all the training vectors

are completed.
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Figure 7. The architecture of cost function computation unit.
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3.5. FCM-S Architecture

Figure 8 shows the architecture of FCM-S, which consists of two units: the mean computation unit

and the fuzzy clustering unit. The goal of the mean computation unit is to evaluate the mean valuex̄k

defined in Equation (8). The main architecture of FCM-S is the fuzzy clustering unit, which computes

the membership coefficients and centroids of FCM-S. Therefore, our discussion in this subsection will

focus on the fuzzy clustering unit of the FCM-S. Using Equations (14) and (15), we can rewrite the

membership coefficients of FCM-S defined in Equation (10) as

um
i,k = ((||xk − vi||2 + α||x̄k − vi||2)1/nP 1/r

k )−(n+r) (23)

where

Pk =
c∑

j=1

(||xk − vj||2 + α||x̄k − vj ||2)−r/n (24)

Similar to the original FCM, it follows from Equation (24) that the computation ofPk can also be

separated intoc terms, where thej-th term involves the computation of(||xk−vj ||2+α||x̄k−vj ||2)−r/n.

Figure 9 shows the architecture for the computation of each(||xk − vj||2 + α||x̄k − vj||2)−r/n. From

Figure 9, we see that the architecture can also be implemented as a 4-stage pipeline, similar to that shown

in Figure 3(b) for computing(||xk − vj ||)−2r/n. Therefore, the pre-computation unit for FCM-S can be

realized as a4c stage pipeline shown in Figure 4.

Both pipelines in Figures 3(b) and 9 have similar architectures. The only difference is that the first

stage of the pipeline in Figure 9 has higher area and computational complexities. There are two squared

distance calculation units and one adder at the first stage ofthe pipeline in Figure 9. By contrast, there

is only one squared distance unit at the first stage of the pipeline in Figure 3(b). In fact, Observe from
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Equations (16) and (24) that thePk for FCM-S can be viewed as the generalized version ofPk for original

FCM by replacing the squared distance||xk − vj||2 in Equation (16) with ||xk − vj||2 + α||x̄k − vj ||2.
Hence, the pipeline in Figure 9 is also an extension of that inFigure 3(b) by replacing the simple squared

distance calculation||xk − vj ||2 at the first stage with||xk − vj||2 + α||x̄k − vj ||2.

Figure 8. The FCM-S architecture.

Figure 9. The circuit for evaluating(||xk − vj||2 + α||x̄k − vj ||2)−r/n.
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Figures 10–12 depict the architecture for membership coefficients updating, centroids updating and

cost function computation for FCM-S based on Equations (9), (11) and (23), respectively. Similar to

the original FCM algorithm, the proposed FCM-S architecture computes the centroids and cost function
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incrementally. In the FCM-S, the incremental centroid for the i-th cluster up to data pointxk is defined

as

vi(k) = (
k∑

n=1

um
i,n(xn + αx̄n))/((1 + α)(

k∑

n=1

um
i,n)). (25)

In addition, the incremental cost functionJ(k) up to data pointxk is defined as

J(k) =
c∑

i=1

k∑

n=1

um
i,n(||xn − vi||2 + α||x̄k − vj||2). (26)

As shown in Figures 11 and 12, the goals of the centroids updating unit and the cost function computation

unit are to computevi(k) andJ(k), respectively. Ask = t, thevk(i) andJ(k) in Equations (25) and (6)

will becomesv(i) in Equation (11) andJ in Equation (9), respectively.

Figure 10. The circuit for evaluatingum
i,k for FCM-S.
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Figure 11. The circuit for calculatingvi(k) for FCM-S.
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Figure 12. The circuit for calculating cost functionJ(k) for FCM-S.
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We can view the membership coefficients, centroids and cost function for FCM-S as the extension

of those for original FCM by replacing||xk − vj||2 with ||xk − vj||2 + α||x̄k − vj ||2. Therefore, the

membership coefficients updating unit, centroids updatingunit and cost function computation unit for

FCM-S also have similar architectures to those of their counterparts in original FCM. The circuits in

FCM-S require only additional squared distance unit and adder for computing||xk−vj ||2+α||x̄k−vj ||2.

3.6. The SOPC System Based on the Proposed Architecture

The proposed architecture is used as a custom user logic in a SOPC system consisting of softcore

NIOS CPU, DMA controller and SDRAM, as depicted in Figure 13.The set of training vectors is stored

in the SDRAM. The training vectors are then delivered to the proposed circuit by the DMA controller.

The softcore NIOS CPU is running a simple software for FCM. Itdoes not participate in the partitioning

and centroid computation processes. The software only activates the DMA controller for the delivery

of training vectors. The CPU then receives the overall distortion of clustering from the proposed circuit

after the completion of DMA operation. The same DMA operation for delivering the training data to the

proposed circuit will be repeated until the cost functionJ converges. The CPU then collects the centroid

of each cluster from the proposed circuit as the clustering results.
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Figure 13. The SOPC system for FCM-based image segmentation.

4. Experimental Results

This section presents some numerical results of the proposed FCM-S architecture for image

segmentation. The design platform of our system is Altera Quartus II with SOPC Builder and NIOS

II IDE. The target FPGA device for the hardware implementation is Altera Stratix II EP2S60 [15]. All

the images considered in the experiments in this section areof size320× 320. Each pixel of the images

is corrupted by i.i.d. noise with uniform distribution in the interval[−b, b].

For sake of brevity, the images considered in this section are gray-level images. Each data point

xk represents a pixel with gray level values in the range between 0 and 255. For color images, each

pixel xk becomes a vector consisting of three color components: red,green and blue. In the proposed

architecture, each data pointxk can be a scalar or a vector. Therefore, the proposed architecture can be

directly applied to color image segmentation by implementingxk as a 3-dimension vector.

The performance of the image segmentation is measured by segmentation error rate, which is equal to

the number of misclassified pixels divided by the total number of pixels. Table 1 shows the segmentation

error rate of the original FCM algorithm and the FCM-S algorithm for variousb values for the images

“Apple” and “Strawberry”. The number of classes isc = 2. The degree of membership is given by

m = 1.5.

Table 1. The segmentation error rate of the original FCM algorithm and the FCM-S

algorithm for variousb values for the images “Apple” and “Strawberry”.

b values 10 20 40 60 80

FCM for image “Apple” 0.020 0.022 0.028 0.041 0.074

FCM-S for image “Apple” 0.019 0.020 0.021 0.024 0.029

FCM for image “Strawberry” 0.024 0.025 0.033 0.050 0.066

FCM-S for image “Strawberry” 0.020 0.021 0.022 0.025 0.029
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From the Table 1, we see that FCM-S has lower segmentation error rate as compared with the original

FCM. In addition, their gap in the error rate increases as thenoise becomes larger. The FCM-S is

able to attain lower segmentation error rate because the spatial information is used during the training

process. However, in the original FCM, the spatial information is not used. Figures 14 and 15 show

the segmentation results of the images “Apple” and “Strawberry” for various b values. Table 2 and

Figure 16 show the segmentation error rate and segmentationresults of FCM-S for the image “Pear

& Cup”, respectively. The image contains three classes (i.e., c = 3). We can see from Table 2 and

Figure 16 that the FCM-S performs well for the noisy images with more than two classes.

Figure 14. Segmentation results of the image “Apple”. (a) b = 80; (b) b = 60; (c) b = 40;

(d) b = 20; (e) b = 10. The first column represents corrupted images, the second

column shows results using FCM algorithm and the third column reveals the segmentation

performance of FCM-S algorithm.

(a)

(b)

(c)

(d)

(e)
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Figure 15. Segmentation results of the image “Strawberry”.(a) b = 80; (b) b = 60;

(c) b = 40; (d) b = 20; (e)b = 10. The first column represents corrupted images, the second

column shows results using FCM algorithm and the third column reveals the segmentation

performance of FCM-S algorithm.

(a)

(b)

(c)

(d)

(e)

Table 2. The segmentation error rate of the FCM-S algorithm for various b values for the

images “Pear & Cup”.

b values 10 20 40 60 80

FCM-S for image “Pear & Cup” 0.023 0.024 0.033 0.039 0.054
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Figure 16. Segmentation results of the image “Pear & Cup”.(a) b = 80; (b) b = 60;

(c) b = 40; (d) b = 20; (e) b = 10. The first column represents corrupted images, and the

second column shows results using the FCM-S algorithm.

(a)

(b)

(c)

(d)

(e)

Table 3 compares the segmentation error rate of the FCM-S forthe images “Apple” and “Strawberry”

for various degree of fuzzinessm. It can be observed from the table that the FCM-S withm = 1.5 has

lowest segmentation error rate. In fact, the segmentation error rate of FCM-S withm = 1.5 is lower than
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that of FCM-S withm = 2.0 for all theb values considered in this experiment. Note that whenm = 2.0,

the FCM circuit design can be simplified. In this case,n = r = 1. Therefore, non-th root andr-th

power circuits are required. Table 4 shows the area cost of FCM-S for variousm values withc = 2. It

is not surprising to see that FCM-S withm = 2.0 consumes the least hardware resources. In fact, when

m = 2, the number of adaptive look-up tables (ALUTs) used by the architecture is only 9% of that of the

target FPGA device. Consequently, when hardware resourcesare the important concern, we can select

the degree of fuzziness asm = 2. On the other hand, when more accurate segmentation is desired, we

can adopt the proposed architecture with otherm values at the expense of possible increase in hardware

resources consumption.

Table 3. The segmentation error rate of the FCM-S algorithm for variousm values for the

images “Apple” and “Strawberry”.

b values 10 20 40 60 80

m = 1.5 for image “Apple” 0.019 0.020 0.021 0.024 0.029

m = 2.0 for image “Apple” 0.020 0.020 0.022 0.025 0.031

m = 2.5 for image “Apple” 0.020 0.021 0.023 0.027 0.031

m = 1.5 for image “Strawberry” 0.020 0.021 0.022 0.025 0.029

m = 2.0 for image “Strawberry” 0.021 0.022 0.023 0.026 0.030

m = 2.5 for image “Strawberry” 0.022 0.022 0.023 0.027 0.031

Table 4. Hardware resource consumption of the FCM-S architecture with differentm values.

m values ALUTs Embedded memory bits DSP blocks

1.5 8246 (17%) 63684 (3%) 72 (25%)

1.75 9256 (19%) 112048 (4%) 100 (35%)

2 4152 (9%) 38944 (2%) 20 (7%)

2.25 8500 (18%) 112048 (4%) 100 (35%)

2.5 9106 (19%) 112048 (4%) 80 (28%)

Table 5 compares the hardware resource consumption of the original FCM with FCM-S withc = 2.

Given the samem value, we can see from Table 5 that the FCM-S only has slightlyhigher area

costs as compared with FCM. The FCM-S architecture has higher hardware costs because it needs

more squared distance computation circuits, multipliers and/or adders at the pre-computation unit,

membership coefficients updating unit and centroid computation unit.

Table 5. Comparisons of hardware resource consumption of the original FCM and FCM-S

architectures for differentm values.

m values ALUT Embedded memory bits DSP blocks
FCM FCM-S FCM FCM-S FCM FCM-S

1.5 5270 8246 63684 63684 56 72

2.0 3468 4152 38944 38944 20 20

2.5 8371 9106 112048 112048 80 80
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The proposed architecture is adopted as an hardware accelerator of a NIOS II softcore processor.

Table 6 shows the area costs of the entire SOPC system based onthe proposed FCM-S architectures with

differentm values. Because the NIOS II processor also consumes hardware resources, the consumptions

of ALUT, embedded memory bits and DSP blocks of the entire SOPC are higher than those of FCM-S

architecture, as shown in Tables 4 and 6. Nevertheless, the number of ALUTs, embedded memory bits

and DSP blocks used by the SOPC system are lower than 40% of those of the target FPGA device.

Table 6. Hardware resource consumption of the entire SPOC system based on the FCM-S

architecture with differentm values.

m values ALUTs Embedded memory bits DSP blocks

1.5 17960 (37%) 955936 (38%) 80 (28%)

1.75 19415 (40%) 1004336 (39%) 108 (38%)

2 14214 (29%) 931488 (37%) 28 (10%)

2.25 19355 (40%) 1004336 (39%) 108 (38%)

2.5 19234 (40%) 1004336 (39%) 88 (31%)

The computation speed of the FCM and FCM-S architectures andtheir software counterparts are

shown in Table 7 for variousm values. The softcore processor of the SOPC systems are operating

at 50 MHz. The software implementation of FCM and FCM-S algorithms are based on 3.0 GHz

Pentium D processor with 2.0 Gbyte DDR2. Because the FCM-S algorithm has higher computation

complexities, the algorithm has longer computation time ascompared with the original FCM. The

increase in computation time may be large for software implementation. For example, whenm = 1.5, the

computation time of FCM and FCM-S algorithms implemented bysoftware are 152.9 ms and 196.09 ms,

respectively. The employment of FCM-S in software therefore results in 28.28% increase in computation

time. By contrast, the computation time of FCM and FCM-S algorithms implemented by hardware are

0.5703 ms and 0.5815 ms, respectively. Hence, only 1.96% increase in computation time is observed

when FCM architecture is replaced by FCM-S architecture. Itcan also be observed from Table 6 that

the FCM and FCM-S architectures have high speedup over its software counterparts. The proposed

architectures have high speedup because the architecturesare based on high throughput pipelines. In

particular, whenm = 2.0, the speedup is 342.51. The proposed architecture therefore is well-suited for

realtime segmentation of noisy images with low error rate and low hardware resource consumption.

Table 7. Comparisons of computation speed of the original FCM and FCM-S architectures

for differentm values.

m values FCM FCM-S
Software Hardware Speedup Software Hardware Speedup

1.5 152.9 ms 0.5703 ms 268.10 196.09 ms 0.5815 ms 337.21

2.0 153.09 ms 0.5683 ms 269.38 199.0 ms 0.5810 ms 342.51

2.5 149.09 ms 0.5745 ms 259.51 190.73 ms 0.5865 ms 325.20
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5. Concluding Remarks

The proposed FCM-S architecture has been found to be effective for image segmentation. To lower

the segmentation error rate, in the proposed architecture,the spatial information is used during the FCM

training process. The architecture can also be designed fordifferent values of degree of fuzziness to

further improve the segmentation results. In addition, thearchitecture employs high throughput pipeline

to enhance the computation speed. Then-th root circuits and inverse operation circuits in the architecture

are designed by simple lookup tables and multipliers for lowering the hardware resource consumption.

Experimental results reveal that the proposed architecture is able to achieve segmentation error rate

down to 1.9% for noisy images. In addition, the SOPC architecture attains speedup up to 342.51 over

its software counterpart. The proposed architecture therefore is an effective alternative for applications

requiring realtime image segmentation and analysis.
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