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Abstract: This paper investigates the use of wireless sensor networks for multiple event 

source localization using binary information from the sensor nodes. The events could 

continually emit signals whose strength is attenuated inversely proportional to the distance 

from the source. In this context, faults occur due to various reasons and are manifested 

when a node reports a wrong decision. In order to reduce the impact of node faults on the 

accuracy of multiple event localization, we introduce a trust index model to evaluate the 

fidelity of information which the nodes report and use in the event detection process, and 

propose the Trust Index based Subtract on Negative Add on Positive (TISNAP) 

localization algorithm, which reduces the impact of faulty nodes on the event localization 

by decreasing their trust index, to improve the accuracy of event localization and 

performance of fault tolerance for multiple event source localization. The algorithm 

includes three phases: first, the sink identifies the cluster nodes to determine the number of 

events occurred in the entire region by analyzing the binary data reported by all nodes; 

then, it constructs the likelihood matrix related to the cluster nodes and estimates the 

location of all events according to the alarmed status and trust index of the nodes around 

the cluster nodes. Finally, the sink updates the trust index of all nodes according to the 

fidelity of their information in the previous reporting cycle. The algorithm improves the 

accuracy of localization and performance of fault tolerance in multiple event source 
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localization. The experiment results show that when the probability of node fault is close  

to 50%, the algorithm can still accurately determine the number of the events and have 

better accuracy of localization compared with other algorithms. 

Keywords: trust index; binary data; multiple event localization; fault tolerance; maximum 

likelihood estimation; wireless sensor networks 

 

1. Introduction 

Wireless Sensor Networks (WSNs) consist of many sensor nodes capable of computation and 

communication which are distributed in a specified area. The sensor nodes can collaborate to deal with 

many kinds of complicated tasks including monitoring ecological environments, protecting 

infrastructures, tracking targets and so on [1-3]. WSNs which are deployed in a real environment may 

easily fail due to many reasons, such as software malfunctions, hardware failures, radio interference, 

battery depletion, malicious damage and so on [4-6]. As mentioned in [5], about 40% to 60% of data 

measured by sensor nodes can be faulty in a real environment deployment. Therefore,  

fault-tolerance is a particular important issue in WSN applications. 

WSNs are often used to detect the occurrence of an event in a region and determine its location, 

such as monitoring of pollution sources, detection of fire occurrence and so on. In these applications, 

all events are continually emitting signals whose strength is attenuated inversely proportional to the 

distance from the source. The sensor nodes report the strength of the signal to the sink regularly, and 

then the sink estimates the location of the source according to the information of the alarmed nodes 

reporting. The event localization algorithms can be divided into centralized approaches and distributed 

approaches. In a centralized approach, all sensor measurements are sent to the sink, and the location 

estimation is performed at the sink [7-9]. In a distributed approach, nodes exchange sensors 

observation information with the surrounding neighbors and determine who is the cluster node [10-12]. 

The cluster nodes run a localization algorithm and determine the location of the sources. Centralized 

approaches can collect more information and accurately determine the location of the events, but they 

always consume more energy. Distributed approaches, on the other hand, have less computation 

overhead, but are not accurate enough for determining the location of the events. This paper mainly 

focuses on the fault-tolerance issue for multiple event detection and localization in wireless sensor 

networks, and devises a simple, fault-tolerant multiple event localization algorithm with higher 

estimation accuracy. 

Maximum likelihood estimation is an important approach used for event localization [13-16]. 

Michaelides [17] proposed a distributed multiple event source localization algorithm based on 

maximum likelihood estimation. In the algorithm, each node exchanges information with the 

surrounding neighbors and some nodes are elected as cluster nodes. Then, the cluster nodes construct 

the likelihood matrix by analyzing the information of its neighbor nodes. Finally, the cluster nodes 

determine the location of all the events through maximum likelihood estimation. However, when 

constructing the likelihood matrix, faulty nodes may have a great effect on the value of the maximum 

likelihood matrix elements and result in a great deviation of positioning. 
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In this paper, we introduce the trust index for each sensor node, which used to evaluate the trust 

degree of a node according to its previous alarm reporting and determine the weight of the node‟s 

reporting data in the event localization process, to reduce the impact of faulty nodes in event 

localization. We propose the Trust Index based Subtract on Negative Add on Positive (TISNAP) 

localization algorithm, which reduces the impact of faulty nodes on the event localization by 

decreasing their trust index, to improve the accuracy of event localization and performance of fault 

tolerance for multiple event source localization. The algorithm has three main phases: determine the 

number of events, localization and updating of the trust index: (1) the sink identifies the cluster nodes 

to determine the number of events occurred in the entire region by analyzing the binary data reported 

by all nodes. First, the alarmed nodes send binary data to the sink and other nodes remain silent. Next, 

the sink computes all the likelihood functions Fn according to the collected data. Each alarmed node n 

has a corresponding likelihood function Fn. If Fn > 0, we think that there is an event around the 

alarmed node n. Then the alarmed node whose corresponding likelihood function value is the maximal 

value in a certain area is selected as a cluster node; (2) the sink constructs the likelihood matrix related 

to the cluster nodes and estimates the location of all events according to the alarmed status and trust 

index of the nodes around the cluster nodes; (3) the sink updates the trust index of all nodes according 

to the behavior in the previous reporting. According to the location of all nodes and their reported data, 

the sink judges whether or not the data reported by them is true. If it is judged true, the sink increases 

the trust index of the node. Otherwise, the sink reduces its trust index. The trust index of nodes ranges 

from 0 to 1. By introducing the trust index model, the algorithm enhances the influence of normal 

nodes and reduces the influence of faulty nodes, and it has higher localization accuracy and better 

performance of fault tolerance. 

The paper is organized as follows: first, in Section 2, we present the related work in event 

localization in sensor networks. Next, in Section 3, we introduce the model we have adopted and the 

underlying assumptions. In Section 4, we provide the details of the TISNAP algorithm for multiple 

event source localization. In Section 5, we theoretically compare the TISNAP algorithm with the 

DSNAP algorithm. Section 6 presents the simulation results and comparison of the performance with 

other algorithm. Finally, in Section 7, we present the conclusions of our research. 

2. Related Works 

Event localization is an important research issue in WSNs [13,14]. The localization techniques can 

be classified into four main categories: (1) Angle of Arrival (AOA) [18]; (2) Time of Arrival  

(TOA) [19,20]; (3) Time Difference of Arrival (TDOA) [21,22]; (4) Energy-based [9,11,23,24]. The 

energy-based approach uses event signal strength of sensor measurements to estimate event  

location [13-17]. It does not need precise synchronization among the sensor nodes. Hence, it is more 

suitable for event localization in large scale wireless sensor networks. 

Ding proposed the Centroid Estimator (CE) algorithm [9]. It first gets the middle value of the 

sampling, filtering the incorrect data caused by occasional faults. Then it simply takes the centroid of 

the positions of all alarmed sensor nodes as the estimated event location. Let (xn, yn), n = 1, 2, …, P  

(p ≤ N) denote the position of all alarmed sensor nodes. Then, the event location estimated by CE is the 

centroid of these positions:  
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However, this algorithm is sensitive to the presence of false positives (sensor nodes not in the 

region of the source but alarmed). These faults can result in large errors, especially if the faulty node is 

far away from the event location. 

Niu [15] proposed an algorithm called Maximum Likelihood (ML) that uses only binary readings 

which are communicated to the base station to estimate the event position. The likelihood function is 

given by: 
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where In,t is the binary reading. Sn(θ) is the measured signal by sensor without any noise. ML is 

sensitive to false negatives (nodes detected the event but not alarmed). These faults can result in large 

errors, especially for the faulty nodes close to the event that do not become alarmed. 

Michealidis proposed Subtract on Negative Add on Positive (SNAP) [16] for event location only 

using binary data from the sensor nodes. The main idea is that the base station uses the binary 

observations to construct a matrix by adding ±1. The size of the matrix is fixed and the sensor is at the 

center of the area. Specifically speaking, the alarmed sensors add 1 to the region of their coverage, 

while the silent sensors subtract 1. By summing the contribution of each sensor, the maximum of the 

matrix points to the estimated event location. The Add on Positive (AP) algorithm is a variant of the 

SNAP algorithm. It only uses positive contributions from the alarmed sensors to construct the 

likelihood matrix. It may be used to obtain a low-complexity implementation and can be robust to false 

negatives, but it has low accuracy. 

Sheng [8] presented a maximum likelihood (ML) acoustic source localization method which use the 

intensity attenuation function of acoustic signal. Analog measurements from sensors are required to 

estimate the source location. This incurs high communication and computation overhead. Therefore, it 

is desirable that only binary or multi-bit data are transmitted from local sensors to the processing node 

in the context of resource limited WSNs. 

In the DSNAP [17] algorithm and SNAP [16] algorithm, binary data from local sensors is 

transmitted to the sink to estimate the location of events. According to the alarmed status, each node 

sends a data packet including binary data 0 or 1 to the sink. Using the binary data, the sink constructs 

the likelihood matrix and estimates all the event location. Since binary data is transmitted from local 

sensors to the processing node, the method needs lower communication energy and less calculation. 

However, node faults, e.g., false negative, false positive, have a great impact on accuracy of  

event localization.  

Trust and reputation models have been used in the realm of network security [25-28] to detect 

misbehaving nodes and exclude them from the network. The concept of trust is interpreted as a relation 

among entities that participate in collaborative protocol in the sensor network system. Trust relations 

are based on evidence created by the previous interactions of entities within a protocol. Srinivasan [25] 

proposed a reputation based scheme for excluding malicious beacon node that provide false location 

information. Probst [27] presents a distributed approach that establishes reputation-based trust among 

sensor nodes in order to identify malfunctioning and malicious sensor nodes and minimize their impact 
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on applications. In [28], trust is used to indicate the fidelity of event nodes reported in the context of 

sensor data gathering. It proposes a fault tolerant method to diagnose and mask arbitrary node failures 

in an event-driven wireless sensor network. 

In this paper, we use the trust index model to evaluate the fidelity of information that sensors nodes 

have reported in the context of multiple event source localization. As the sensor network system runs 

over a period of time, a number of trust index states are built up as the indicator of the fidelity of data 

nodes reporting. Then, we reduce the weight of the faulty nodes according to the nodes‟ trust index in 

the process of multiple event location estimation to achieve better fault tolerance performance. 

3. Model and Assumptions 

3.1. Assumptions and Definitions 

For the sensor network that estimates the position of multiple events, we make the following 

assumptions: 

(1) A set of sensor nodes, denoted as N, are uniformly spread in the rectangular area A. The nodes 

are static, and their positions are known, denoted as (xn, yn), n = 1, …, N. 

(2) A set of event sources, denoted as K, are randomly distributed at the rectangular area A. we 

assume that the distance between any two event sources is far enough away, and they are not 

interfering with each other. 

(3) The event sources emit continuous signals that propagate evenly in all directions. 

We assume that the signal strength of the event source k (k   K) is ck. In addition, the signal strength 

that the sensor node n inspected, denoted as sn,k, is inversely proportional to the power α (α   R
+
) of 

distance rn,k from the sensor node n to the event source k, in which α depends on the environment 

factor. So we have sn,k at t-th sampling as follows:  
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where rn,k(t) is the distance of sensor node n to source k at time t, given by: 
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As a result, the t-th sampling measurement of a sensor n located at (xn, yn) is given by the sum of the 

signal strength from all sources at the sensor location: 
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, n = 1, 2, …, N，t = 1, 2, …, M (5)  

where Vmax reflects the maximum extent of sensor measurement, γ is the factor of the sensor gaining 

ratio. We assume that the signal noise ωn(t) is satisfied with the model of white Gaussian noise, 

            
  , n = 1, 2, …, N,t = 1, 2, …, M. Model Equation (5) is commonly used in wireless 

sensor networks as a signal propagation model [29,30]. 

We assume that the sensor nodes have been preset with a common threshold T of signal strength. 

The definitions of alarm sensor and non-alarm sensor are given as follows: 
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 Alarmed Sensor: a sensor whose signal measurement value satisfies Zn,t ≥ T. 

 Non-alarmed Sensor: a sensor whose signal measurement value satisfies Zn,t < T. 

Next, we explain some definitions [16,17] which are used in this paper: 

Definition 1: ROI (Region of Influence) is the area around an event source; when a sensor node is 

located inside this area, it will alarm with high probability. 

As referred in Equation (3), the ROI of a single source is a circle centered at the source location 

with radius         
 (demonstrated in Figure 1). For multiple sources, the shape and size of the 

ROI depends on the distances between the sources. For any two sources, the ROI is connected if and 

only if their distance d ≤ L [17], where: 
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If the two event sources are identical, i.e., c1 = c2 = c, then:  

IR
T

c
L  2222   (7)  

where         
 is the radius of the ROI of a single event source. 

We assume that the distance between any two events is greater than L. That is, their ROI are  

not connected. 

Figure 1. The scenario of various regions used in this paper. 

RONn

Rs

ROCn

Rc

ROI

RI

Event Node n

Alarmed Node

Non-Alarmed Node

 

 

From the sensor node perspective, we define two more regions for the single source case. 

Definition 2: ROC (Region of Coverage) of sensor node n is the area around a sensor node, in 

which if a event source is located inside, then it will be detected with high probability (as illustrated in 

Figure 1). 
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For a single event source, it can be obtained by the expression of Equation (3) that, for a sensor 

node n, ROCn is an circle area centered at the alarmed sensor node n, and is equal to the area of ROI, 

           
 

. For multiple event sources, the size of ROC is determined by the signal strength of 

all event inspected by the sensor node. Because we assume that the distance between two event sources 

is large enough, the strength of distant event source is negligible compared with nearby events. 

Definition 3: RON (Region Of Neighbor) of sensor node is the area around a sensor node, in which 

the reporting data of all nodes located inside are collected for construction of likelihood function to 

achieve the estimation of event source location (as shown in Figure 1). 

 Since energy efficiency is the major issue in sensor networks and communication is the most 

expensive operation in terms of energy. We assume RONn = 2ROCn, which is determined in tradeoff 

between estimation accuracy and complexity. 

3.2. Fault Model 

We consider two types of node alarm fault in the paper: 

 False positive: some sensor nodes located outside the ROI of the event source are alarmed. 

 False negative: some sensor nodes located inside the ROI of the event source are not alarmed. 

This fault model is reflecting two fault types in event localization using binary data which is 

proposed in SNAP [16]. Due to noise, energy depletion, harsh environmental conditions, sensor 

malfunction, and so on, sensor nodes may often provide erroneous or unpredictable sensor data which 

leads to false positive alarms or false negative alarms in event localization using binary data. We 

introduce this fault model in the event localization of multiple sources in this paper. 

3.3. Trust Index Model 

We are introducing a trust index to evaluate the correctness of the observation value of the sensor 

nodes in the process of event localization, and distinguish the correct nodes, which have high 

probability of reporting correct data, from faulty nodes. So we treat the data from the correct nodes 

with higher weight and the data from faulty nodes with lower weight in the maximum likelihood 

construction for event location estimation, to reduce the influence of faulty nodes on the accuracy of 

event localization in sensor network. 

Each node in the field is assigned a trust index (referred to as TI, and TI   [0, 1]). The trust index of 

a node is a measurement of the fidelity of event report of that node. The higher the trust index of a 

node is, the more reliable the node is deemed by the sink. At the initialization of the sensor network 

system, each node‟s trust index is set to 1. The TI of node k in the t-th sampling measurement is 

defined as: 

teTI tk


,  (8)  

where vt is a step variable which is used to control the modification of the trust index value of node k in 

the t-th sampling measurement: TIk,t; λ is a constant that decides how fast the TIk,t will be changed 

when vt increases or decreases. 
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Figure 2 depicts the variation of TI as the constant λ changes. The bigger constant λ is, the more 

dramatically TI decreases as the step variable υ increases. For a faulty node, it‟s better to decrease its 

TI quickly so that it will have less influence on location estimation. However, some new modification 

errors may be introduced in the process of trust index modification, for example, the trust index of a 

correct node may be decreased due to wrong alarm. In order to reduce the location errors caused by 

modification errors, λ should be set to a proper value. Therefore, we should make a tradeoff between 

these two aspects. In the paper an empiric value λ = 2 is determined. 

Figure 2. The family curves of TI. 

 

 

As mentioned above, each node‟s TI is initialized to 1, that is, υ is initialized to 0. Similar to the 

above analysis, the changing step on υ has to be a proper value. In the paper, we decide a changing step 

equal to 0.1. In other words, each time a node makes a report deemed faulty by the sink, its TI value is 

increased by a step 0.1. On the contrary, each time a node makes a report deemed to be correct by the 

sink, its TI value is decreased by a step 0.1 if υ is larger than 0. The rules for modification of TI are 

given as follows: 

1

0                  

0.1        0.1

0.1         

t t t

t

the node is deemed as normal

the node is deemed as normal and

v the node is deemd as faulty

  




  
 

 (9)  

4. TISNAP Algorithm 

In this section, we introduce the Trust Index based Subtract on Negative Add on Positive (TISNAP) 

localization algorithm , which reduces the impact of faulty nodes on the event localization by 

decreasing their trust index, to improve the accuracy of event localization and performance of fault 

tolerance for multiple event sources localization. It has three phases: 
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4.1. Identifying the Number of Events 

In multiple events localization, the first step is to identify the number of events in an area, and this 

is the precondition for estimating the location of the event sources. During the phase, the alarmed 

nodes send „1‟ (alarm packet) to the sink, other nodes remain silent. In the sampling period, if the sink 

did not receive the alarm packet from a node, the sink regards it as a non-alarmed node. After the sink 

collected all alarm data in a sampling period, it computes the following likelihood function Fn for a 

sensor node n using information from the neighboring nodes that is located inside ROCn of node n: 





nROCm

mn bF  
(10)  

where:  

1 , node  is alarmed

1 , otherwise

m

m

m

TI m
b

TI

 
 

 
 (11)  

This process is equivalent to the majority voting rule. By introducing the trust index of nodes, the 

algorithm enhances the influence of normal nodes and reduces the influence of faulty nodes in the 

likelihood function. Then the sink selects the alarmed nodes, whose corresponding likelihood function 

values are the maximal value in their surrounding area respectively, as the cluster nodes. Generally, the 

number of cluster nodes is equal to the number of event sources which we can find in the whole area. 

The algorithm of selecting cluster nodes is shown in Algorithm 1: 

Algorithm 1. Finding the cluster nodes. 

Input: [Xn, Yn, Fn] for sensor nodes n = 1, 2, …, N which Fn > 0 

Output: [Xm, Ym] for sensor nodes m = 1, 2, …, M which M < N 

1: for all sensor nodes i = 1, 2, …, N 

2: for all sensor nodes j = 1, 2, …, K ∈ ROCi 

3: if Fj > Fi  

4: break; 

5: else 

6: count++; 

7: end for  

8: if count == K // Fi is larger than all Fj which j = 1, 2, …, K 

9: output: [Xi, Yi] // cluster nodes 

10: end for 

4.2. Event Localization 

This phase is mainly used to estimate the location of all event sources. We divide the phase into 

three steps: 

4.2.1. Grid Formation 

The area is divided into a grid with G × G cells and grid resolution l, e.g., Figure 3 shows a 30 × 30 

field with G = 15 and a grid resolution l = 2. Let C(i, j) for i, j = 1, …, G, denote the centers of these 
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cells in a matrix. The number of cells is a trade-off between estimation accuracy and complexity. Each 

sensor node is associated with a cell(i, j) based on its position (depending on the resolution, a cell may 

contain multiple sensors or no sensor at all). The position index of each node is denoted by (Xn, Yn),  

n = 1, …, N , where Xn, Yn   {1, 2, …, G}. 

Figure 3. Likelihood matrix L calculated by the sink. 

 

4.2.2. Construction of the Likelihood Matrix 

Since the events are highly likely to occur in the ROC of the cluster node, for a cluster node k, we 

define a matrix Lk. Using the information from all relevant sensor nodes inside the RONk of the cluster 

node k, the sink constructs a corresponding likelihood matrix Lk. 

The cluster node k is associated with gk, a sub-grid with Gk × Gk cells, centered around its location 

(Xk, Yk). The size of the sub-grid Gk depends on the size of the RONk and the grid resolution l: 

2
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(12)  

The sink defines a Gk × Gk likelihood matrix Lk where each element (i, j) of Lk corresponds to a cell 

(u, v) of gk. The relation is given by a mapping M: gk → Lk 
: 
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  (13)  

where u, v   {1, 2, …, G}. For every element of Lk, the sink adds the contribution of each sensor that 

has the corresponding cell in ROC of the cluster node k. The contributions depend on the sensor‟s 

state: “+” the trust index of the senor on alarmed and “−” the trust index of the sensor on non-alarmed. 

More specifically, the sink updates every element (i, j) of Lk using: 

( , ) ( , ), , {1,2,..., }
k

k m k

m RON

L i j b i j i j G


   
(14)  

where: 
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(15)  

and ROCm is the set of all grid cells that are covered by the ROC of sensor node m. The algorithm of 

constructing the likelihood function is shown in Algorithm 2:  

Algorithm 2. Likelihood Matrix Construction. 

Input: [Xn, Yn, bn] for sensor nodes n = 1, 2, …, Nk ∈ RONk 

Output: Likelihood matrix Lk 

1: L  0 // initialization 

2: for all cells M
−1

(i, j) ∈ gk do 

3: for all sensor nodes n that have cell M
−1

(i, j) ∈ ROCn do 

4: Lk(i, j)  Lk(i, j) + bn; 

5: end for  

6: end for 

4.2.3. Maximization 

Let (i*, j*) be the element of Lk with the maximum value, i.e., Lk(i*, j*) ≥ Lk(i, j),   , j = 1, …, Gk. 

Then C(i*, j*) is regarded as one of the location of the events. The center of the cell corresponding to 

the maximum value of each matrix is regarded as the location of the events. In cases where more than 

one elements of a matrix have the same maximum value, the estimated event position is the centroid of 

the corresponding cell centers. 

4.2.4. Example 

We provide a simple example to illustrate the TISNAP algorithm. In the example, the ROC of 

sensor node n is the set of cells that fall in a square of 5 × 5 cells around cell (i, j), where sensor n is 

located, as shown in Figure 4. The TI of each node is 1.  

Figure 4. the ROC of sensor nodes (a) alarmed nodes (b) non-alarmed nodes. 

  

(a)    (b) 

 

Figure 3 demonstrates the algorithm used by the sink for constructing the likelihood matrix Lk 

corresponding to node k. In Figure 3, the red node is the cluster node and there are three alarmed nodes 



Sensors 2011, 11                            

 

 

6566 

and two non-alarmed nodes in its RON. Using the information from all relevant sensor nodes inside the 

RON of the cluster node, the sink constructs the likelihood matrix. The maximum value of the matrix  

is 3 and the center of the cell corresponding to it is the location of the event we estimated. 

4.3. Updating the Trust Index 

According to the estimated location of the events, the sink decides whether all the information 

reported by nodes is true or false after a round of event localization operation. Then, the sink updates 

the TI of all nodes according to Equations (8) and (9). If the node is deemed as normal, the sink will 

increase its TI. Otherwise, the sink will reduce it. To illustrate the case, we provide a simple example. 

We assume that using the event localization algorithm, the location of the event estimated by the sink 

is shown in Figure 5 in the t-th sampling period. Then, based on the estimated location of the event, the 

sink updates the trust index of all nodes for the preparation of the next round of event localization 

operation. As Figure 5 shows, updating the trust index of the node has the following situations: 

Figure 5. The state of nodes located in different regions. 

Node A

ROI

Node B

Node C

Node D

Event location 

estimated by sink

Alarm node

Non alarm node

 

 The node is in the ROI of the event, but it is not alarmed. The sink considers it as false negative 

node and reduces its TI value. Just as node A in Figure 5, according to Equations (8) and (9), the 

trust index is given by: 

, 1 , 0.1A t A tv v   , 
, 1

, 1
A tv

A tTI e
 

   

So the TI of node A is reduced. 

 The node is in the ROI of the event, and it is alarmed. The sink considers it normal node and 

increases its trust index. Just as node B in Figure 5, the trust index is given by: 

, 1 , 0.1B t B tv v   , , 1

, 1
B tv

B tTI e
 

   

So the trust index of node B is increased. 
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 The node is out of the ROI of the event, but it is alarmed. The sink considers it false positive 

node and reduces its trust index. Just as node C in Figure 5, the trust index is given by: 

, 1 , 0.1C t C tv v   , , 1

, 1
C tv

C tTI e
 

   

So the trust index of node C is reduced. 

 The node is out of the ROI of the event, and it is not alarmed. The sink considers it normal and 

increases its trust index. Just as node D in Figure 5, the trust index is given by: 

, 1 , 0.1D t D tv v   , , 1

, 1
D tv

D tTI e
 

   

So the trust index of node D is increased. 

5. Theoretical Analysis 

In this section, we theoretically compare the TISNAP algorithm with the DSNAP one. The DSNAP 

algorithm is similar to the SNAP algorithm in [16], and in essence, they are all methods of maximum 

likelihood estimation which use the information of sensor nodes located in the area of event source‟s 

ROI. DSNAP is used for multiple event sources localization, while SNAP is used for single event 

source localization. According to the description of the literature [16], we assume that a set of sensor 

nodes, K, located in an event source‟s ROI area. For node k, k   K, we define the indicator function Ik 

for k = 1, …, K and t = 1, …, M:  

k,t

,

k,t

0,   Z

1,    Z
k t

T
I

T


 



 
(16)  

Thus, the sensor data can be represented as I = {Ik,t: k = 1, …, K, t = 1, …, M}. The goal is to 

estimate the source location θ = [xk, yk] using the collected data I. The joint likelihood function is  

given by: 

, ,

1 1

( ) ( )
lg ( | ) lg[ ( )] (1 ) lg[1 ( )]

K M
k k

k k t k t

k t

T S T S
p I I Q I Q

 

 


  

 
       (17)  

where      
 

   
   

  

 
 

 
   and Sk(θ) is the signal that would have been measured by sensor k if the 

source was at location θ and there was no noise (given by Equation (5)). In [16], they propose the 

following arbitrary probability assignment for their indicator function Ik,t: 

99.0)
)(

(}|1Pr{ , 






 k

tk

sT
QI , 

01.0)
)(

(1}|0Pr{ , 

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
 k

tk

sT
QI  

Next, consider the modified likelihood function )|(10)|( 2  k

KM

k IpIp  . Taking the logarithm of 

the modified likelihood function, they get: 
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)1.0log()1()9.9log()|(log

1 1

,,

1 1

,,









 

 

K

k

M

t

tktk

K

k

M

t

tktkk

II

IIIp 

 (18)  
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The SNAP estimator is given as the following: 

)|(logmaxˆ 


kSNAP Ip  (19)  

When constructing the likelihood function, the TISNAP algorithm has taken into account the impact 

of faulty nodes. The sink assigns a trust index to every node, and the impact of faulty nodes is reduced. 

Therefore the algorithm has better performance of fault tolerance. Based on Equation (18), the joint 

likelihood function we define is given by: 

 
 


K

k

M

t

tktktkk IITIIp
1 1

,,. )1()1()1()|(log   (20)  

where: 

tv

tk eTI


,  (21)  

 and TIk,t denotes the trust index of node k in the t-th sampling period. vt is obtained by Equation (8). 

Based on the Equation (18), Fk,t denotes the impact on the likelihood function by node k in the t-th 

sampling period. It is given by: 

)1()1()1( ,,,  tktktk IIF  (22)  

If the node is alarmed, Ik,t = 1 is obtained by Equation (16). Then Fk,t = 1. Otherwise, Ik,t = 0 and  

Fk,t = −1. However, when the node is faulty, the alarm status of the node is the opposite. A node should 

have been alarmed under normal conditions, but it is non-alarmed due to a fault, so     
  = 0 is obtained 

by Equation (16) and     
  = −1. Similarly, a node should have been non-alarmed under normal 

conditions, but it is alarmed due to a fault, so     
  = 1 and     

  = 1. In the DSNAP algorithm, the 

difference caused by a single faulty node is 2. Therefore, with the increasing of faulty nodes, the 

likelihood function will be greatly affected. 

However, in this paper, the sink assigns a trust index to every node and the impact of faulty nodes is 

reduced. Based on the Equation (20), FIk,t denotes the impact on the likelihood function by node k in 

the t-th sampling period. It is given by: 

)]1()1()1([ ,,,,  tktktktk IITIFI  (23)  

According to the Equation (9), if the node is normal, its trust index is 1, so FIk,t = Fk,t. However, 

when the node is faulty, the alarm status of the node is the opposite and the difference caused by a 

single faulty node is 2TIk,t. According to the Equations (8) and (9), after several rounds of event 

localization operations, the TIk,t of the faulty node k is greatly reduced after t-th sampling period and it 

plays a minimal role in the process of event localization. Therefore, in the TISNAP algorithm, the 

value of the likelihood function is mainly determined by the normal nodes. The algorithm reduces or 

even ignores the impact of the faulty nodes. It is the reason that the TISNAP algorithm has better  

fault-tolerant performance and higher accuracy of localization after several rounds of event source 

locating operations. 
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6. Performance Evaluation 

All experiments in this paper are performed in a simulation environment. In the experiments, we use 

a square 200 × 200 sensor field with N = 1,000 randomly deployed nodes. We assume that the nodes in 

the sensor network gradually become faulty nodes over time. In the beginning, all nodes are normal. 

As time goes through, the number of faulty nodes increases at the rate of 5%. Two event sources are 

randomly deployed in the area and their distance is not less than 2  ROC. The signal strength at the 

location of the sources is identical. For the parameters used in the experiments, we use the default 

values shown in Table 1. According to Equation (5), the sensor readings are given by: 

})(
)(

,3000min{)(
1

2

,





K

k

n

kn

k

n t
tr

c
tZ   (24)  

Table 1. Default Parameter Values. 

Parameter Symbol Default Value 

The area A 200 m × 200 m 

Number of sensor nodes N 1,000 

Saturation voltage Vmax 3,000 

Source amplitude c 3,000 

Noise variance ,n t  , ~ (0,1)n t N  

Threshold T 14 

Grid resolution g 1 

Scaling factor α 2 

Sensor gain γ 1 

 

We use the root mean square error (RMS Error) as a method of performance evaluation. We assume 

that the actual location of the two event sources is (    
      

 )   A and (    
      

 )   A. The location of 

the two event sources estimated by TISNAP algorithm is (     
       

 ) and (     
       

 ), where b = 1, …, B. 

The RMS Error is given by: 

))ˆ()ˆ()ˆ()ˆ((
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1
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B

k

bsksbsks yyxxyyxx
B

ErrorRMS  


 (25)  

In this paper, we assume that B = 100. In every experiment, the location of the sensor nodes is fixed 

and the event sources are randomly deployed in the area. 

6.1. Fault Tolerance 

In this section, we evaluate the performance of fault tolerance of the TISNAP algorithm and the 

DSNAP algorithm under conditions of different fault probability and different numbers of alarmed 

sensor nodes. Also, we observe how many times all the event sources can be detected in 100 tries and 

how much the location deviation is. We assume that there are two fault types in the area: one is a false 

negative, that is, sensor nodes that fall inside the ROI of the event source but their observed readings 

are smaller than threshold T, so they are not alarmed. The other is a false positive, that is, sensor nodes 
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that fall outside the ROI of the event but their observed readings (we assume the observed reading is a 

random value between threshold T and the source signal strength c) are greater than threshold T, so 

they are alarmed. Four groups of experiments are performed under different signal strength of event 

source, as shown in Figure 6. Left y-axis denotes RMS Error and right y-axis denotes the times all the 

events are detected in 100 experiments. 

Figure 6. Fault tolerance performance for different signal strength of event sources.  

(a) c = 1,000; (b) c = 2,000; (c) c = 3,000; (d) c = 4,000. 

 

(a)       (b) 

 

(c)       (d) 

As shown in Figure 6, the TISNAP algorithm has better fault tolerance performance than the 

DSNAP algorithm. When the fault probability of nodes is higher than 35%, the number of event 

sources in the area cannot be accurately identified using the DSNAP algorithm. When the fault 

probability of nodes is 40%, the times of that all event sources are detected is less than 40% in 100 tries. 

However, in the TISNAP algorithm experiment, when the fault probability of nodes is less  

than 50%, 100% of event sources can be accurately detected and the RMS error is smaller. In the 

TISNAP algorithm, because the sink assigns a trust index to every node, the trust index of most faulty 

nodes is reduced after several times of localization, and the trust index of most normal nodes remains 

high. Hence, the data of the normal sensor nodes have more weight in the process of event source 

localization. Therefore, the TISNAP algorithm has higher accuracy of localization. 
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6.2. Dropped Packets 

In this section, we investigate the performance of the two algorithms if packets are dropped by the 

network. As mentioned in Section 4.1, in the first phase of TISNAP, each alarmed node sends a data 

packet to the sink and other nodes remain silent. Therefore, in the sampling period, if the sink does not 

receive the packet from a node, it will regard it as a non-alarmed node and assumes that the node does 

not detect the events. To investigate the effect of dropped packets, we assume that there is only one 

kind of fault which is dropping packets. And each node has the same probability of dropping packets. 

Figure 7 shows the impact of dropped packets on the two algorithms. 

Figure 7. The Fault tolerance performance under different probability of dropped packets. 

 

As shown in Figure 7, under the same packet loss rate, the TISNAP algorithm has higher 

positioning accuracy and better performance of fault tolerance than the DSNAP one. When the packet 

loss rate is higher than 35%, neither of them cannot accurately determine the number of the events in 

the area, because the packet loss rate of nodes has a great influence on the alarmed nodes and the 

alarmed nodes play an important role in the process of event localization. However, non-alarmed 

nodes do not need to send packets to the sink, so packet loss rate has no impact on them. 

6.3. Board Overheating 

In sensor networks, due to working long hours, the boards of sensor nodes may be overheating and 

this may cause the sensor nodes to report false events, as the node is always alarmed. We assume that 

each node has the same probability of the fault of board overheating. Figure 8 shows the impact of 

board overheating on the two algorithms. 

As shown in Figure 8, the TISNAP algorithm we proposed has better fault tolerance performance to 

board overheating. When the probability of fault is 50%, it still can accurately determine the number of 

events in the area and estimate their location. However, when the probability of fault is larger than 30%, 

the performance of the DSNAP algorithm begins to decline sharply, and when the fault probability  

is 40%, the number of times all events are detected is less than 70% in 100 tries. 
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Figure 8. Estimator performance versus probability of overheating. 

 

7. Conclusions 

TISNAP is a simple, efficient, fault-tolerant localization algorithm for multiple event source 

localization in sensor networks. It only uses the binary data reporting from the sensor nodes in the 

localization process. The trust index model is introduced to measure the fidelity of data reported by 

sensor node and to reduce the impact of faulty nodes on the multiple event localization by decreasing 

their trust index value. Compared to the DSNAP, TISNAP has the same computational overhead but 

can achieve higher accuracy in multiple event localization when a large percentage of the sensor nodes 

report erroneous observations. Experimental results show that when 50% nodes are in failure mode, 

the algorithm can still identify all events correctly and accurately estimate their location. For our future 

work, we plan to study the performance of TISNAP with respect to energy, bandwidth, and QoS. 

Furthermore, we will investigate real propagation models, such as in problems of environmental 

pollution, where an actual substance is released in the environment. Finally, we try to combine this 

algorithm with Kalman Filtering to achieve tracking of multiple event sources. 
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