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Abstract: In a wireless sensor network (WSN), the usage of resources is usually highly 

related to the execution of tasks which consume a certain amount of computing and 

communication bandwidth. Parallel processing among sensors is a promising solution to 

provide the demanded computation capacity in WSNs. Task allocation and scheduling is a 

typical problem in the area of high performance computing. Although task allocation and 

scheduling in wired processor networks has been well studied in the past, their counterparts 

for WSNs remain largely unexplored. Existing traditional high performance computing 

solutions cannot be directly implemented in WSNs due to the limitations of WSNs such as 

limited resource availability and the shared communication medium. In this paper, a  

self-adapted task scheduling strategy for WSNs is presented. First, a multi-agent-based 

architecture for WSNs is proposed and a mathematical model of dynamic alliance is 

constructed for the task allocation problem. Then an effective discrete particle swarm 

optimization (PSO) algorithm for the dynamic alliance (DPSO-DA) with a well-designed 

particle position code and fitness function is proposed. A mutation operator which can 

effectively improve the algorithm‟s ability of global search and population diversity is also 

introduced in this algorithm. Finally, the simulation results show that the proposed solution 

can achieve significant better performance than other algorithms. 
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1. Introduction  

A wireless sensor network (WSN) is a system of spatially distributed sensor nodes that collect 

important information in the target environment. WSNs have been envisioned for a wide range of 

applications, such as battlefield intelligence, environmental tracking, and emergency response. Each 

sensor node has limited computation capacity, power supply and communication capability [1]. In a 

wireless sensor network (WSN), the usage of resources are usually highly related to the execution of 

tasks which consume a certain amount of computing and communication bandwidth. Parallel 

processing among sensors is a promising solution to provide the demanded computation capacity in 

WSNs, and task allocation and scheduling play an essential role in parallel processing [2]. Therefore, 

how to assign a task to its most appropriate sensor node and simultaneously balance the network load 

in the context of the uncertain and dynamic network environments represents an important and urgent 

issue in WSN studies. 

As a typical problem of the area of high performance computing, task allocation and scheduling has 

been shown to be NP-complete. Several useful heuristic algorithms for task allocation and scheduling 

problems, such as MCT (Minimum Completion Time), Min-min (Min-min complete Time), Max-min 

(Max-min complete Time), Greed, Genetic Algorithm (GA) and so on, have been developed in the 

literature [3-7]. Due to the limited resource availability and shared communication medium, these 

existing algorithms cannot be directly implemented in WSNs. Thus, task allocation and scheduling 

have remained largely unexplored in WSNs until recently and we will summarize the existing work in 

Section 2.  

In specific applications, the completion of tasks in WSNs is usually computation-intensive. With 

limited energy, computation and storage capacity, a WSN cannot complete its specific tasks without 

cooperative information exchange among several sensor nodes. For example, in a video sensor 

network application, the multimedia information is usually a computation-intensive task, which can 

usually be completed by the cooperation of several sensor nodes. Therefore distributed computation is 

important in WSNs. As a typical research field of the distributed artificial intelligence and the 

distributed computing, agent theories and technologies play an important role in modern computer 

science and applications. As some characteristics of WSNs are similar to those of multi-agent theories, 

such as, sensor nodes are capable of solving problems independently, and the WSN is distributed and  

self-organized, we can naturally attempt to apply multi-agent technologies to WSNs. Then, sensor 

nodes can be treated as agents that can create clusters independently by cooperating with each other to 

achieve their goals and coordinating their behaviors [8]. If a sensor node is regarded as an agent, the 

WSN is a kind of multi-agent system. However, the WSN is different from multi-agent system in some 

aspects, so multi-agent theories can‟t be directly applied to WSNs. 

The advantages of applying agent theories and technologies to the WSN are as follows: 
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(1) Using agent and multi-agent system theory to model and simulate the WSN contributes to 

formally analyze and design network activities and organization. 

(2) Using agent software can expand the WSN intelligence and create an autonomous  

network system. 

(3) Using agent software can reduce the redundancy of sensing data and data flow. 

(4) Using agent software can save the energy of the WSN and effectively extend the  

network lifetime. 

(5) Using agent-based design theory and method can achieve the dynamic application of the WSN 

and highly flexible strategy of task scheduling. 

As the WSN always works in an unknown dynamic environment, sensor nodes may fail in many 

cases, such as when they move or die from battery depletion. In this case, to extend the lifetime of the 

WSN, before they become disabled the remaining tasks of these nodes should be effectively 

transferred to other healthy nodes, which are able to finish these tasks. Thus, to solve this problem, this 

paper proposes a multi-agent-based self-adapted task scheduling strategy in WSNs. In this strategy, we 

first propose a dynamic alliance model for the task allocation problem with a view to prolong the 

lifetime, reduce the energy consumption and balance the network load. Then a discrete particle swarm 

optimization (PSO) for the dynamic alliance in our previous work [9], called DPSO-DA, is introduced 

in this paper. In the PSO-DA, we design a function considering the overall execution time of tasks, the 

energy consumption and the network balance. In addition, a mutation operator is introduced into 

DPSO-DA to maintain the population diversity and improve the global searching ability. 

The rest of this paper is organized as following. In Section 2, we discuss related work. Section 3 

describes the problem. In Section 4, we propose the algorithm for the dynamic alliance model of task 

allocation in WSNs. Section 5 introduces the multi-agent-based self-adapted task scheduling strategy. 

In Section 6, we present the simulation results. Section 7 gives the concluding remarks. 

2. Related Work 

As mentioned in the previous section, energy consumption is a fundamental challenge in WSNs due 

to their unique features. Most of those traditional solutions do not consider energy consumption during 

communication and task execution, so they cannot be implemented directly in WSNs. Thus, allocation 

and scheduling are topics that remain largely unexplored in WSNs. Recently, several algorithms have 

been proposed for the task allocation and scheduling problem. Giannecchini et al. proposed an online 

task scheduling mechanism called CoRAl [10] to allocate the network resources between the tasks of 

periodic applications in WSNs. However, CoRAl not only did not address mapping tasks to sensor 

nodes, but also failed to discuss explicitly energy consumption. An energy-constrained task mapping 

and scheduling called EcoMapS [2], which incorporates channel modeling, concurrent task mapping, 

communication and computation scheduling, and sensor failure handling algorithm, has also been 

presented. Tian et al. developed an application-independent task mapping and scheduling solution [11] 

in multi-hop WSNs, which not only provided real-time guarantees, but also implemented  

dynamic voltage scaling mechanism to further optimize energy consumption. Furthermore, a static 

energy-balanced task scheduling algorithm [12] was put forward, which assigned tasks with 

precedence constraints to a cluster of heterogeneous sensor nodes connected by a single-hop wireless 
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network so as to maximize the lifetime of the sensor network. In addition, a novel task allocation 

strategy called Balanced Energy-Aware Task Allocation (BEATA) for collaborative applications 

running on heterogeneous networked embedded systems [7] was developed by Xie et al., and this 

strategy aimed at making the best trade-offs between energy savings and schedule lengths. Lin et al. 

advanced an adaptive energy-efficient multisensor scheduling for collaborative target tracking [13] in 

WSNs. Abdelhak et al. proposed EBSEL [14], an energy-balancing task scheduling and allocation 

heuristic whose main purpose is to extend the network‟s lifetime, through energy balancing. 

In those solutions, researchers mainly consider energy consumption during communication and task 

execution for task allocation and scheduling in WSNs. Some researchers develop multi-task scheduling 

algorithms for WSNs considering real-time and energy efficiency. However, due to some internal 

characteristics of WSNs, they have some disadvantages, such as dynamic network topology, limited 

energy, limited sensor node resources and unreliable sensing data, etc. The performances of task 

allocation and scheduling in WSNs should be improved in four aspects: real-time, economy, energy 

consumption and harmony. The PSO algorithm is a relatively recent swarm intelligence method 

developed by Kennedy and Eberhart [15]. The advantages of PSO over many other optimization 

algorithms are its simplicity of implementation and ability to converge to a reasonably good solution 

quickly. It has created a research hot spot and generated a massive volume of research results in only a 

few years [16-20] since the PSO algorithm was first proposed. A great number of experimental results 

show that PSO can solve nearly all kinds of optimization problems that can be solved by GA, so it is 

indeed a powerful and vital optimization tool. In our previous work [21], we proposed a discrete PSO 

algorithm called TO-PSO to solve the task allocation problem, which can get better results. However, 

it is easy to cause several machines sit idle when the number of tasks is small. This will reduce the 

balance of system load and increase additional consumption. As a result, the algorithm cannot provide 

reasonable scheduling solutions in a dynamic task number situation. In addition, the algorithm does not 

yet consider energy consumption during communication and task execution. In [22], we proposed a 

novel PSO algorithm to solve the task allocation problem. Later we found that dynamic alliance may 

have a fantastic performance. Therefore we applied dynamic alliance to the task allocation in WSNs  

in [23], which did not take self-adapted into account and was just compared with static alliance. In this 

paper, and inspired by multi-agent system theory, we first design a multi-agent model for WSNs. Then, 

in order to prolong the lifetime of the network, reduce the energy consumption and balance the 

network load, we propose a mathematical model of dynamic alliance for the task allocation problem 

and design a DPSO-DA algorithm with a well-designed particle position code and fitness function for 

this dynamic alliance model. Finally, we give an adaptive MAS-based task scheduling strategy, which 

self adaptively adjusts the status of unfinished tasks on the fault nodes in order to minimize the cost of 

the network recovery. 

 

3. Problem Description 

3.1. System Model 

As the hierarchical network topology has been widely used in WSNs, a multi-agent-based 

architecture for WSNs is proposed in this paper as shown in Figure 1. Due to the topological, spatial 
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and deployment conditions, a WSN is always divided into several regions, each of which is divided 

into several clusters as well. Moreover, clusters may contain smaller clusters, for example, node 1 is 

the head of a 1st level cluster, which includes node 2 and node 3, and these two nodes are the heads of 

2nd level clusters. Each cluster consists of a cluster agent (CA) and several member agents. In Figure 1, 

user requests are sent to the WSN through external networks, such as the Internet and satellites. The 

architecture is based on a three layer hierarchy of software agents. Generally, a user request is always 

transformed to an initial task, which is decomposable. Then, the initial task is decomposed into several 

smaller tasks with the same functionality. Acting as a high energy “gateway”, a sink agent is 

responsible for ensuring the interaction between the external network and the WSN. In addition, it also 

processes the final data obtained from the regional agents. At the regional layer, a regional agent 

manages a part of all the sensor agents, and performs local task allocation and data processing. Finally, 

a cluster agent collects the data from the agents in the cluster and performs some in-network 

operations, while simple agents usually implement some simple procedures, such as data sensing and 

local computing. 

Figure 1. The multi-agent-based system architecture for WSNs. 
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3.2. Task Allocation 

Assume that a WSN is composed of m sensors and n independent tasks, where the tasks are 

competing for the sensors. The purpose of task allocation is to allocate the n tasks to the m sensors 

reasonably with shortest total execution time. We use a n × m-matrix called Execution Time Matrix 
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(ETM) to express the tasks‟ execution time on sensor nodes, and etmij to express the execution time of 

task i on sensor j. So the jth node‟s execution time of all tasks, which are allocated to this node, can be 

defined as follows: 

1

( )

n

i

j ijR S etm


  (1)  

Then, the system total execution time can be described as follows: 

1
( ( ))

m

i
i

K Max R S


  (2)  

The total execution time E of all tasks implies the quality of the task allocation strategy. So 

lessening the value of E means that more tasks are assigned to the suitable sensors. It can be 

formulated as follows: 

1

( )
m

i

iE R S


  (3)  

A good task allocation algorithm should guarantee not only the minimum E, but also the balance of 

network load. Load-balanced degree is a measure standard of the performance of WSN, and the load 

balance of WSN is better if load-balanced degree is bigger, we can define the balance of network load 

as follows: 

1

1 ( ( )) ( )
m

i

i

P K R S m K
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m

i

i

P K R S m K


     (4)  

In addition, when executing the tasks, sensor nodes must consume computing energy Clocal, and 

communicating energy Crou. Thus, the total energy consumption in WSNs is defined as follows: 

 
1
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local rou
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   (5)  

3.3. Dynamic Alliance Model 

Due to these sensors‟ different abilities of dealing with the tasks, an ideal distributed system should 

take the total execution time, the number of machines and the degree of cluster load into account. 

Dynamic alliances, known as “virtual enterprises”, are composed of a number of enterprises. These 

enterprises in the dynamic alliance use their respective advantages or core competencies in order to 

complete tasks efficiently [24]. Inspired by the idea of dynamic alliance, we transform the dynamic 

cluster alliance into the following multi-objective optimization problem [9]: 
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4. Algorithm for the Dynamic Alliance Model 

 

4.1. Basic Particle Swarm Optimization 

 

PSO is a population-based evolutionary algorithm which is initialized with a population of  

random solutions. In PSO, each particle is treated as a point with a velocity (D-dimensional vector) in 

a D-dimensional solution space. Each particle has a fitness value according to an objective function. 

Each particle adjusts its “flying” according to its own flying experience and its companions‟ flying 

experience, and then closes to the minimum. The ith particle is represented as Xi = (Xi1, Xi2, …, XiD). 

The velocity for the ith particle is represented as Vi = (Vi1, Vi2, …, ViD). The best previous position (the 

position giving the best fitness value) of the ith particle is recorded and represented as pi = (pi1, pi2, …, 

piD). The index of the best particle in the population is represented with the symbol g. At each step, the 

particles are manipulated according to the following equations: 

   1 1 2 2      id id id id gd idv w v c r p x c r p x       (7)  

id id idx x v   (8)  

where w is the inertia weight, c1 and c2 are two positive constants, called acceleration constants,  

r1 and r2 are two random numbers within the range [0, 1]. A constant, Vmax is often used to limit 

velocities of the particles and improve the resolutions of the search space. 

According to Equations (7) and (8), the first part of Equation (7) represents the previous velocity, 

which provides the necessary momentum for particles to roam across the searching space. The second 

part, known as the “cognitive” component, represents the personal thinking of each particle. The 

cognitive component encourages the particles to move toward their own best positions found so far. 

The third part is known as “social” component, which represents the collaborative effect of the 

particles, during searching the global optimal solution. 

 

4.2. Discrete Particle Swarm Optimization for the Dynamic Alliance Model 

 

As the Equations (7) and (8) mentioned in the previous subsection, it is obvious that the basic PSO 

cannot be used to generate a discrete task allocation solution for its continuous nature, so some 

modification must be done to the original PSO. Since the PSO algorithm was proposed by Kennedy 

and Eberhart in 1995, many attempts have been made lately to apply the PSO algorithm to discrete 

combinatorial problems. Several discrete PSO algorithms have been put forth in the literatures, among 

which the discrete binary PSO algorithm [25], the discrete PSO algorithm for the traveling salesman 

problem [26], and the discrete PSO for the permutation flowshop sequencing problem with makespan 

criteria [27] have received the most attention. In this section, we introduce a DPSO-DA algorithm [9] 

to deal with the task allocation problem. In the proposed algorithm, a mutation operator is designed to 

maintain the population diversity and improve the global searching ability. 
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4.2.1. Representation of Particles 

 

In DPSO-DA algorithm, a particle‟s position X denotes a dynamic alliance scheme. It can be 

represented as follows: 

 1 2, , , , , , 1 , {0,1}i m iX x x x x i m x     (9)  

where m is the number of sensors, the value of xi is the state whether the sensor is selected into 

dynamic alliance. 

 

4.2.2. Fitness Value Function 

 

Inspired by the literature [28], we put forward an adaptive weight approach to construct the fitness 

value function. According to the two optimization objectives of the proposed dynamic alliance model, 

the total execution time K of task is lessened. Therefore, we can evaluate the value of E and P through 

computing the value of K. The fitness value function could be defined as follows: 

max min max min max min

( ) ( ) ( )
( )

K X M X C X
f X

K K M M C C
  

  
 (10)  

where Kmax and Kmin represent the maximum and minimum value of K respectively, Mmax and Mmin are 

the maximum and minimum member number of the dynamic alliance respectively, Cmax and Cmin are 

the maximum and minimum value of energy consumption C respectively, K(X) is the K value of the 

particle X, M(X) is the member number of the dynamic alliance, and C(X) is the C value of the  

particle X. 

Here, we adopt the heuristic method based on the maximum time span, similar to the literature [29], 

to calculate the value of K. Here, we first compute the time span of the tasks which have not been dealt 

with, then allocate the tasks with the maximum time span to the processor with the minimum execution. 

This method can obtain good results in that it assigns the tasks according to the forecast information. 

 

4.2.3. Basic Operator 

 

The velocity V of the particle represents the changed value of this particle‟s position and it can be 

described as follows: 

 1 2, , , , , , 1 , {0,1,2}i m iV v v v v i m v     (11)  

where m is the number of the sensors. 

In Equation (11), if vi equals 2, it implies that the state of the ith sensor is not changed; otherwise, 

the state of this sensor equals vi. Since the task allocation is a discrete problem, the operators in 

standard PSO should be redefined to solve this problem. 

Definition 1 (Subtraction Operator −) Suppose Xi and Xj are the positions of the ith and jth 

particle respectively, then V = Xi − Xj expresses the change of position and each dimension‟s value of V 

can be formulated as follows: 



Sensors 2011, 11                            

 

 

6541 

, ,

,

2 ,

,

i k j k

k

j k

if x x
v

x else

 
 


 (12)  

Definition 2 (Additive Operator +) Suppose Xi is the position of the ith particle, then the particle‟s 

position can be updated by the effect of velocity V, that is,   
       . And each dimension‟s value 

of the new position   
  can be formulated as follows: 

2ij j

ij

j

x if v
x

v otherwise


  



 (13)  

Definition 3 (Multiplication Operator ) Suppose Vi is the velocity of the ith particle, then the 

particle‟s speed can be updated by the follows: 

'

1 2i iV c V c    (14)  

where 1 21 ic c V    and iV is the dimension of iV . 

And each dimension‟s value of the new speed '

iV  is defined as follows: 

1 2'
, [ )

2   ,

ij

i j

v if j c c
v

else

  
 


 (15)  

Based on the basic operator mentioned above and considering the disadvantages of the mutual 

interference in discrete PSO, the particles can be manipulated according to the following Equations: 

1 2 1 2

3 4 3 4

( ) ,1

( ) ,1

b

g

X X c P X c c c X

X X c P X c c c X

       

       
 (16)  

where Pb and Pg represent the particle‟s history best value and the global best value respectively, and 

   is the dimension of X. 

 

4.2.4. Mutation Operator 

 

Definition 4 (Particle Similarity) Particle similarity Sij expresses similarity between the particle  

i and j, that is, the proportion of the same genes between particle i and j to the total number of genes. It 

can be described as follows: 

1

1
( ? 1: 0)

m

ij k k

k

S i j
m 

   (17)  

where k is the k-th gene, and m is the number of genes. 

Definition 5 (Particle Diversity) Particle diversity Qi(t) is based on the similarity among the 

particle i, its history best value and the global best value. It can be described as follows: 

, , ,

1
( ) 1 ( ( ) ( ) ( ))

3
i i Pb i Pg Pb Pg

Q t S t S t S t     (18)  

where Pb and Pg represent the particle‟s history best value and the global best value respectively. 
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Then we can compute the population diversity as follows: 

1

1
1

( 1) 2

m m

i j

i j i

D S
m m  

 


  (19)  

Definition 6 (Consolidation Operator  ) Suppose X1 is the particle‟s current position and X2 is 

the objective position, then the particle‟s velocity pV can be obtained with the effect of consolidation 

operator, that is, pV = X2 X1. Each dimension‟s value of the velocity pV can be formulated as follows: 

1, 1, 2,

1,

,

1 ,

i i i

i

i

x if x x
pv

x else

 
 


 (20)  

During the iterative process of the standard PSO, population diversity is reduced and the ability of 

global exploration is restricted because the particles converge to the global best value gradually. To 

avoid falling into the local optimum, enhance the population diversity and improve the ability of global 

exploration, an improved method by monitoring the particle diversity Qi(t) and the population diversity 

D is adopted in the proposed DPSO-DA. In the method, it will execute the mutation operator on the all 

particles to guarantee the population diversity when the population diversity D is less than the 

threshold D0, and will execute the mutation operator on the particle i to guarantee the particle diversity 

and escape from the best value when the particle diversity Qi(t) is less than the threshold. 

 

4.2.5. Algorithm Overview 

 

As the components of the DPSO-DA algorithm [9] mentioned in previous subsections, then the 

details of this algorithm will be described in this section (see Algorithm 1): 

 

Algorithm 1. The Discrete PSO Algorithm for DA Model of Task Allocation (DPSO-DA). 

 

Step 1: Initialize population; 

Step 2: Calculate the fitness value; 

Step 3: Update the particles‟ position according to Equation (16); 

Step 4: Update the local best value; 

Step 5: Update the global best value; 

Step 6: For each particle, execute the mutation operator on this particle if its diversity is less than  

the threshold; 

Step 7: Execute the mutation operator on the all particles if the population diversity D is less than the 

threshold D0; 

Step 8: If the termination conditions are satisfied, then the algorithm terminates, otherwise go to Step 2. 

 

4.2.6. Complexity Analysis  

 

Lemma 1 Assume the dimension of the particle is M, the population size is S, the maximum number 

of iterations is I, and the size of the execution time matrix is T, then the time complexity of DPSO-DA 

is O(I × S × T × M). 
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Proof: In the DPSO-DA algorithm, the time complexity of initializing swarm, updating the 

particles‟ position, updating the local best value and updating the global best value are all O(S × M). 

The time of calculating the fitness value of the all particles is O(M × S × T), the time of calculating the 

particles‟ diversity is O(M × 3), and the time of calculating the population diversity is O(S × M). The 

complexity of the mutation operator in step 6 and step 7 are O(M × 2) and O(S × M) respectively. So 

the time complexity of this algorithm is O(I × (S × M + M × S × T + S × M + S × M + M × 3 + M × 2 

+ S × M + S × M)), that is O(I × S × T × M). 

 

5. Multi-Agent-Based Self-Adapted Tasks Scheduling Strategy 

 

Sensor nodes use limited, generally irreplaceable, power sources and WSNs always work in 

dynamic environments where the network topology rapidly changes and connections are instable. 

Thus, when the sensor nodes fail, as a results of moving or dying as a result of battery depletion, these 

sensor agents should be able to sense their implementation environment and react autonomously to the 

changes by moving the unexecuted tasks to their neighbors and adaptively readjusting the network 

topology. Recently, task allocation has become an important and urgent issue in WSNs, and energy 

efficiency is a key concern in WSNs, so energy-efficient task allocation should be taken into account. 

However most of current works focus on the static network environment in WSNs. Although people 

have done some research on dynamic networks, they just simply move the unexecuted tasks to their 

healthy neighbors. In this paper, combining the cognitive module and the adaptive adjustment module, 

we propose a multi-agent-based adaptive task assignment model for WSNs, as shown in Figure 2. 

Once an agent senses the changes of external environment, the agent updates the knowledge database 

and the goal of the cognitive module. Then, if the agent satisfies the requirements, such as, energy 

requirement, communication and computation ability, it will select a proper scheme to allocate the 

given tasks. Otherwise it should run adaptive adjustment module. Moreover, for other exceptions of 

the agents, such as load-imbalance, the network should use the adaptive adjustment module of the 

agents to dynamically adjust itself. 

WSN is a kind of network with a large number of nodes and limited resources, which always adopts 

a multi-hop route mechanism. As sensor nodes are distributed in a large region, we always divide them 

into many partitions to manage, and several blocks are managed by a management node (MA). In 

order to save energy consumption, sensor agents only conserve the information of their neighbor 

agents. Thus, for the sake of energy saving and easy management, a MA conserves the information of 

all agents. So, when an agent wants to acquire its non-neighbor agent‟s information, it can interact with 

its MA. 

Here, we define two vectors conserved in MAs, load vector and remainder energy vector represent 

current load and current remainder energy of agents in a region respectively. They are defined  

as follows: 

 1 2 kL L ,L , L  (21)  

 1 2 kER ER ,ER , ER  (22)  

Each agent can sense its load and remainder energy. When detecting that its load is more than the 

threshold L0 or its remainder energy is below the threshold ER0, the agent will run an adaptive 
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adjustment algorithm, and inform its neighbor agents (NAs) and MA. In addition, defining a threshold 

Tv, when unexecuted tasks of failed agent is more than Tv, it will run task allocation algorithm, or move 

those tasks directly to several agents with minimum load. Thus, a self-adapted task allocation strategy 

with dynamic feedback to the adaptive adjustment algorithm module in Figure 2 is proposed as shown 

in Figure 3. 

 

Figure 2. The multi-agent-based self-adapted task scheduling model in WSNs. 
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Figure 3 is composed of two modules which are function module of management agents (MAs) and 

sensor agents (SA). As shown in Figure 3, when the load of an agent is more than the threshold, or the 

agent is in high-load continuously, or the remainder energy is below the threshold, the agent must 

effectively migrates its unexecuted tasks to other health agents before it fails to ensure the performance 

of the whole network. In addition, in Figure 3, NUT represents the number of unexecuted tasks, and 

KLMins denotes as the k smallest load agents. 
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Figure 3. The self-adapted task allocation strategy. 
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6. Simulation Results and Analysis 

6.1. Test Data 

Similar to the method of generating data in [6], the method includes three parameters: task 

heterogeneity φd, sensor heterogeneity φm, and data consistency. The details of generating data can be 

seen in [6]. If task heterogeneity is low, then φd equals 100, which means that the difference among 

tasks is small, otherwise φd equals 3,000. Similarly, if the sensor heterogeneity is low, then φm equals 10, 

which means that the difference among sensors is small, otherwise φm equals 1,000. Firstly, we 

generate a n-vector B randomly, and each element bi∈ [1,φd − 1], then generate a n × m-matrix E 

randomly too, and each element xij∈ [1,φm − 1], finally calculate estimated execution time, etmij = bi × xij, 

etmij∈ [1,φd × φm − 1]. Considering data consistency, if consistent, then sort elements of each row in 
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ETM, which make sure that for elements in any row, if k < l then etmik < etmil; if semi-consistent, then 

sort elements of even columns in every row separately, which make sure that for any element in even 

columns of any row, if k < l then etmik < etmil; if inconsistent, then do nothing with ETM. 

Here we name the test data according to this format: x-y-z. In this format, x is data streams 

heterogeneity, while taking „l‟ means low (φd equals 100), and „h‟ means high (φd equals 3,000); y is 

machines heterogeneity, similarly to x, „l‟ means low (φm equals 10), and „h‟ means high (φm equals 1,000), 

and z is data consistency, „c‟ means consistent, „s‟ means semi-consistent and „d‟ means inconsistent. 

6.2. Results and Analysis 

Let us consider a task allocation problem with 128 tasks and 16 sensor nodes, the internal energy 

consumption of sensor nodes is the consumption cost of executing 100 estimated runtimes, which is 

between 0.2 and 1.5 s with a normal distribution whose center point is 1, while communication 

consumption of WSN is represented as a m × m matrix which is between 3 and 7 with a normal 

distribution whose center point is 5. We assume that every task can be equally accomplished by any 

sensor, regardless of its position. Then we perform the DPSO-DA algorithm with each test data for 

five times and take the best solution. After a lot of tries, DPSO-DA can get satisfied solution in short 

time (10 s level) when parameters are set in this way: the number of iterations is 1,000, the population 

size is 100, the threshold of particle diversity is 0.2, and the threshold of population diversity is 0.4. 

The convergence process and the change of population diversity for l-h-c problem are shown, 

respectively, in Figures 4 and 5. The results imply that the proposed DPSO-DA algorithm has a good 

convergence and its population diversity also keeps a high level all the time. In addition, the  

DPSO-DA algorithm for another problem can also get similar performance as with the l-h-c problem. 

Figure 4. Convergence process. 
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Figure 5. Change of population diversity. 

 

Then we perform DPSO-DA algorithm for all the following possible problems, and obtain the 

results as showed in Table 1. From Table 1, we can know that the DPSO-DA algorithm can choose the 

appropriate agents to constitute the cluster alliance with a high level of load balance because the values 

of load balance in all problem types are all better than 0.95. 

Table 1. The result of DPSO-DA algorithm. 

Type Dynamic alliance structures The load balance The number of nodes 

h-h-c 1, 2, 3, 5, 12 0.986548 5 

h-h-d 1, 2, 6, 8, 9, 10, 12, 13, 16 0.970726 9 

h-h-s 1, 2, 3, 4, 8, 12, 16 0.984089 7 

h-l-c 1, 2, 3, 4 0.996335 4 

h-l-d 2, 5, 6, 7, 10, 13, 15, 16 0.985648 8 

h-l-s 1, 2, 3, 4, 10 0.989632 5 

l-h-c 1, 2, 3, 4, 9 0.98794 5 

l-h-d 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16 0.948361 11 

l-h-s 1, 2, 3, 8 0.993726 4 

l-l-c 1, 2, 3, 8, 16 0.993997 5 

l-l-d 6, 7, 8, 11, 12, 15 0.980782 6 

l-l-s 1, 2, 4, 6  0.994178 4 

In the next simulation, the total execution time, the energy consumption and the degree of load 

balance calculated using DPSO-DA, TO-PSO [21], Greed [4] and SMM [6] are shown in Figures 6, 7 

and 8, respectively. 

From Figures 6 and 7, we can see that the DPSO-DA algorithm can get results which are better than 

Greed, SMM and TO-PSO in most problems, and its allocation scheme can not only reduce energy 

consumption but also ensure the minimum total completion time. From Figure 8, we can see that the 

DPSO-DA algorithm, which outperforms Greed, SMM and TO-PSO in the all problems, can also get a 

good load balance which is better than that of Greed, SMM and TO-PSO. This is because the load 
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balance is considered in our proposed DPSO-DA algorithm. Therefore, to ensure the minimum total 

execution time and the load balance, the DPSO-DA algorithm should select appropriate machines to 

constitute a cluster alliance according to different task sets. 

Figure 6. The total execution time under different task allocation solutions. 

 

Figure 7. The total energy consumption under different task allocation solutions. 
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Figure 8. The network load factors under different task allocation solutions. 

 

In the third simulation, we consider 16 sensor nodes and vary the number of tasks from 40 to 120. 

The total execution time, the degree of load balance and the total energy consumption calculated for  

l-h-s problems using DPSO-DA, TO-PSO, Greed and SMM are shown in Figures 9, 10 and 11, 

respectively. 
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than Greed and SMM. In addition, the degree of load balance cannot be reduced with the increased 

number of tasks. From Figures 9–11, we also can see that DPSO-DA outperforms TO-PSO in the 

performance of total execution time and load balance with the increased number of tasks. 

Figure 9. The total execution time for the dynamic tasks under different task allocation solutions. 
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Figure 10. The network load for the dynamic tasks under different task allocation solutions. 

 

Figure 11. The total energy consumption for the dynamic tasks under different task 

allocation solutions. 
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Figure 12. The runtime of DPSO-DA for five groups of h-h-c data. 

 

Figure 13. The DPSO-DA runtime for different types of test data. 
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population diversity and improve the global searching ability. Simulation results show that the 

proposed strategy achieves a good balance between local solutions and global exploration, effectively 

reduces the computation time of network and the network energy consumption, and balances the whole 

network load. In future work, we will consider the real multi-objective optimization of this problem 

and extend our current work to actual scenarios. 
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