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Abstract: This study provides a general framework to analyze the effects on correlation 

radiometers of a generic quantization scheme and sampling process. It reviews, unifies and 

expands several previous works that focused on these effects separately. In addition, it 

provides a general theoretical background that allows analyzing any digitization scheme 

including any number of quantization levels, irregular quantization steps, gain 

compression, clipping, jitter and skew effects of the sampling period. 
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1. Introduction  

Microwave radiometry is today a mature technology that was first used in radio-astronomy in  

the 1930s [1]. Since then, a large number of microwave radiometers have been developed for remote 

sensing applications to measure a wide range of natural phenomena (for examples, see [2-5]). 

Continuous technological evolution has given these systems new capabilities and features. One of the 

most relevant new technologies in the 1960s [6,7] was the digitization of the signals and the 

capabilities that emerge from specialized processing platforms such as today powerful an omnipresent 

Digital Signal Processors (DSP) and Field Programmable Gate Arrays (FPGA). Although digitization 
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provides versatility, re-configurability and other advantages for microwave radiometry, it also has side 

effects that must be carefully analyzed.  

Digitization effects can be separated into quantization and sampling effects. Mainly, the effects 

related with the quantization of the input signal (thermal noise) imply the loss of its statistical 

properties due to the non-linear quantization process. Consequently, it is not possible to apply the  

well-known Gaussian statistical relationships to the quantified signal. This effect has a large impact 

when limited quantization levels are considered, and it can be mitigated by increasing the number of 

quantization levels. Non-linear effects studies on Gaussian signals started with the early analysis of the 

spectrum of clipped noise by Van Vleck and Middleton [8]. In the late 1950s, Price published a work 

focusing on the relationship between the ideal correlation between two random signals with Gaussian 

probability density function (pdf), and the correlation measured after a non-linear manipulation of 

these random signals [9]. This relationship is now used to study the effects of arbitrary quantization 

schemes on the correlation of two signals.  

Sampling has an impact on the correlation of the two input signals by creating spectral replicas. 

Additional noise can be added to the mean correlation value due to spectra replication depending on 

the ratio between the sampling frequency and the signal’s bandwidth. Moreover, the sampling period 

and its inaccuracies (skew and jitter in the sampling periods) of the Analog to Digital Converter (ADC) 

can affect and distort the sampled signal and so the cross-correlation value. 

To compare different sampling and quantization schemes an equivalent integration time is defined 

as the one required to obtain the same resolution as in the ideal (analog) correlation. Hagen and  

Farley [10] conducted important work on this topic, where the effective time was defined and some 

easy-to-calculate digitization configurations were analyzed in depth.  

More recent works have extended the initial digital radiometer proposed by Weinreb in 1961 [6] for 

auto-correlation spectrometers in the radio-astronomy field to include total power radiometers, 

polarimeters [11], and digitization impact on interferometric radiometers [12-15].  

This work provides a general context to analyze the digitization effects on the cross-correlation of 

two Gaussian random signals in the most general case including any number of quantization levels, 

irregular quantization steps, gain compression, clipping, bandwidth, sampling frequency, and the skew 

and jitter inaccuracies of the sampling periods. 

In Section 2 a general analysis of the correlation over non-linear functions applied to Gaussian 

noise is given. In Section 3 quantization effects are analyzed as a particular case of the results of the 

previous section. Section 4 analyses the sampling process. Section 5 evaluates the correlation variance 

due to the digitization. Finally, Section 6 presents the main conclusions of this study. 

2. Non-Linearity Impact on the Correlation of Two Gaussian Random Signals  

The input signal of a microwave radiometer comes from natural thermal emission. Let us consider 

here two independent Gaussian random processes with a certain cross-correlation coefficient 

characterized by their probability density function (pdf). Furthermore, both input signals are assumed 

to be statistically identical and stationary, so the properties of the signals at a given time (T0) are 

independent of T0. Furthermore, both signals fulfill that their statistical properties can be deduced from 

a single, sufficiently long sample of the process (realization), i.e., they are ergodic processes [16]. 
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Thus, the variance of each series is constant and the covariance between elements depends only on 

their time separation. Finally, let x and y be input signals of a radiometer fulfilling the previous 

requirements. Usually, these random variables have zero mean (µx,y = 0), except for offsets, and are 

considered to have a standard deviation different from one . In this case, the joint probability of density 

is defined as in Equation (1): 

       
 

            
 

 
 
 
 

           
    

          
   

(1) 

where:  

      are the standard deviation of x and y signals, and  

    
  is the Pearson correlation coefficient and it is defined as the ratio between the covariance 

of x and y and the geometric mean of the product of their variances (Equation (2)): 

   
  

     

           
 (2) 

where the brackets     indicate a statistical average, over a time sequence with identical statistics 

(ergodic properties). Price’s theorem [9] relates the correlation coefficient of x and y after (   ) and 

before (   
 ) the non-linear functions (  

     and   
    ) to the random variables (Equation (3)):  

     

     
    

   
    

      
      (3) 

where:  

     is the correlation coefficient of x and y after the non-linear functions   
     and   

     are 

applied to x and y, respectively 

    
  is the ideal correlation coefficient of x and y (before the non-linear functions   

      

and   
    ) 

      
 are the standard deviation of x and y signals, (for the sake of clarity, from now 

on      
   ), and  

 k denotes the k
th

 derivative of each function. 

From Equation (3), it is possible to retrieve    
 , the ideal correlation between x and y, by  

k-derivation and further correlating the   
     and   

     signals and then k-integrating with respect to 

the    
  variable from −1 to +1. These operations can be defined as a relationship between the ideal and 

the non-linear correlations. It is defined here as the function        

   
           (4) 

Considering the correlation of two signals at a delay different form zero (x → x(t = 0) and  

y → y(t =   )) the effect of the hardware response can be included as depending on  , then  

Equation (2) becomes:  

   
                         (5) 
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where:  

         is the Pearson correlation coefficient (Equation (2)) at   = 0, and  

         
        

     
      
 

 
  

              is the so-called Fringe-Washing Function 

(FWF), as defined in [17], where Bx and By are the equivalent noise bandwidths, f0 is the
 

central frequency, and       and       are the normalized frequency responses of the x 

and y channels, respectively. Note that, if the channels’ frequency response are equal, with 

rectangular shape of bandwidth B, and centered frequency f0, the fringe-washing function 

reduces to the well-known formula                   . 

Equation (5) depends on the correlation coefficient and the hardware features. Usually, to avoid an 

underestimation of the correlation coefficient, Equation (4) has to be compensated by the existing 

delay between x and y as it follows:  

       
           

       
 (6) 

Assuming that the x and y are stationary random processes (thermal noise radiation) that fulfill the 

ergodic property, then Equations (2) and (5) can be calculated in practice using the cross-correlation 

technique (multiplication and time averaging). 

3. Quantization Impact 

This section particularizes the previous analysis to a generic ADC function. The degree of  

non-linearity of an ADC function depends on the number of quantization levels and the ADC span 

window (VADC =       ), going from 2 levels (1 bit) the most non-linear scheme, up to an infinite 

number of levels with an infinite VADC, which can be considered linear. As explained before, 

quantization does not take into account the sampling, so that this analysis considers an infinite 

frequency sampling (Fs → ∞). Sampling effects will be added in Section 5.  

Figure 1. Generic analog-to-digital transfer function. The function plotted has compression 

gain and different steps in analog and digitized domains.  
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Equation (7) shows a general quantization function (Figure 1):  

         
 

   

   

        (7) 

where: 

 x is the value of the signal in the analog domain (continuous in time and values), 

    and      are two consecutive threshold values of the input signal in the     space (see 

Figure 1), where     is the set of all the input threshold values in the digital domain  

(          m = 0…    ). Note that, in the most general case the distance between two 

consecutive steps does not have to be constant (                  ,  

          is the Heaviside function (step function) centered at    , 

   
  is the quantization step value between the           interval. Note that, in the most 

general case the distance between two consecutive steps does not have to be constant either 

   
      

  , and  

 the values    and      define the lower and upper bounds of the quantization window. 

Again, in a general case, the lower bound can be different from the upper bound  

(        ). 

The first derivative function of Equation (7) is given by: 

      

  
    

 

   

   

        (8) 

where   is the Kronecker’s delta:   = 1 if       and   = 0 if      .  

Substituting the results obtained in Equation (8) in Equation (3), with different   
     functions for  

x and y, and considering the first derivative function (k = 1), the relationship between the correlation of 

two signals before and after the quantization process is obtained in Equation (9): 

    

    
 

 

        
 

    
        

   

   

 

  

   
 
       

   

   

 
 
 
 

              

      
       

(9) 

Thereafter, it is easy to compute the integrals over the x and y domains by evaluating them at the 

points where Kronecker’s delta does not vanish. Therefore, Equation (9) becomes Equation (10): 

    

    
 

 

        
 

    
 

   

   

  
 

   

   

 
 
 
 

   
    

     
   

     

      
   

(10) 

and finally, the integration over the      domain is performed from −1 to 1. 

     
 

        
 

    
 

   

   

  
 

   

   

 
 
 
 

   
    

     
   

     

      
      

 

  

 
(11) 

From Equation (11) it is straightforward to include the impulse response of the system by 

considering several values of      for several delays ( ):  
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 (12) 

In some particular and simplified cases, Equation (12) can be obtained analytically, for instance in 

the case of quantifying with two levels (one bit,        and    
    

 
  ). In this case,  

Equation (12) becomes the well-known solution stated in Equation (13) [9]:  

            
 

 
                (13) 

Otherwise, when the quantization scheme is more complex Equation (12) can only be analyzed 

numerically, such as having different numbers of bits, when signals are clipped, when the quantization 

steps are irregular, when the ADC has a non-linear circuit before that exhibits gain compression, when 

there is no symmetry between the positive and negative parts or many other possibilities. 

Figure 2 has been obtained from Equation (12) for several quantization schemes. Two      functions 

are plotted for reference, the coarsest quantization scheme (i.e., 2 levels/1 bit, Equation (13)), and the 

ideal one (i.e., infinite levels,              ). Three more functions are shown considering an ADC 

span window of 5σx,y (VADC = 5σx,y), 15 quantization levels or 3.9 bits (          , note that it is not 

necessary to have an integer number of bits), but changing the non-linear function. Several      

functions have been considered such as equally spaced levels, using gain compression modeled by an 

hyperbolic tangent (             ) or having randomly spaced levels. All results are different from 

the others, showing the need of a deeper analysis.  

Figure 2. Relationship between the non-linear and the ideal correlation for different 

digitization schemes.  
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the comparison of several quantization schemes. Obviously, the linearity of any      function is better 

as the RMSE is closer to zero. For a given application, there is a maximum distortion of the RMSE that 

can be afforded by the        and that is called MaxRMSE. If the relationship between the quantized and 

the ideal correlations is linear enough (RMSE < MaxRMSE), then the value of the quantized correlation 

matches with the ideal correlation and there is no need of using the         function. Otherwise, if it is 

not linear enough (RMSE ≥ MaxRMSE) then, the obtained correlation has to be modified by the 

        function in order to retrieve the real correlation.  

Figure 3 presents the RMSE computed using Equation (12), with different quantization levels and 

VADC. Each curve has a minimum that corresponds to the optimum configuration of VADC with respect 

σx,y. As the number of quantization levels increases, the minimum value of RMSE curve gets closer  

to 0, and the VADC/σx,y range where the curves remain close to 0 increases as well, since the function 

q[·] is linear over a wider range of input powers. By inspecting Figure 3 it is clear that for VADC < 2σx,y, 

clipping has a dominant impact over the non-linear correlation. This effect has the maximum impact 

when the clipping reduces the whole ADC to a 2 level decision (1 bit). As the clipping effect increases, 

the RMSE value converges to the RMSE of the 1 bit/2 levels quantization (RMSE =14.2%), which is 

the most non-linear quantization scheme possible.  

Figure 3. Root mean square error and ADC span window relationship for different equally 

spaced quantification levels. 
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number of bits. The maximum effect occurs when the VADC is so spread over σx,y that only two levels 

are effectively used for quantization.  

Another conclusion that can be drawn from Figure 3, it is that each quantization level has its own 

optimum ADC span window (VADC) with relation of the standard deviation of the input signal. This is 

a critical design parameter and it has been summarized on Table 1 for some quantization schemes. 

Table 1 shows that the two-level quantization scheme is not sensitive to the VADC/σx,y relationship 

and the RSME is always 14.2% and, on the other hand for 31 levels the relationship between quantized 

and ideal correlation is almost linear. Furthermore, as the number of levels increases the minimum 

RMSE decreases exponentially (Figure 4) and it occurs at a higher VADC/σx,y ratio. 

Table 1. Summary of the critical design parameter VADC/σx,y. Relationship between its 

optimal configuration and the minimum root mean square error obtained for some 

quantization schemes. 

Levels VADC/σx,y optimum RMSE minimum [%] 

2 (1 bit) no optimum 14.2 

3 (1.6 bits) 0.7 4.7 

7 (2.8 bits) 1.8 1.4 

15 (3.90 bits) 2.2 0.3 

31 (4.95 bits) 3.0 0.02 

63 (5.97 bits) 3.5 0.0066 

Figure 4. Minimum root mean square errors for different quantization levels, it decreases 

following an exponential trend, (a) RMSE decreasing vs. the quantization levels, and  

(b) RMSE in a semi-log axis decreasing vs. the number of bits. 

  

(a)       (b) 
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Figure 5. Root mean square error for different levels and different spaced quantification 

levels, (a) 7 quantization levels, and (b) 15 quantization levels. 

  

(a)       (b) 

 

In both cases, Figure 5(a) (seven levels) and Figure 5(b) (15 levels), there are no changes in the 
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this work, the spectrum is computed following Equation (12). Therefore, the analysis can be 

exhaustive and include different quantization levels for two input signals for any complexity, gain 

compression, different bandwidths, and different channel frequency responses. The frequency power 

density is the Fourier transformation of the cross-correlation function, which is the Wiener-Khinchin 

theorem (Equation (14)):  

              

 

  

                                
 
 (14) 

Furthermore, Equation (14) also shows the relationship of the cross-correlation spectrum with the 
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          (15) 

where the function           can be obtained analytically (following Equation (13)) or numerically 

(following Equation (12)). 

The effect of the quantization in the cross-correlation spectrum is to decrease and distort it in the 

pass-band and spread it over the rejected band. Figure 6 presents an example of the impact of the 

quantization on the spectrum computed following Equation (15). The input signals, x and y, that have 

been considered for this analysis have a rectangular frequency channel’s response with a pass-band 

bandwidth of 2B and a VADC = 5σx,y relationship for all the quantization schemes. 

Figure 6(a) presents the x and y linear cross-correlation on the delay domain for several quantization 

levels. The lower the number of levels, the higher the correlation distortion. Figure 6(b) shows the 

corresponding spectrum of cross-correlations presented in Figure 6(a), which have been computed 

following Equation (15). As expected, the two-level scheme has the highest spectrum distortion, the 

spectrum spread increases on the rejected band and the pass-band decreases.  

Figure 6. Effect of the quantization on the cross-correlation spectrum, (a) ideal  

cross-correlation (      ) and cross-correlation for different quantization levels, and  

(b) their corresponding spectrum. 

 

(a)       (b) 
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Table 2 summarizes these results, the main conclusion is that using VADC = 5σx,y and at least 15 

quantization levels it can be assumed that it neither spreads nor distorts the spectrum. Figure 7 shows 

the effect for two      functions and for seven quantization levels. It can be observed that the 

compression gain reduces the distortion and the spread spectrum.  

Figure 7. Effect of the quantization on the cross-correlation spectrum, (a) ideal  

cross-correlation (      ) and cross-correlation for two different quantization schemes 

using 7 levels, and (b) presents their corresponding spectra. 
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 (16) 

where      is the expected non-linear cross-correlation value, and     
is the standard deviation.  
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Moreover, the SNR term is related with the radiometric resolution [18], which is one of the figures 

of merit of any radiometer. The SNR can decrease due to an increase of the standard deviation of the 

correlation or due to a decrease of the     , i.e., a noise increment on the pass-band (Equation (2)).  

Figure 8 shows an ideal baseband spectrum with an infinite sampling frequency (         , in 

black) and a cross-correlation spectrum spread due to quantization (         , in green) for different 

Fs and its replicas [19,20]. After quantization and sampling, and further cross-correlation of the 

signals, the quantization tail of the Nyquist’s replica (Fs = 2B, in red) overlaps the pass-band of the 

baseband replica, so an extra amount of noise is included in the measurement of   
 
  , and the effect is 

a decrease of the calculated mean value (Equation (2)). On the other hand, the standard deviation remains 

constant, but the SNR decreases, which has a large impact when considering sub-Nyquist sampling.  

Figure 8. Effect of the sampling on the correlation spectrum, (F{·} stands for Fourier 

transform). Spectrum of the ideal and the quantized correlation at baseband, black and 

green, respectively. In red, it is the first spectrum replica for the minimum sampling 

frequency which fulfills the Nyquist criterion (Fs = 2B). In blue, it is the first spectrum 

replica for Fs >> 2B. 

 

 

If the sampling frequency increases, then the first replicas (Fs >> 2B, in blue) appear further away 

from the band-pass replica and the tail effect has less impact than before. This is why when only few 

quantization levels are used an increase of the sampling frequency has a significant impact on the 

radiometric resolution. Even though, it has less impact when more quantization levels are used.  

Figure 9 shows the impact on the quantized correlation of different sampling frequencies. The 

considerations for these plots are a 2 quantization levels scheme, a noise equivalent band-pass 

bandwidth of 2B (assuming a band-pass signal), and VADC = 5σx,y, taking into account the previous 

considerations about the spectrum replicas. Figure 9(a) shows the deformation of the fringe washing 

function for a set of sampling rates. The sub-Nyquist sampling (Fs = 0.75 FNyquist) has the largest 

deformation: it is wider, sharper than the rest of them, and the side lobes are higher.  

For the exactly Nyquist sampling rate the fringe-washing function is still sharp and wide. For a 

higher sampling rate (Fs > 2 FNyquist) the function is not affected by the sampling rate. On the other 

hand, the spectrum in Figure 9(b) is totally distorted in the sub Nyquist sampling rate case, and 

recovers its original shape as the sampling rate increases.  
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Figure 9. Impact on the quantized correlation of different sampling frequencies.  

For 2 quantization levels, a bandwidth 2B (assuming a band-pass signal), and VADC = 5σx,y.  

(a) shows the fringe-washing function deformation, and (b) shows the effect on their spectrum.  

 

(a) 

 

(b) 

 

Figure 10 shows the impact on the quantized correlation of different sampling frequencies. The 
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achieved for lower sampling rates. Figure 10(a) shows the distortion of the fringe-washing function 

considering different sampling rates. The sub-Nyquist sampling (Fs = 0.75 FNyquist) has the largest 

distortion: it is wider, sharper than the rest of them, and the side lobes are higher. For a larger sampling 

rate (Fs ≥ FNyquist) the function is not affected by the sampling rate. On the other hand, in the  
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its original shape as the sampling rate increases. As expected, it has better performance for higher 

sampling rates.  

Figure 10. Impact on the quantized correlation of different sampling frequencies.  

For 31 quantization levels, a bandwidth 2B, and VADC = 5σx,y. (a) shows the deformation 

for the fringe-washing function, and (b) shows the effect on their spectrum. 

 

(a) 

 

(b) 
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Figure 11 shows the effect of these inaccuracies, that can be summarized into skew (TSkew), which is 

the delay offset between the sampling time of x and y, and jitter, which is the time fluctuation above 

the mean value (TJitter). The impact of the skew is changing the point where the FWF is evaluated and a 

phase rotation of the correlation coefficient if the working frequency is not exactly zero. Meanwhile, 

jitter creates a perturbation for each correlation sample around the mean point with zero mean. 

Figure 11. Impact of the clock inaccuracies on the correlation value. Tskew is the sampling 

rate offset between x and y, and TJitter is its fluctuations due to clock inaccuracies.  

 

 

A clock skew error not only has an effect on the modulus of the correlation coefficient, but it affects 

its phase by rotating the real and imaginary parts [21], as it is shown in Equation (17):  

        
         

                                                             

                                   
(17) 

where:  

         
                , the correlation coefficient is a complex value with modulus 

and phase (     )  

      
  

  
 is the ratio between the residual frequency (  ) and the sampling frequency, 

residual digital frequency of the signals, and         

            is the fringe-washing function evaluated at      , and  

    and    are the sampling periods for the x and y inputs, respectively. Both sampling times 

are identical except for the skew and jitter effects (                        ).  
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On the other hand, the jitter is a random variable effect that can be statistically modeled as a 

polynomial of standard deviation depending on time (                         ), where n and 

m are two different samples. So that, it can be associated to two different and independent  

processes ([22,23]): 
 

 the aperture jitter, which is related to the random sampling time variations in the ADC 

caused by thermal noise in the sample&hold circuit. The aperture jitter is commonly 

modeled as an independent Gaussian variable with zero mean and a standard deviation of 

            , and  

 the clock jitter, which is a parameter of the clock generator that drives the ADC with the 

clock signal. The clock jitter is modeled as a Wiener process, i.e., a continuous-time  

non-stationary random process with independent Gaussian increments with a standard 

deviation equal to                     . 

Taking into account a wideband signal in jitter terms (fulfill the inequality             ). From 

here, x can be defined using its discrete-time Fourier transformation (Equation (18)):  

                    

    

     

                  (18) 

where     is the value of the instantaneous jitter. Thence, following Equation (18) the correlation can 

be defined again using Equations (14) and (18):  

               
             

                
            

    

     

                 (19) 

                
            

    

     

                (20) 

where:  

   
             is the expected value of the jitter and it depends on the jitter type [23],  

        is the existing jitter between the mth
 sample of x and the nth

 sample y, and  

   is the digital delay between the cross-correlation samples (         ). 

Equation (21) applies for an aperture jitter and Equation (22) applies for the clock jitter:  

                 
       

 
  and   

                    
        

 
  if n≠m else 1 (21) 

                 
                   

                    
               (22) 

where      is the phase noise constant of the oscillator. Thence, the impact of the aperture jitter to the 

cross-correlation coefficient is shown in Equation (24): 

                               
             

 

 

  

         

         
                 

              

 

  

          

(23) 
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 (24) 

where:  

         is the cross-correlation coefficient modified by the jitter,  

        is the cross-correlation coefficient, and 

   denotes the convolution operator, 

From Equation (22) it can be inferred that the aperture jitter does not depend on the sampling rate 

and it has a low-pass filter effect on the correlation spectrum with its cut-off frequency depending on 

    . Particularizing Equation (24) in the case of having a rectangular spectrum, then Equation (24) 

becomes Equation (25), and the cross-correlation function is multiplied by an       

 

function 

(       
 

  
    

 
  

 

 
): 

                   
                

 
         

   

    

       
    

 

  
      

       
 (25) 

As it can be seen, in the case of aperture jitter the coherence loss ratio (Equation (20)) is 

independent of the number of sampling points N (therefore of the integration block length TsN), while 

in the case of clock jitter it strongly depends on it (Equation (21)).  

7. Analysis of the Cross-Correlation Variance due to the Digitization 

In the previous sections, quantization and sampling have been analyzed in terms of the impact on 

the retrieved value of the correlation. In this section, the variances are analyzed taking into account 

both effects (quantization and sampling). In a general case, the output of a correlator of two quantized 

and sampled signals after averaging Nq samples is defined as: 

        
 

  
   

  

   

          
          (26) 

where:  

    is the sampling period for the x and y inputs, respectively. In most of the  

applications both sampling times are identical except for skew and jitter effects  

(                        ), for simplicity, without loss of generality, skew and jitter 

can be simulated as well), and  

      are defined in Equation (3).  

Obviously, the product of a pair of samples of                     
         in Equation (26) 

does not follow a Gaussian pdf. Rather, the distribution of         follows a Rayleigh pdf when the g 

functions are linear (no quantization). In a more general case, having non-linear      functions, the 

distribution of         follows different trends depending on the quantization scheme. However, the 

average of many of these products, over a large number of pairs of samples, approaches a Gaussian 

pdf, as implied by the central limit theorem. The variance of the correlator output can then be 

calculated as in Equation (27): 
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  (27) 

where the first term of this addition is expanded as Equation (28): 

         
   

 

  
                

           
                    

  

   

  

   

 (28) 

Thence, Equation (28) is split in two parts, the first one takes into account only the elements which 

have the same n and m time indexes, and a second part, which is the rest of the Equation (28):  

         
   

 

  
 

 
  
 

  
 

              
           

                    

  

   

 

               
           

                    

  

   
   

  

    
  
 

  
 

 (29) 

the first term of Equation (29) can be computed using the properties of the fourth and second statistical 

moments relationship for zero mean Gaussian random variables [18], as follows:  

               
           

                     

  
             

             
                    

              
             

                    
  

       
       

             
 
      
       

        
       

               
 
  

(30) 

where:  

       
  and       

  are the variances of       and      , respectively, and  

             is the modulus of the cross-correlation coefficient of the input signals after the 

non-linear function.  

The second term in Equation (30) can be expanded using the same statistical moments relationship: 

 

  
                

           
                     

  

   
   

  

   

 

 
  
 

  
 

 
    

  
               

             
                    

  

   

 
 

  
                

             
                    

  

   
   

  

    
  
 

  
 

 
    

  
            

 
      
       

  
 

  
        

  

   

                

 

 

(31) 

where: 

          and          are the auto-correlation of the       and        respectively taking 

into account all the samples between sample 1 and the Nq, as in Equation (12). 



Sensors 2011, 11                            

 

 

6084 

The first part of the variance of the correlation is obtained by combining the results obtained in 

Equations (30) and (31):  

         
   

 
 
 

 
 

      
       

 

  
               

 
  

    

  
            

 
      
       

  
 

  
        

  

   

                
 
 
 

 
 

 
      
       

 

  
  

 

  
        

  

   

                            
 
      
        

  

(32) 

Finally, the value of the variance of the   
 -samples averaged correlation is given by:  

      

  
      
       

 

  
  

 

  
        

  

   

                 (33) 

and arranging Equation (33), the variance appears in its usual form, as it is known in the literature [17]: 

      

  
  
 

  
  

 

  
        

  

   

                 (34) 

where,   
        

       
  is the variance for each sample of the correlation (  

   ). 

Following Equation (25), Figure 12 shows the evolution of     

  with the integration time. The 

signals considered in these plots have a noise equivalent squared bandwidth of pass-band of 2B, 

        , and VADC = 5σx,y.  

Figure 12. Impact of the number of averaged samples on the      

 , (a) shows the impact 

for a 3 level quantization scheme and different sampling rate, and (b) shows a constant 

sampling rate changing the number of quantization levels.  
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Figure 12. Cont. 

 

(b) 

 

Figure 12(a) shows the results for the three quantization levels, all the curves converge to zero 

asymptotically. The Fs = 0.75FNyquist curve converges faster, because its samples are uncorrelated 

among them. For a given number of averaged samples, the variance of the quantized correlation 

increases with the sampling rate, because successive samples are more and more correlated. Recall 

that, abscises axis of these plots are displayed in number of averaged samples, not in integration time 

units. Obviously, for a given integration time, the plot with the highest sample rate has the 

lowest      

 
, it has had time to average more samples despite that for a given number of samples it 

exhibits the worst performance.  

In Figure 12(b) the sampling rate has been frozen to Fs = FNyquist and two quantization schemes has 

been analyzed (3 and 15 levels). The three-level curve converges more quickly to zero than  

the 15 levels curve. This is because the fringe washing function is shaper due to the higher non-linear 

distortion in three levels than in the 15 levels quantization. This effect is equivalent to have more 

uncorrelated samples. Despite the mean of the correlation is lower for the three-level that the 15-level 

quantization, the variance of the correlation is also lower in this case.  

8. Conclusions 

The impact of a general quantization scheme has been expressed and analyzed as a non-linear 

transformation. Despite the quantization can significantly affect the value of the ideal cross-correlation 

(   ), it is possible to recover the ideal correlation (   ) from the measured one (   ) using then the 

function               which can be always numerically obtained. It has been found that for each 

quantization scheme there is an optimum configuration of the VADC/σx,y relationship for which the 

linearity with respect the ideal correlation is minimized. Furthermore, quantization distorts and spreads 

the cross-correlation spectrum, decreasing the radiometric resolution.  
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Sampling also has an impact in the spectrum of the cross-correlation function, and depending on the 

sampling rate, replicas of the spectrum can overlap the main spectrum. This can be due to a sampling 

rate below the Nyquist criterion or, even above the Nyquist criterion, due to the non-linear quantization 

process which spreads the spectrum. In both cases, there is an impact on the SNR, and so on the 

radiometric resolution. Other sampling effects have been analyzed such as the clock inaccuracies: 

skew and jitter.  

Finally, the impact of quantization and sampling on the variance of the measurements has been 

studied. It has been found that it strongly depends on the relationship between the bandwidth of the 

cross-correlation and the sampling rate. As the sampling rate increases, the successive samples are 

more correlated, so they add less new information to the measurements and the variance  

decreases slowly.  
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