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Abstract: The sparse decomposition based on matching pursuit is an adaptive sparse 

expression method for signals. This paper proposes an idea concerning a composite 

dictionary multi-atom matching decomposition and reconstruction algorithm, and the 

introduction of threshold de-noising in the reconstruction algorithm. Based on the 

structural characteristics of gear fault signals, a composite dictionary combining the 

impulse time-frequency dictionary and the Fourier dictionary was constituted, and a 

genetic algorithm was applied to search for the best matching atom. The analysis results of 

gear fault simulation signals indicated the effectiveness of the hard threshold, and the 

impulse or harmonic characteristic components could be separately extracted. Meanwhile, 

the robustness of the composite dictionary multi-atom matching algorithm at different 

noise levels was investigated. Aiming at the effects of data lengths on the calculation 

efficiency of the algorithm, an improved segmented decomposition and reconstruction 

algorithm was proposed, and the calculation efficiency of the decomposition algorithm was 

significantly enhanced. In addition it is shown that the multi-atom matching algorithm was 

superior to the single-atom matching algorithm in both calculation efficiency and algorithm 

robustness. Finally, the above algorithm was applied to gear fault engineering signals, and 

achieved good results.  
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1. Introduction  

Gears are important components in rotating machinery, and fault detection and diagnosis of gears 

has been the subject of intensive investigation. Generally, gear fault vibration signals heavily 

corrupted by noise are non-stationary signals whose fault features are more difficult to successfully 

extract than stationary signals. Therefore, studies on such signals are of extreme significance to 

engineering applications. 

Fault diagnosis of gears is currently a topic of intensive study, and many time-frequency analysis 

methods based on vibration signal have been developed, which include Short-time Fourier transform, 

Wigner-Ville distribution, Wavelet transform and Hilbert-Huang transform, etc., and good results have 

been achieved using these in gear fault diagnosis [1-7]. However, general time-frequency analysis 

methods lack adaptability to complicated signals due to the singleness of their basic decomposition 

functions. To achieve a more flexible, concise and adaptive expression of signals, Mallat and Zhang 

summed up previous research achievements based on wavelet analysis and raised the idea of 

decomposing signals on the over-complete dictionary in 1993. The basic function was replaced by the 

over-complete redundant function that was known as the atom dictionary, and the elements in the atom 

dictionary were known as atoms. M atoms with the optimal linear combination were picked out from 

the atom dictionary to represent a signal, which was known as the Sparse Approximation of the  

signal [8]. Besides, a matching pursuit (MP) algorithm based on the time-frequency atom dictionary 

was proposed. The algorithm adopted a strategy of obtaining the sparse expression of signals through 

gradual approximation. A group of primitive functions, i.e., atoms, were selected from the atom 

dictionary to calculate a linear expansion of signals and to achieve the successive approximation of 

signals by solving the rectangular projection of the signals on each atom. 

The proposal of the sparse decomposition based on the MP algorithm aroused extensive interest 

among researchers who did a lot of work on the optimization and improvement of the algorithm, as 

well as the expansion of its fields of application. In terms of the atom dictionary construction, atom 

dictionary construction methods based on the Gabor function [9,10], wavelet and wavelet packet 

functions [11-13], impulse time-frequency atoms [14], multi-scale chirplet [15] and other function 

models were proposed. In terms of applications, the MP algorithm has wide applications in mechanical 

failure diagnosis [15-19], image processing, video decoding [10], etc. Aharon et al. proposed a K-SVD 

optimization algorithm in which a redundant atom dictionary with superior sparse expression effects 

was obtained through an iterative learning and optimization process performed on the initial atom 

dictionary [20]. Wang et al. introduced characteristic signal waveforms as the basic atoms for the atom 

dictionary construction and applied them to the identification of the fault modes of rolling  

bearings [21]. Feng et al. applied various atom decomposition methods, including framework 

decomposition, the best orthogonal basis, MP, and basis pursuit, in the extraction of gear fault 

characteristics, and compared the effects of applying different methods [19]. Some other scholars have 
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studied the influences of different iteration termination conditions in the MP algorithm on the 

decomposition effects of high-noise signals [22]. 

However, all the references above have focused on the MP algorithms and applications using  

single-atom dictionaries, and few papers on composite dictionaries with different atom dictionaries 

being combined were reported. The concept of composite dictionaries was proposed in [16]. However, 

no further investigation and studies have been conducted, to the best of our knowledge. In this paper a 

new sparse decomposition and reconstruction algorithm is proposed, based on the Composite 

Dictionary Multi-atom matching pursuit in which the threshold de-noising was introduced. The new 

algorithm has a favorable effect in the extraction of the impulse signals of gear faults. Aiming at 

examining the effects of data lengths on the calculation efficiency of the algorithm, an improved 

algorithm of segmented decomposition and reconstruction that reduced calculation and program 

running time was proposed and the effect of noise on the algorithm stability was discussed. The 

analysis results of gear fault simulation signals and engineering signals indicate the feasibility and 

validity of the method. 

The paper is organized as follows: Section 2 presents the concept of sparse decomposition based on 

the MP algorithm. Sections 3 and 4 address the specific decomposition and reconstruction algorithm of 

composite dictionary multi-atom matching and its operational details for gear faults. Section 5 presents 

simulation signal analysis results and a segmented decomposition algorithm for long signal process is 

given in Section 6. The algorithm is validated through an application example in Section 7. Finally, 

Section 8 concludes the paper with some remarks about possible future work. 

2. Sparse Decomposition Based on the MP Algorithm 

For a given set { , 1,2,..., }kD k K g , the elements are unit vectors in the whole Hilbert space, 

i.e.,
NH R , where K N . The set D  is known as an atom dictionary, and the elements are 

known as atoms. Because of the redundancy of an atom dictionary ( )K N , vector kg  is no 

longer linearly independent. For an arbitrary real signal f H  with the length of N, a linear 

combination composed of m  atoms is found in D : 







1

0

M

m

kk mm
gcf  (1)  

Equation (1) is the sparse decomposition of signals, or known as the sparse expression.  MP is an 

algorithm that is frequently used for sparse decomposition. The principle is as follows: 

Supposing that H  represents the Hilbert space, then the atom dictionary in H  is defined, 

1kg . Let f H . To approach f  through MP, the most suitable one is first selected from the 

over-complete atom dictionary, i.e., Equation (2) is satisfied: 

 kk gfgf ,sup,
0

 (2)  

Thus, signal f  can be decomposed into the following form: 

fRggff kk

1

00
,   (3)  
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It is clear that 
0kg  and fR1  are orthogonal. Let kkk ggffg  ,, , then Equation (4) can be 

obtained: 

2
1

22
,

0
fRfgf k   (4)  

To minimize the energy Rf  for approaching errors, Hgk 
0

is necessary to maximize 


0

, kgf . Under infinite dimensions, it is generally impossible to acquire the extreme value of 

 kgf , , and it is only feasible to select an approximately optimal atom 
0kg , therefore: 

 kk gfgf ,sup,
0

  (5)  

where   is the optimization factor that satisfies 0 1  . Under finite dimensions, the maximum 

of  kgf ,  exists. Here 1  . 

Then, the same step is performed on the residual 1R f , and Equation (6) is obtained: 

fRfRgfR k

211 ,
1

  (6)  

Satisfying: 

 kk gfgfR ,sup,
1

1  (7)  

The MP algorithm is an iterative process. Signal residual Rf continues to be decomposed by 

constantly projecting it to a vector in the atom dictionary that matches it best. Thus, after m+1 

times of iteration:  

fRgfRfR m

k

mm

m

1,   (8)  

where 
mkg  satisfies: 

k

m

k

m gfRgfR
m

,sup,   (9)  

Because fRm 1  and 
mkg  are orthogonal, then:  

2
1

22

, fRgfRfR m

k

mm

m

  (10)  

With the decomposition process above being executed to order n :  

fRggfRf M
M

m

kk

m

mm






1

0

,  (11)  

Similarly, energy 
2

f  can also be decomposed into the following summation form: 

2
1

0

22
, fRgfRf M

M

m

k

m

m






 (12)  

According to Equation (12), the M-order approximation form of vector f  in atom dictionary D  

can be obtained. The approximation error is expressed as fRM . It is clear that the error energy 

trends to gradually attenuate with the decomposition. 
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3. Decomposition and Reconstruction Algorithm of Composite Dictionary Multi-Atoms Matching 

A key step to implement the MP algorithm is how to construct an atom dictionary, so that signals 

can better match atoms during the sparse decomposition. The construction of the atom dictionary 

directly affects the sparse expression of the signals to be analyzed. The atom dictionary construction 

method based on the parameterized function model is the most frequently adopted. A specific 

primitive function is discretely parameterized (e.g., time, frequency, contraction, translation, 

modulation, etc.) in this method. Each parameter group corresponds to an atom, and the set of atoms 

constitutes the atom dictionary. A dictionary based on a specific function structure is only suitable for 

analyzing signals with certain characteristics; however, the signals in engineering have complicated 

components. To effectively extract the abundant characteristic information contained in signals, 

different characteristic atom dictionaries are combined to form a composite dictionary according to the 

structural characteristics of signals [9]. During the sparse decomposition of signals, a best matching 

atom is selected from each characteristic dictionary each iteration, with their projections being solved 

respectively. The weighted linear superposition of the projections is used as the overall projection. The 

best matching atom refers to the one with the maximal absolute coefficient of the projection that the 

signal projects on it. The projection coefficient can be obtained by calculating the inner product of the 

signal and the atom, i.e., c = < x,d >, where x represents the signal; d represents the atom, and 1d . 

The signal projection on the atom can be expressed as the product of the projection coefficient and the 

atom. 

The introduction of the above idea is known as the composite dictionary multi-atoms matching. The 

decomposition algorithm is implemented as follows: 

(1)  Corresponding characteristic functions are selected to construct atom dictionary Di (i = 

1,2,…,I; I is the number of characteristic atom dictionaries) in a parameterized manner 

according to the structural characteristics of the signals to be analyzed. Two or more 

characteristic atom dictionaries are combined to form composite dictionary D. 

(2) Primary signal x(t) is given to the residual signal to obtain initial residual r0. 

(3) For residual signal rm (m = 0,1,2,…,M-1; M is the times of iteration), a best matching atom dmi 

is searched in corresponding characteristic dictionary Di respectively, and the projection 

coefficient cmi is solved. The weighted linear superposition of all the projections are the overall 

projection, i.e., 





I

i

mimiim dcap
1

 (13)  

 where ai is the weighted coefficient of each characteristic atom dictionary, and 1
1




I

i

ia . 

(4) With the residual signal being subtracted by the overall projection, a new residual signal is 

obtained. 

(5) Steps (3–4) are iterated till the iteration termination condition is satisfied. 

(6) After the sparse decomposition, matching coefficient cmi and matching atom dmi of each order 

are obtained. 

The corresponding flow chart is shown in Figure 1. 
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Figure 1. Flow chart of the decomposition algorithm.  
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The reconstruction algorithm is an inverse process of the decomposition algorithm. Equation (14) is 

as follows: 


 


M

m

I

i

mimii dcax
1 1

~

 (14)  

The principle of threshold de-noising is introduced in Equation (14). For each reconstruction 

calculation instance, the projection coefficient cmi is set to be zero if it is less than some group of 

thresholds Ti For those being more than or equal to the thresholds, they remain unchanged (hard 

threshold) or get weakened (soft threshold), i.e., 











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imimi

mitmi
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,0
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 (15)  

or: 












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imiimi

imiimi
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,0

,

,

)(
~

 (16)  

The calculation equation of the threshold is 
iii MT ln2 , where i  is the standard difference of 

matching coefficients of all orders; and iM  is the number of matching coefficients, i.e., the times of 

iteration. Then, the calculation equation for the reconstruction algorithm after the threshold is: 


 


M

m

I

i

mimii dcax
1 1

~~

 (17)  

4. Composite Dictionary Multi-Atoms Matching for Gear Fault 

The vibration signals of such typical rotating machinery such as gears are basically induced by the 

meshing effect and the rotation of gears, and the characteristics of shock vibration and transient 

vibration may also emerge in the vibration signals of fault gears. To achieve the effective matching 

analysis on the characteristic structures of gear vibration signals, the Fourier dictionary and the 

impulse time-frequency dictionary [14] are constructed using the method of parameterized function 

model, and the two dictionaries are combined to form a composite dictionary. The construction method 

is described in detail as follows: the primitive function of the Fourier dictionary is a sine function, i.e., 

( , ) sin(2π )fou fouf K ft     (18)  

where f is the frequency parameter;   is the phase parameter; and fouK  is the normalized coefficient. 

To guarantee that each atom has the unit energy, i.e., 1),(
2
 ffou , the primitive function of the 

impulse time-frequency dictionary refers to the exponential decay function, i.e., 

( )e sin 2π ( ),
( , , , )

0,

p t u

imp

imp

K f t t u
p u f

t u


   
  



 (19)  

where p  is the damping characteristic of the impulse response; u  is the initial time when an impulse 

response event occurs; f  is the damped natural frequency of the system;   is the phase deviation; 
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and impK  is the normalized coefficient. Discrete values are given to parameters in the function model 

within a certain range. A group of parameters are substituted into the function model to obtain an atom, 

and all of the atoms form a dictionary. However, there are too many parameters in models (two in the 

Fourier dictionary and four in the impulse time-frequency dictionary) and it is very difficult to evaluate 

them one by one. Therefore, the optimization algorithm is used to find the optimal marching atom. 

The genetic algorithm (GA), a kind of calculation model of biological evolution simulating of 

natural selection and genetic mechanism based on Darwin’s theory of evolution, was proposed by 

Holland in 1975. It is a method of searching the optimal solution by simulating the natural 

evolutionary process [23]. In this algorithm, joint coding is first performed on all the parameter groups 

needed for constructing characteristic atom dictionaries, to produce randomly an initial population 

with a certain scale N. Each parameter group corresponds to an individual, and crossing and mutation 

are conducted according to a certain probability. The fitness value of each individual is then calculated, 

those best individuals with the maximum fitness directly go to the next generation, N-1 individuals are 

selected from the parent generation with the random iteration method and go to the next generation, 

and all the next-generation individuals form the new population. The new population repeats crossing, 

mutation, fitness calculation, selection and other operations to continuously evolve, till the evolution 

generations reach a preset value. Finally, an individual with the maximum fitness is selected from the 

optimal ones in each generation as the optimal parameter group, and is substituted into the primitive 

function after decoding to form the optimal matching atom. The corresponding flow chart is shown in 

Figure 1. 

5. Simulation Signal Analysis 

In Reference [24], a vibration signal model for gears with cracking faults was presented: 

~ ~

0

( ) [1 ( )]cos{2π ( )} ( )cos(2π )
M

m mm m m r r

m

y t A a t f t b t d t f t 


       (20)  

The meanings of the various parameters in Equation (20) can be known by referring to the original 

literatures. During the simulation, the gear is assumed to have 25 teeth and the rotation frequency is  

60 Hz. The meshing vibration has three rather significant meshing harmonics. The meshing 

frequencies of the three harmonics are 1.5, 3 and 4.5 kHz. To simulate the gear fault effects, an impact 

is assumed to be produced by the gear tooth cracking near 0° in a complete revolution of gear and the 

impact excites the resonance at 5 kHz. The sampling frequency is set to be 15,360 Hz, the time-domain 

waveform and spectra upon two rounds of gear rotation are then shown in Figure 2. From the 

frequency spectrogram, meshing frequencies of the three orders (1.5, 3 and 4.5 kHz), their modulation 

sidebands and the impulse response bands in the vicinity of 5 kHz can be clearly found. To better fit 

real fault signals, random noise in standard normal distribution is introduced. The signal to noise ratio 

(SNR) is −0.72 dB as shown in Equation (21). The waveform and the frequency spectra are shown in 

Figure 3. The system resonance band induced by the fault shock after noising is basically overwhelmed 

by the noise: 

)/(log20 10 ns vvSNR  (21) 

where sv  and nv  are the effective values of the primary simulation signal and the noise, respectively. 
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Figure 2. Signal waveform and frequency spectrum. 

 

Figure 3. Signal waveform and frequency spectrum after noising. 

 

 

Composite dictionary multi-atom matching decomposition and reconstruction were performed on 

the simulation signal corrupted by noise using the algorithm. Experiments show that parameter setting 

in GA has a great effect on optimization results and computational efficiency. After balancing these 

two factors, the analysis parameters are as follows: in the Fourier dictionary, the range of f is set to be 

1–8,192 Hz; range of γ is 0–2π; joint coding length is 20; the population is 200; the maximal number 

of evolution generations is 100; the single-point mode is adopted for crossing, with 0.6 as the crossing 

probability; single-point mutation is adopted with the probability of 0.1; and the length of atom is 512. 

In the impulse time-frequency dictionary, the range of p is set to be 1,001–2,024; range of f is  

4,001–6,048 Hz; range of u is 1–512; setting Φ = 0 to simplify the problem, joint coding length is 30; 

the population is 300; and the other parameters are consistent with the Fourier dictionary. The terminal 

condition for MP iteration is the ratio of the residual signal energy to the initial one, i.e., η < 0.1. The 

weighted coefficients of the impulse time-frequency dictionary and the Fourier dictionary, i.e., both a1 

and a2, are equal to 0.5. The waveform and the frequency spectrum after the reconstruction are shown 

in Figure 4. Compared with Figure 3, the algorithm has clearly favorable reconstruction precision. 
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In the reconstruction algorithm, the weighted coefficients of the impulse time-frequency dictionary 

and the Fourier dictionary changed. For instance, it is set that a1 = 1, a2 = 0 or a1 = 0, a2 = 1. Here, the 

signals reconstructed only through impulse time-frequency atoms are known as impulse components 

while those reconstructed only through Fourier atoms are known as harmonic components. Thus, the 

impulse components or the harmonic components can be separately extracted, as shown in Figure 5. 

Figure 4 clearly shows that there are two large but not significant impulses, and the impulse interval 

cannot be determined. 

Figure 4. Waveform and frequency spectrum of reconstructed signals. 

 

Figure 5. Impulse component (above) and harmonic component (below). 

 

 

From the equation for calculating the threshold, it can be seen that the soft threshold only has the 

effect of amplitude attenuation different from the hard threshold. Therefore, the hard threshold is 

adopted here. The waveform and frequency spectrum of the reconstructed signals after the threshold 

are shown in Figure 6. Most noise has been removed, and the waveforms after two cycles of gear 

rotation as well as the impulse at 0° can be seen. The meshing frequency at 1.5 and 3 kHz as well as 

the system resonance band induced by the modulation sideband and the impulse can also be seen from 
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the frequency spectrogram. Similarly, setting that a1 = 1, a2 = 0 or a1 = 0, a2 = 1, then the impulse 

component and the harmonic component can be extracted respectively, as shown in Figure 7.  

Figure 6. Waveform and frequency spectrum harmonic of reconstructed signals with hard threshold. 

 

Figure 7. Impulse component (above) and component (below) with hard threshold. 

 

 

For signals corrupted by noise in Figure 3, reconstructed signals without threshold or with hard 

threshold are shown in Figures 8 and 9, provided that only the impulse time-frequency dictionary is 

used for single-atom matching. They are compared with Figure 5(above) and Figure 7(above). 

Compared with those reconstructed with impulse time-frequency dictionary single-atom matching, 

impulse signals can be extracted more effectively with the impulse component reconstructed with the 

composite dictionary multi-atoms matching, and the effect of threshold de-noising is better. In the 

running of MATLAB, the total iteration of composite dictionary multi-atoms matching is 50, and the 

running period of the decomposition algorithm is 128 s. The total iteration of impulse time-frequency 

dictionary single-atom matching is 393, and the running of the decomposition algorithm lasts 686 s. 

Compared with single dictionary, a composite dictionary can better match the signals to be analyzed in 

structure, so that the decomposition efficiency can be significantly enhanced. 
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Figure 8. Reconstructed signals with single-atom atom matching without threshold. 

 

Figure 9. Reconstructed signals with single- matching and hard threshold. 

 

 

To illustrate the influences of multi-atom matching, single-atom matching and threshold or  

non-threshold on the extraction effects of impulse signals, kurtosis indices and impulse indices are 

introduced. Their definitions are in Equations (21) and (22), both of which can reflect the amplitudes 

of the impulse energy in signals. The more the characteristic value is, the more distinct the fault 

information is, and the more significant the extracted impulse signals become. The primary signals 

with noise, the impulse component treated with multi-atom matching without threshold (multi-atom 

without threshold), the impulse component treated with multi-atom matching hard threshold  

(multi-atom hard threshold), reconstructed signals treated with single-atom matching without threshold 

(single-atom without threshold) and reconstructed signals treated with single-atom matching hard 

threshold (single-atom hard threshold) are calculated, respectively. The signals are described in Figures 3, 

5 and 7, Figures 8 and 9. The calculation results are shown in Table 1. It is clear that better effects of 

impulse signal extraction are achieved with the multi-atoms matching and the hard threshold compared 

with the single-atom matching and without threshold, respectively. 

The kurtosis index is defined as: 

4

1

41

x

N

i

ix
N

K



  (22)  

The impulse index is defined as: 

x

ix
I



)(max
  (23)  

where φx is the root mean square of a signal; and μ|x| is the mean absolute value of a signal. 
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Table 1. Comparison results of kurtosis indices and impulse indices. 

Signal 
Noising 

signal 

Multi-atoms 

non-threshold 

Multi-atoms 

hard threshold 

Single-atom 

non-threshold 

Single-atom 

hard threshold 

Kurtosis index 3.61 5.11 14.81 4.30 11.36 

Impulse index 4.77 6.21 14.07 5.80 12.35 

 

Table 2. Influences of noise intensity on the effects of impulse signal extraction with 

multi-atoms matching or single-atom matching. 

 

SNR = −0.72 dB SNR = −6.60 dB SNR = −10.21 dB 

Kurtosis 

index 

Impulse 

index 

Kurtosis 

index 

Impulse 

index 

Kurtosis 

index 

Impulse 

index 

Noising signal 3.61 4.77 2.76 3.22 3.18 4.10 

Multi-atoms  

non-threshold 
5.11 6.21 4.39 5.15 3.79 4.92 

Multi-atoms  

hard threshold 
14.81 14.07 9.99 10.82 8.30 8.92 

Single-atom  

non-threshold 
4.30 5.80 2.83 3.50 3.97 6.24 

Single-atom  

hard threshold 
11.36 12.35 6.24 6.94 4.22 5.81 

 

Intensified noise is applied to the simulation signals above. When the SNR of noising signals is 

−0.72, −6.60 and −10.21dB, kurtosis indices and impulse indices are used to discuss the effects of the 

composite dictionary multi-atom matching and the impulse time-frequency dictionary single-atom 

matching on the impulse signal extraction. The comparison results are listed in Table 2. The 

comparison between the kurtosis and impulse indices with noising signals shows that the extraction 

effects of the multi-atom matching and the corresponding hard threshold are still significantly 

enhanced while there is little enhancement in the effects of the single-atom matching and the 

corresponding hard threshold. 

 

6. Segmented Decomposition Algorithm for Long Signal Process 

 

The frequency spectrogram in Figure 6 shows the system resonance band induced by impulse faults. 

However, the frequency resolution is not high enough, showing very few signal points (the length N of 

the signal to be analyzed in Section 4 is 512). The minimal interval on the frequency axis is  

fs/N = 30 Hz, which causes inexact modulation frequency identification for the sideband. To enhance 

the frequency resolution, the data are increased. However, this causes the iteration of the 

decomposition algorithm, increases the time needed for each iteration, and results in overlong running 

of the MATLAB program. Table 3 shows the iteration times and the calculation time of the 

decomposition algorithm when the number of data points is 512, 1,024, and 2,048. 
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To solve the problem of the running time of the program, the algorithm is improved. The primary 

data sequence is evenly segmented by 512, and each section is decomposed to obtain the matching 

coefficients and matching atoms of all orders for each section of the data sequence. The threshold is 

also conducted upon sections, respectively. After the reconstruction, all sections are combined to form 

the reconstructed signal. Thus, the running time of the improved algorithm is significantly reduced. 

Table 3 shows the comparison results. The iteration of the initial decomposition algorithm is doubled 

if the number of data points is doubled, while the running time is quadrupled. However, both the total 

iteration and the running time of the segmented decomposition algorithm are only doubled. 

 

Table 3. Comparison of iteration times and running time of initial algorithm and improved algorithm. 

Number of 

data points 

Frequency 

resolution 

(Hz) 

Initial decomposition 

algorithm 

Segmented decomposition 

algorithm 

Iteration  

times 

Running time 

(s) 

Iteration  

times 

Running time  

(s) 

512 30 50 128 54 141 

1,024 15 106 470 117 294 

2,048 7.5 234 2,210 235 587 

 

Figures 10–12 show the waveform and frequency spectra of primary signals, the waveform and 

frequency spectra of the reconstructed signals with hard threshold, and the waveform and frequency 

spectra of the signals removed through filtration by threshold when the number of data points is 2,048, 

respectively. It can be seen that most noise signals are removed by filtration through hard threshold.  

 

Figure 10. Waveform and frequency spectrum of primary signals (2,048).  

 

 

 



Sensors 2011, 11  

 

 

5995 

Figure 11. Waveform and frequency spectra of reconstructed signals after hard threshold (2,048).  

 

Figure 12. Waveform and frequency spectrum of signals after filtration with hard threshold.  

 

 

The waveforms and frequency spectra of the separately extracted impulse component and harmonic 

component are shown in Figures 13 and 14, respectively. The impulse component is embodied in eight 

times of significant equally-spaced shock, with an interval of 0.0167 s, and the frequency is exactly the 

rotation frequency, i.e., 60 Hz. The frequency spectra are embodied in the system resonance frequency 

band induced by the fault shock (in a vicinity of 5 kHz). The harmonic frequency spectra are embodied 

by the meshing frequencies and modulation sidebands of all orders (some sidebands are removed by 

filtration due to low amplitudes). The demodulation spectra of the impulse component and the 

harmonic component are shown in Figure 15. Figure 15 (above) shows that the demodulation spectrum 

of the impulse component with a rotation frequency of 60 Hz and harmonic frequencies of all orders 

can be clearly found. Figure 15 (below) shows that the demodulation spectrum of the harmonic 

component and the harmonic frequencies of high orders are removed by filtration during the hard 

threshold with only the rotation frequency of 60 Hz being displayed. 
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Figure 13. Impulse component with hard threshold (2,048).  

 

Figure 14. Harmonic component with hard threshold.  

 

Figure 15. Demodulation spectra.  
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7. Application Example 

Figure 16 shows the driving chain of a gearbox on a high-speed finishing mill from a steel plant. 

On-spot monitoring information indicated that modulation information had been reflected by the 

frequency spectrogram about the vibration data since 14 September 2006. The modulation frequency 

was the rotation frequency of shaft II on the bevel box of finishing support H22 (30.1 Hz), as marked 

in Figure 16. This phenomenon remained at later periods. 

Figure 16. Driving chain of gearbox.  

 

 

Historical data on 1 July, 4 August, 28 August and 18 September were reviewed for analysis, and 

their waveforms and frequency spectra are shown in Figure 18. No impact features can be seen in the 

waveforms, which contain a lot of noise due to the industrial operating conditions. After the harmonic 

component was separately extracted through composite dictionary multi-atoms matching analysis, the 

resulting demodulation spectra are shown in Figure 19. From the spectrogram, the fault characteristic 

frequencies at 29.3 Hz or 31.25 Hz (with a certain deviation from the actual fault characteristic 

frequency 30.1 Hz due to the frequency resolution) could be clearly seen. In fact, the rotation 

frequency of shaft II was fluctuant in a small area at the project site, not exactly 30.1 Hz, and 30.1 Hz 

was a theoretical reference value. Besides, the amplitude became increasingly large at 0.7353, 1.225, 

1.481 and 1.637. On 1 July, however, the fault characteristic frequency at 29.3 Hz was not so clear, 

and the amplitude was general, indicating that the gear faults on Shaft II of the bevel box had become 

prominent and developed since 4 August or even earlier. The dismantled finishing support 22 was 

checked in November and noticed that gear Z5 (with 31 teeth) on shaft II of the bevel box was broken, 

as shown in Figure 17. 

Table 4. The sampling parameters of historical data in each group. 

 1 July  4 August  28 August  18 September  

Sampling length 2,048 2,048 2,048 2,048 

Sampling frequency 10 kHz 4 kHz 4 kHz 4 kHz 
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Figure 17. Fault gear Z5 on shaft II of the bevel box. 

 

Figure 18. Waveforms and frequency spectra of historical data. 

  

(a) 1 July  (b) 4 August  

  

  

(c) 28 August  (d) 18 September 
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Figure 19. Demodulation spectra with composite dictionary multi-atoms matching. 

 

(a) 1 July 

 

 

(b) 4 August 

 

 

(c) 28 August 

 

 

(d) 18 September 

 

If the same four groups of signals after hard threshold were reconstructed with the impulse  

time-frequency dictionary single-atom matching, then demodulation spectra could be obtained through 

demodulation, as shown in Figure 20. It was clear that all the fault characteristic frequencies in the 

three groups of data other than those that could be clearly seen on 18 September suffered interference 

from the intense noise, and the fault diagnosis judgment cannot be exactly decided. While fault 

characteristic frequencies could be detected with the composite dictionary multi-atom matching on  

4 August or even earlier, which provided earlier prediction and prevention information for the 

occurrence and development of gear faults. 
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Figure 20. Demodulation spectra with single-atom matching. 

 

(a) 1 July 

 

 

(b) 4 August  

 

 

(c) 28 August  

 

 

(d) 18 September  

8. Conclusions 

MP is a classic algorithm for sparse decomposition. However, it has certain drawbacks in the sparse 

expression of complicated and non-stationary signals due to rather singleness in the matching between 

the atoms in an atom dictionary and signals as well as the enormous amount of computation. Aiming at 

resolving this problem, a new sparse decomposition and reconstruction algorithm is proposed based on 

the composite dictionary multi-atom matching pursuit in this paper. The algorithm constituted a 

composite dictionary combining the impulse time-frequency dictionary and the Fourier dictionary to 

extract the impulse component on the basis of the structural characteristics of gear fault signals.  
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With the principle of threshold de-noising introduced in the reconstruction algorithm with 

composite dictionary multi-atom matching, the threshold was set. A hard threshold was performed on 

matching coefficients of all orders acquired with the decomposition algorithm, i.e., the matching 

coefficients being less than a threshold were set to be zero for reconstruction. According to the 

analysis results of data that were proved by the adoption of kurtosis indices and impulse indices, the 

effect of impulse signal extraction after hard threshold was better. Under intensified noise, the signal 

impulse effects after multi-atoms matching and related hard threshold were significantly improved 

compared with primary noising signals while those with single-atom threshold and hard threshold were 

not enhanced much. In other words, composite dictionary multi-atoms matching achieve a better 

analytical effect than single-atom matching under the influence of intense noise. 

The data analysis showed that increasing data length would cause the computing amount of the 

decomposition algorithm and the running time of the program to be significantly increased. 

Accordingly, the algorithm was improved, i.e., a data sequence was evenly segmented by 512 points. 

The decomposition, threshold processing and reconstruction with multi-atom matching were 

conducted on each section, respectively. The data analysis proved that the calculation efficiency was 

significantly enhanced with the improved algorithm compared with the primary one. Further research 

is currently undergoing to analyze the more complex gearbox signals and improve the proposed 

method and make it more feasible. 
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