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Abstract: The sparse decomposition based on matching pursuit is an adaptive sparse
expression method for signal$his paper propose an idea concernin@ composite
dictionary multtatom matchingdecomposition and reconstruction algorithieind the
introdudion of threshold denoising in the reconstruction algorithm. Based on the
structural characteristics of gear fault signadlscomposite dictionary combining the
impulse timefrequency dictionary and the Fourier dictionamas constituted and a
genetic algorithmwas appliedo searchor the best matching atorithe analysis results of
gear fault simulation signals indicdtehe effecivenessof the hard thresholdand the
impulse orharmoniccharacteristic component®uld beseparately extracteteanwhile,

the robustness of the composite dictionary matibm matching algorithm at different
noise levelswas investigated. Aiming at the effects of data lengths on the calculation
efficiency of the algorithm, an improved segmented decomposition amchsteuction
algorithmwasproposed, and the calculation efficiency of the decomposition algowtsn
significantly enhancedin addition t is shownthatthe multtatom matching algorithrwas
superior to the singlatom matching algorithm in both calctitm efficiency and algorithm
robustnesskinally, the above algorithrvas applied to gear fault engineering signals, and
achieved good ressilt
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1. Introduction

Gears are important components in rotating machjreergt fault detection and diagnosis gafas
has been the subject of intensive investigatiGeneraly, gear fault vibration signals haly
corrupted by noise are natationary signalsvhosefault features are more difficult teuccessfully
extract than stationary signal¥herdore, studies on such signals are of extreme significance to
engineeringapplications.

Fault diagnosis of geaiis currently a topic ofintensive studyand many timdrequency analysis
methods based on vibration signal have been developed, which iigtiaddime Fouriertransform
WignerVille distribution, Wavelettransformand HilbertHuangtransform etc, and goodresultshave
beenachievedusing thesan gear fault diagnosi§l-7]. However, general tim&equency analysis
methods lack adaptability to complicated signals due to the singleness of their basic decomposition
functions.To achievea more flexible,concise and adaptive expression of signals, Mallat and Zhang
summed up previous research achievements based on wavelet analysis and raised the idea ¢
decomposing signals on the caxamplete dictionary in 1993 he basic function was replaced by the
overcomplete redundant functidhatwas known as the atom dictionary, and the elements in the atom
dictionary were known as atomd atoms with the optimal linear combination were picked out from
the atom dictionary to represent a signal, which was knowthesSparse Approximation of the
signal[8]. Besides, a matching pursuit (MP) algorithm based on theftegeency atom dictionary
was proposed. The algorithm adopted a strategy of obtaining the sparse expression dhsogigdls
gradual approximationA group of primitive functionsj.e., atoms, were selected from the atom
dictionary to calculate a linear expansion of signals and to achieve the successive approximation of
signals by solving the rectangular projection of the signals on each atom.

The prgosal of the sparse decomposition based on the MP algorithm aroused extensive interest
among researchers who did a lot of work on the optimization and improvement of the algasithm
well as the expansion of ifgelds of application. In terms of the atodictionary construction, atom
dictionary construction methods based on the Gdboction [9,10], wavelet and wavelet packet
functions[11-13], impulse timefrequencyatoms([14], multi-scalechirplet [15] and other function
models were proposeth termsof applicationsthe MP algorithmhas wide applications in mechanical
failure diagnosiq15-19], image processingideodecoding 10], etc. Aharonet al. proposed a KSVD
optimization algorithm in which a redundant atom dictionary with superior sparsessim effects
was obtained throughn iterative learning and optimizatioprocessperformed on the initial atom
dictionary[20]. Wanget al.introduced characteristic signal waveforms as the basic atoms for the atom
dictionary construction and appliedeth to the identification of the fault modes of rolling
bearings[21]. Feng et al. applied various atom decomposition methodgluding framework
decomposition, the best orthogonal basis,, MRd basis pursuitin the extraction of gear fault
characterists, and compared treffectsof appling differentmethodq19]. Someotherscholarshave
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studied the influences of different iteration termination conditions in the MP algorithm on the
decomposition effects of highoise signal$22].

However, all the referencesabove have focusedon the MP algorithms and applicationsing
singleatom dictionariesand few paperson composite dictionaries with different atom dictionaries
being combinedverereported The concept of composite dictionaries was propos¢icj However,
no further investigation anstudies have been conductéal the best of our knowledgi this paper a
new sparse decomposition and reconstruction algorithm is prgpbssdd on the Composite
Dictionary Multi-atom matching pursuit in whicthe threshold daoising was introduced. The new
algorithm has a favorable effect in the extraction of the impulse signals of gear faults. Aiming at
examiningthe effects of data lengths on the calculation efficiency of the algorithm, an improved
algorithm of segmented decomposition and reconstructiat reduced calculation and program
running timewas proposednd the effect of noise on the algorithm stability was discussed. The
analysis results of gear fault simulation signals and engineering sigdadate the feasibility and
validity of the method.

The paper is organized as follav&ection 2 presents tloencept ofsparse decomposition based on
the MP algorithm. Section3 and 4 addredbe specificdecomposition and reconstruction algorithm of
composite dictionary mukatom matching aits operatioal detailsfor gear fauls. Section 5 presents
simulation signal analysis results aadegmented decomposition algorithm for long signal proisess
given in Section 6. The algorithm is validated thgh an applicationrexample in Section 7. Finally,
Section 8 concludes the paper with some remaksit possibléuture work.

2. SparseDecomposition Basean the MP Algorithm

For a givensetD ={g, k %, 2,....K}, the elements are unit vectors in thbole Hilbert space,
i.e, H=R", whereK > >N . The set D is known as an atom dictionary, and the elements are
known as atoms. Because of the redundancy of an diotionary(K > >N), vector g, is no
longer linearly independent. For an arbitrary real sighdlH with the length ofN, a linear
combination composed oh atoms is foundnD:

M-1

f=ac.g, )

Equation (1)is the sparse decomposition of signals, or known as the sparse exprbt3imnan
algorithmthatis frequently used for sparse decompositibine principleis as follows

Supposing thatH represents the Hilbert space, then the atom dictionaryd ims defined,
lo|=1. LetfI H. To approachf through MP, the mossuitable one isfirst selected from the

over-complete atom dictionary.e., Equation(2) is satisfied
< f,0, > =sup< f,g, > @
Thus, signalf can be decomposed into the following form

f=d.9, >0, +Rf ©)
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It is clear thatg, and R'f are orthogonalLet(gk, f>= <f,0, >9,, thenEquation(4) canbe
obtained
2 2 2

11" =[(gw,. £ +[R*f] (4

To minimize the energy|Rf| for approaching errorsg, | H is necessary ot maximize

‘< f,0, >‘. Under infinite dimensions, it igenerallyimpossible to acquire thextreme valueof
|< f,0, >|, and it is only feasible to select an approximately optiatain g, , therefore

< 7.9, > asug< .9, > ©

where a is the optimization factorthat satisfiesO<a @. Under finite dimensions, the maximum
of |< f,g, >| exists.Here a =1.

Then, the same step iggformed on the residud® f, andEquation(6) is obtained
R'f =<gkl,R1f>+R2f (6)
Satisfying
‘<R1f,gk1 >‘:suq<f,gk > @

The MP algorithm is an iterative procesignal residualRf continues to belecomposedy

constantly projecting it to a vector in the atom dictiondrsit matches it best. Thus, after1
times of iteration

R"f =(R"f,g, )+R™f ©
where g, satisfies
‘<Rmf,gkm>‘:sué<Rmf,gk>‘ (9)
BecauseR™f and g, are orthogonal, then
R =[< R gy, > +[R™ 1] (10
With the decomposition proceabovebeing executed to order:

M-1
f=8 <R"f,g_>g_+R"f (12)

m=0

Similarly, energy||f||2 can also be decomposed into the following summation form:
M-1
|1 =a <R g,, > +|R 1] (12
m=0

According toEquation(12), theM-order approximation form of vectof in atom dictionaryD
can be obtained. e approximation errois expressed & f . It is clear that the error energy

trends tograduallyattenuate with the decomposition.
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3. Decomposition andReconstruction Algorithm of Composite Dictionary Multi-Atoms Matching

A key step tamplement the MP algorithm isow to construct an atom dictionary, so that signals
can better match atoms during the sparse decomposition. The construction of the atom dictionary
directly affects the sparse expression of the signals to be analyzed. rhdietionary construction
method based on the parameterized function model is the most frequently adopgpdcific
primitive function is discretely parameterized(e.g., time, frequency, contraction, translation
modulation,etc) in this methodEach paameter group corresponds to an atom, and the set of atoms
constitutes the atom dictionary. A dictionary based on a specific function structure is only suitable for
analyzing signals with certain characteristibswever,the signals in engineering havenualicated
components.To effectively extract the abundant characteristic information contained in signals,
different characteristic atom dictionaries are combined to form a composite dictionary according to the
structural characteristics of signd®. During the sparse decomposition of signals, a best matching
atom is selected fromaeh characteristic dictionasach iteration, with their projgéons being solved
respectively The weighted linear superposition of the projections is used as the ovejedtipro The
best matching atom refers to the one with the maximal absolute coefficient of the projection that the
signal projects on it. The projection coefficient can be obtained by calculating the inner product of the
signal and the atomg., ¢c = < x,d >, wherex represents the signal represents the atom, aﬂrd1| =1.
The signal projection on the atom can be expressed as the product of the projection coefficient and the
atom.

The introduction of the above idea is known as the cortgpdgitionary muldiatoms matching. The
decomposition algorithm is implementesifallows

(1) Corresponding characteristic functions are selected to construct atom dictingiry=
1, 21, Eis the number of characteristic atom dictionaries) in a petenzed manner
according to the structural characteristics of the signals to be analyzed. Two or more
characteristic atom dictionaries are combined to form composite dictibnary

(2) Primary signak(t) is given to the residual signal to obtain initiesidualr.

(3) For residual signal,((m=0, 1 ,M1; M is the times of iteration), a best matching atdm
is searched in corresponding characteristic dictiorlaryrespectively, andhe projection
coefficientcy, is solved. The weighted linear supesgion of all the projectionsra the overall
projection,i.e.,

|
pm = a. acmidmi (13)

i=1
|

wherea; is the weighted coefficient of each characteristic atom dictionarygpad=1.
i=1

(4) With the residual signal being subtracted by tiverall projection, anew residual signal is
obtained

(5) Steps (B4) are iterated till the iteration termination condition is satisfied

(6) After the sparse decomposition, matching coefficgpntind matching atordy, of each order
are obtained.

Thecorrespondinglow chart is shown ifrigurel.
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Figure 1. Flow chart ofthe decomposition algorithm

Signals
x(1)

To the residual
signal ry=x(7)

Parameterized characteristic
functions ¢, (i=1,2,**./)

v
Characteristic atom

> dictionarics <

D, ={d,.d,..}

A 4

Best matching atom diy, by GA to
|< 75y @o; >| = sup|< 7. >|
(m=0,1,-+- M-1)

A 4

Projection coefficient
Cmi =<rm=dmi 2

m=m+1

Y

Overall projection

Residual signal

rm+1 = rm B pm

Satisfy iteration
termination condition ?

decomposition
Matching coefTicient ¢,,; and
Matching atom d,,

598¢t

Parameter group

Joint coding

Initial population

Cross, mutation

Calculation of
adaptive value

Sclect, copy

h 4

Next generation

Reach the maximum of

No

evolution generation?

Yes

End

A 4

The individual whose
adaptive value is maximal

Decoding and substituted into
characteristic function

Best matching atom




Sensor011, 11 5987

The reconstruction algorithm is an inverse process of the decomposition alg&ufhation(14) is
as follows

~ \Y
X= a. a a1'Cmidmi (14)
m=1l i=1
The princige of threshold deoising is introducedn Equation (14). For eachreconstruction
calculationinstance the projection coefficientcy; is setto bezero if it islessthan some group of
thresholdsT; For those beingnore thanor equal to the thresholdd)ety renain unchanged (hard
threshold or get weakened (soft threshplde.,

?Cmi’|cmi| 2 Tl
) =]

O =4 o 10Jcn] <T, (19

or.
?Cmi_ Ti’Cmiz Tl

Cmi = §(C) =1 Gy +T0Cy €~ T, (16
:’O’|Cmi| <Ti

The calculatiorequationof the threshold i§; =s.,/2In M, , wheres, is the standrd difference of
matching coefficients of all orderand M, is the number of matching coefficients., the times of

iteration. Then, the calculati@yuationfor the reconstructioalgorithm after the threshold:

~ M

x=8 4 acmd,, (17)

m=1 i=1
4. CompositeDictionary Multi -Atoms Matching for Gear Fault

The vibration signals of such typical rotating machingewghas gears are basically induced by the
meshing effect and the rotation of gears, and the characteristics of shodiowilanad transient
vibration may also emerge in the vibration signals of fault gears. To achieve the effective matching
analysis on the characteristic structures of gear vibration signals, the Fourier dictionary and the
impulse timefrequency dictionanyf14] are constructed using the method pérameterizedunction
model, and the twdictionaies arecombined to forna composite dictionaryThe constructionmethod
is describedn detailas follows the primitive function of the Fourier diohary is a sinéunction,i.e.,

ffou(f’ b]: KfouSin(th + (18)

wheref is the frequency parametegy is the phase parametend K, is the normalized coefficient.

fou

To guarantee that each atom has the unit endalsgyuf (f ,g)H2 =1, the primitive function of the

fou

impulse timefrequency dictionary refers to thgponential decay functiomg.,

eK ePtsinZf (- Ft) g
fp(PoU, ,F) = "7 19
p Lot <u (19
where p is the damping characteristic of the impulse respomds the initial time when an impulse
response event occur$ is the damped natural frequency of the systémis the phase deviation
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andK;,, is the normalized coefficienDiscretevalues are given to parameters in the function model
within a certairrange A group of parameters are substitutetd ithe function model tambtainan atom,
and all of the atoms form a dictionary. However, there are too many parameters in modeldifavo in
Fourierdictionary and four itheimpulse timefrequency dictionaryandit is very difficult toevaluate
themone by oneThereforethe optimization algorithms usedo find the optimal marching atom.

The genetic algorithm (GA), a kind of calculatio model of biological evolution simulating of
natur al selection and genetic mechanism based
Holland in 1975. It is a ethod of searching the optimalolution by simulating the natural
evolutionary procesg3]. In this algorithm, joint coding is first performed on all the parameter groups
needed for constructing characteristic atom dictionaries, to produce randomly an initial population
with a certain scal®l. Each parameter group corresponds to an indivjdarad crossing anchutation
are conducted according to a certain probabilitye fithness valueof each individual ishencalculated
those best individuals with threaximumfitnessdirectly go to the next generatipN-1 individuals are
selected from th@arent generation with the random iteration method and go to the next generation,
and all the nexgeneration individuals form the new populatidine new population repeats crossing,
mutation fitnesscalculation, selection and other operationgaatinuously evolve, till the evolution
generations reach a preset vald@ally, an individual with thenaximumfitnessis selected from the
optimal ones in each generation as the optimal parameter group, and is substituted into the primitive
function after deoding to form the optimal matching atom. T¢wrespondindlow chart is shown in
Figurel.

5. Simulation Signal Analysis

In Referencd?24], a vibration signal model for gears with cracking faults was presented

M ~ ~
D=8 AL Han(dcosi2 ,t b, bt )dt ( icq 20)

The meaning®f the variougparameters ifcquation(20) canbe known by referring to the original
literatures. During the simulation, the gesrassumedo have25 teeth and the rotation frequency is
60 Hz. The meshing vibration has three rather significant mesliiagnonics. The meshing
frequencies of the three harmonics are 1.5, 3 ankHz5To simulate the gear faulffects, an impact
is assumed tdve produced by the gear tooth cracking neaim0a complete revolution of geand the
impact excites the resomamat 5kHz. The sampling frequency is detbe15360Hz, the timedomain
waveform and spectra upon two rounds of gear rotationtree shown in Figure 2. From the
frequency spectrogram, meshing frequencies of the three orders (1.5, 3 &Hd)4 ther modulation
sidebands and the impulse response bands in the vicinitkldz £an be clearljound To better fit
real fault signals, random noise in standard normal distribution is introducedighhéto noiseratio
(SNR is10.72dB asshown inEquation(21). The waveform and the frequency spectra are shown in
Figure3. Thesystem resonance band induced by the fault shock after noising is basically overwhelmed
by the noise

SNR=20log, (v, /V,) (21

wherev, andv, are the effective values of the primary simulation signal and the noise, respectively.
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Figure 2. Signal waveform and frequenspectrum
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Figure 3. Signal waveform and frequepnspectrumafter noising
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Compositedictionary multratom matching decomposition and reconstruction were performed on
the simulation signatorrupted by noisesingthe algorithm Experimentsshowthat parameter setting
in GA has a great effect on optimization results and computational effjciafter balaneng these
two factorsthe analysis parameteaseas follows:in the Fourier dictionary, the range bfs setto be
1i 8,192 Hz; range ofois 0i 2 ! joint coding lengthis 20; the populatioris 200, the maximal number
of evolution generatigsis 100 the singlepoint modeis adopted for crossing, with 0.6 as the crossing
probability; single-point mutationis adopted with the probability of Q.and the length of atoms 512
In the impulse timefrequency dictionarythe range ofp is setto be 1,001 2,024 range off is
4,001 6,048Hz; range ofu is 11 512 seting 0 = 0 to simplify the problem, joint coding lengit 30;
the populations 300, and the other parameteaaseconsistent witithe Fourier dictionary The terminal
condition for MP iterations the ratio of the residual signal energy to the initial oreg,d < 0.1. The
weighted coefficients of the impulse tifrequency dictionary and the Fourier dictionarg, botha;
andap, areequal to 0.5. The waveform and the frequency spectrum after the reconstanesbown
in Figure4. Compared witlirigure3, the algorithm haslearlyfavorable reconstruction precision.
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In the reconstruction algorithm, the weighted coefficients of the impulseftegaency dictionary
and the Fourier dictionary changed. For instance, it is seatlat, a, =0 ora; = 0, a, = 1. Here, the
signals reconstructed ontitroughimpulse timefrequency atoms are known as impulse components
while those reconstructed ontlgroughFourier atoms are known as harmonic components. Thus, the
impulse components or the harmonic componeats beseparatelyextracted, as shown igigure5.
Figure 4 clearly showthat there are two large but not significant impulses, and the impulse interval

cannot be determined.

Figure 4. Waveform and frequency spectruhreconstructed signals
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Figure 5. Impulse component (above) andrmoniccomponent (below)
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From theequationfor calculating the threshaldt can beseen that the soft threshabaly has the
effect of amplitude attenuation diffent from the hard threshold@herefore, the hard thredd is
adopted here. The waveform and frequency spectrum of the recoréigrals after the threshold
are shown inFigure 6. Most noise has been removed, and the wavefaftestwo cycles of gear
rotation as well as the impulse at 0°can be seen. ieshing frequency at 1.5 anckBz as well as
the system resonance band induced by the modulation sideband and the impulse can also be seen frc
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the frequency spectrogram. Similarly,tseg thatay = 1, a, = 0 ora; = 0, & = 1, then the impulse
componenand the harmonic component can be extracted respectively, as shenyarey/ .

Figure 6. Waveform and frequency spectrumarmonicof reconstructe signals with hard threshold
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For signalscorrupted by noisén Figure 3, reconstructed signaisithout threshold or with hard
thresholdare shown in Figres 8 and 9, provided that only the impulse tiinequency dictionary is
used for singleatom matching. They are compared hwkigure 5(above and Figure 7(above.
Compared with those reconstructed with impulse tfregquency dictionary singlatom matching,
impulse signals can be extracted more effectively with the impulse component reconstructed with the
composite dictionary oiti-atoms matching, and the effect of thresholdndesing is better. In the
running of MATLAB, the total iteration of composite dictionary miatoms matching is 50, and the
running period of the decomposition algorithm is 528he total iteration ofmpulse timefrequency
dictionary singleatom matching is 393, and the running of the decomposition algorithm lasts 686
Compared with single dictionary, a composite dictionary can better match the signals to be analyzed in
structure, so that the decongtan efficiency can bsignificantlyenhanced.
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Figure 8. Reconstructed signals with singdéomatommatching without threshold
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To illustrate the influences of mulitom mathing, singleatom matching and thresholdr

nonthresholdon the extraction effects of impulse signals, kurtosis indices and impulse indices are
introduced. Their definitions are Bquations(21) and (22), both of which can reflect the amplitudes
of the impulse energy in signals. Thaore the characteristic value is, the more distinct the fault
information is, and the more significant the extracted impulse signals become. The primary signals
with noise the impulse component treated with nyaltom matcling without thresholdmulti-atom
without thresholyl the impulse component treated with matbm matching hard threshold
(multi-atom hard threshold), reconstructed signals treated with satggie matching without threshold
(singleatom without thresHd) and reconstructed signals treated with skadten matching hard
threshold (singlatom hard threshojdare calculatedespectivelyThe signalsredescribed irFigures 3,
5 and7, Figures8 and9. The calculation results are shown in Tahldt is clear that better effects of
impulse signal extraction are achieved with idti-atons matching and the hard threshobdmpared
with the singleatom natching and without threshqldespectively.

The kurtosis index is defined:as

g x
/- 4
The impulse index is defined:as
maxx(i)|
| =———=
m (23

¥

whereliy is the root mean square of a sigraldey, is the mean absolute value of a signal.
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Table 1L Comparison results of kurtosis indices and impulse indices

Sianal Noising Multi -atoms | Multi-atoms | Single-atom Single-atom
g signal non-threshold | hard threshold | non-threshold | hard threshold
Kurtosis index 3.61 5.11 14.81 4.30 11.36
Impulse index 4.77 6.21 14.07 5.80 12.35

Table 2 Influences of noise intensity on the effects of impulse signal extraction with
multi-atoms matching or singi@om matching.

SNR=10.72dB SNR=16.60dB SNR=110.21dB
Kurtosis | Impulse | Kurtosis | Impulse | Kurtosis | Impulse

index index index index index index

Noising signal 3.61 4.77 2.76 3.22 3.18 4.10

Muiti -atoms 5.11 6.21 4.39 5.15 3.79 4.92
non-threshold
Multi -atoms

hard threshold 14.81 14.07 9.99 10.82 8.30 8.92

Single-atom 4.30 5.80 2.83 3.50 3.97 6.24
non-threshold
Single-atom

hard threshold 11.36 12.35 6.24 6.94 4.22 5.81

Intensified noise is applied to the simulation sigrett®ve When theSNRof noising signals is
10.72,16.60 and 10.21dB, kurtosis indices and impulse indices are used to discuss the effects of the
composite dictionary mukatom matching and the impulse tifrtequency dictionary singiatom
matching on the impulse signal extractiofhe comparisonresults are listed in Table 2 The
comparison between the kurtosis and impulse indices with noising sgjmaisthat the extraction
effects of the multatom matching and the correspondingdhahresholdare still significantly
enhanced while there isttle enhancement in the effects of the sirgflem matching and the
corresponding hard threshold

6. SegmentedDecomposition Algorithm for Long Signal Process

The frequency spectrogramiigure 6 showsthe system resonance band induced by impulse faults.
However, the frequency resolution is migh enough showingvery few signal points (the lengttof
the signal to be analyzed in Section 4 is 512). The minimal interval on the frequency axis is
fs/N = 30 Hz, which causes inexact modulation frequencwytidieation for the sidebandlo enhance
the frequency resolutionthe data are increased However, this causes the iteration of the
decomposition algorithmncreaseshe time needed for each iterati@amd results in overlong running
of the MATLAB progran. Table 3 shows the iteration times and the calculation time of the
decomposition algorithm when the number of data points is 5024, 5and 2048.
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To solve the problem of the running time of the program, the algorithm is improved. The primary
data sequace isevenly segmented by 512, and each section is decomposed to obtain the matching
coefficients and matching atoms of all orders for each section afafiaesequence. The threshad
also conducted upon sectignaspectively. After the reconstructioall sections are combined to form
the reconstructed signal. Thus, the running time of the improved algoritignisicantly reduced.

Table 3 shows the comparison resdultse iteration of the initial decomposition algorithm is doubled
if the number ofdata points is doubled, while the running time is quadrupfiedvever,both the total
iteration and the running time of the segmented decomposition algorithm are only doubled.

Table 3. Comparison of iteration times and running time of initial algorithmiamptoved algorithm

Initial decomposition Segmented decompositio
Frequency . .
Number of . algorithm algorithm
) resolution - — - —
data points lteration | Running time | Iteration |[Running time
(H2) . .
times () times (9
512 30 50 128 54 141
1,024 15 106 470 117 294
2,048 7.5 234 2,210 235 587

Figures 10i 12 show the waveform and frequency spectra of primary signals, the waveform and
frequency spectra of the reconstructed signals with hard threshold, and the waveform and frequency
spectra of the signals removed thgbadiltration by threshold when the number of data pointsd4&,
respectively. Itanbe seen that most noise signals are removed by filtration through hard threshold.

Figure 10. Waveform and frequency spectrrhprimary signals (248).
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Figure 11. Waveform and frequency spectrare€onstructedignals after hard thresha(@,048).
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Figure 12. Waveform and frequency spectruhsignals afteriftration with hard threshold
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The waveforms and frequency spectra of the separately extracteldenspmponent and harmonic
component are shown Figuresl3 and 14, respectively. The impulse component is embodied in eight
times of significant equallgpaced shock, withAninterval of 0.016%, and the frequency is exactly the
rotation frequency,e., 60Hz. The frequency spectra are embodied in the system resonance frequency
band induced by the fault shock @wicinity of 5 kHz). The harmonic frequency spectra are embodied
by the meshing frequencies and modulation sidebands of all orders (sobvendslare removed by
filtration due to low amplitudes). The demodulation spectra of the impulse component and the
harmonic component are shownHigurel5. Figure 15 (above3howsthatthe demodulation spectrum
of the impulse componentith arotation freyuency of 6(Hz and harmonic frequencies of all orders
can be clearlyfound Figure 15 (below) showsthat the demodulation spectrum of the harmonic
component and the harmonic frequencies of high orders are removed by filtration during the hard

threshold wih only the rotation frequency of 64z being displayed.
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Figure 13. Impulse component with hattreshold(2,048).
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Figure 14. Harmoniccomponent with hard threshold
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Figure 15. Demodulation spectra
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7. Application Example

Figure 16 shows the drivg chain of a gearbox on a higpeed finishing mill from a steel plant.
On-spot monitoring information indicated that modulation information had been reflected by the
frequency spectrogram about the vibration data sldc8eptembeP006. The modulatiorréquency
was the rotation frequency of shaft Il on the bevel box of finishing sup{&#t(30.1Hz), asmarked
in Figure16. This phenomenon remainatlater periods.

Figure 16. Driving chain of gearbax
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Historical data orl July, 4 August,28 Augustand 18 September were reviewed for analysis, and
their waveforms and frequency spearashown inFigure 18. No impact features can be seerthe
waveforms which contain a lot of noise due to tiredustrialoperating conditios After the harmonic
compnent wasseparatelyextracted through composite dictionary maaltoms matching analysis, the
resultingdemodulation spectrareshown inFigure19. From the spectrogram, the fault characteristic
frequencies at 29.8i1z or 31.25Hz (with a certain deviatioa from the actual fault characteristic
frequency 30.1Hz due to the frequency resolution) could dearly seen In fact, the rotation

frequency of shaft Il was fluctuant in a small area at the project site, not exactly 30.1 Hz, and 30.1 Hz

was a theoretal reference valueBesides, the amplitude became increasingly large7853, 1.225,
1.481 and 1.637. Oh July, however, the fault characteristic frequency at 2&3vas not so clear,
and the amplitude was general, indicating that the gear faultsadhIBof the bevel box had become
prominent and developed sindeAugustor even earlier. The dismantled finishing support 22 was

checked in November and noticed that gear Z5 (with 31 teeth) on shaft Il of the bevel box was broken,

as shown irFigurel7.

Table 4. The sampling parameters of historical data in each group

1 July 4 August 28 August | 18 September
Sampling length 2,048 2,048 2,048 2,048
Sampling frequency| 10kHz 4 kHz 4 kHz 4 kHz
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Figure 17. Faultgear Z5 on shatft Il of the bevel box.

Figure 18 Waveforms and frequency spectra of historical data
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Figure 19. Demodulation spectra with composite dictionary mattms matching
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If the same four groups dfignals after hard thresholdere reconstructed with the impulse
time-frequency dictionary singlatom matching, then demodulation spectrald be obtained through
demodulation, as shown Figure 20. It wasclear that all the fault characteristic frequencies in the
three groups of data other than thds&t could be clearly seeon 18 Septembesufferedinterference
from the intense noiseandthe fault diagnosis judgment cannot beactly decided While fault
characteristic frequencies could be detected with the composite dictionaryatonitimatching on
4 August or even earlier, which provided earlier prediction and prevention information for the
occurrence and development of gear faults
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Figure 20. Demodulation spectra with singegom matching
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MP is a classic algorithm for sparse decomposition. However, it has certain drawbacks in the sparse
expression of complicated and nstationary signals due to rather singleness in the matching between
the atoms in an atom dictionary and signals as well as the enormous amount of computation. Aiming at
resolvingthis problem, a new sparse decompositioth @tonstruction algorithm is proposed based on
the composite dictionary niti-atom matching pursuit in this paper. The algorithm constituted a
composite dictionary combining the impulse tiinequency dictionary and the Fourier dictionary to
extract thempulse component on the basis of the structural characteristics of gear fault signals.
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With the principle of threshold eeoising introduced in the reconstruction algorithm with
composite dictionary mukatom matching, the thresholass set.A hard threkold was performed on
matching coefficients of all orders acquired with the decomposition algoritemthe matching
coefficients beinglessthan a thresholdvere setto be zero for reconstruction. According to the
analysis results of dathatwere proved by the adoption of kurtosis indices and impulse indices, the
effect of impulse signal extraction after hard threstvadd better Under intensified noise, the signal
impulse effects after mulatoms matching and related hard threshe#@e significanty improved
compared with primary noising signals while those with siadgten threshold and hard threshalere
not enhanced much. In other words, composite dictionary -aoitns matching achieve a better
analytical effect than singlatom matching undehe influence of intense noise.

The data analysishowed that increagng data lengthwould cause the computing amount of the
decomposition algorithm and the running time of the program tosigeificantly increased.
Accordingly, the algorithnwas improved i.e., a data sequenaeas evenlysegmented by 512 points.
The decomposition, thresholgrocessingand reconstruction with muatom matchingwere
conducted on each sectjaespectively. The data analysis prdubat the calculation efficiencyas
significantly enhanced with the improved algorithm compared with the primaryFamtherresearch
is currently undergoing to analyze the more complex gearbox signals and improve the proposed
method and make it more feasible.
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