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Abstract: Although the conventional duty cycle MAC protocols for Wireless Sensor 

Networks (WSNs) such as RMAC perform well in terms of saving energy and reducing 

end-to-end delivery latency, they were designed independently and require an extra routing 

protocol in the network layer to provide path information for the MAC layer. In this paper, 

we propose a new cross-layer duty cycle MAC protocol with data forwarding supporting a 

pipeline feature (P-MAC) for WSNs. P-MAC first divides the whole network into many 

grades around the sink. Each node identifies its grade according to its logical hop distance 

to the sink and simultaneously establishes a sleep/wakeup schedule using the grade 

information. Those nodes in the same grade keep the same schedule, which is staggered 

with the schedule of the nodes in the adjacent grade. Then a variation of the RTS/CTS 

handshake mechanism is used to forward data continuously in a pipeline fashion from the 

higher grade to the lower grade nodes and finally to the sink. No extra routing overhead  

is needed, thus increasing the network scalability while maintaining the superiority of  

duty-cycling. The simulation results in OPNET show that P-MAC has better performance 

than S-MAC and RMAC in terms of packet delivery latency and energy efficiency. 

Keywords: MAC protocol; cross-layer; duty cycle; pipeline feature; wireless sensor networks 

 

OPEN ACCESS 



Sensors 2011, 11  

 

 

5184 

1. Introduction 

The limitation of energy due to the limited battery capacity of sensor nodes is a fundamental 

problem in Wireless Sensor Networks (WSNs). Communication protocols for WSNs, including routing 

and MAC layer protocols should thus be designed energy-efficiently. Traditional wireless MAC 

protocols such as IEEE 802.11 are not suitable for this purpose since in these protocols nodes are 

required to stay awake to listen to the medium, even when the network becomes idle. This inefficient 

idle-listening mechanism wastes substantial energy [1,2]. 

Nowadays, many methods introduce duty-cycling mechanisms into MAC designs for WSNs to 

achieve low energy consumption. In the duty-cycling approach, each node periodically experiences an 

active state and a sleeping state. When in the active state, a node listens to the radio channel for 

possible transmissions, whereas in the sleeping state, it turns off its radio to save energy. Each node 

establishes and maintains a schedule to indicate when it should wake up or sleep based on the 

synchronization requirements among neighboring nodes. 

S-MAC [3] is a typical synchronized duty cycle MAC protocol for WSNs. In S-MAC, each node 

maintains a fixed listening/sleeping schedule. The listening interval is divided into two parts, namely 

SYNC and DATA. The SYNC part is for synchronization among neighboring nodes using SYNC 

packets, and the DATA part is for data transmission using the RTS/CTS handshake mechanism as in 

802.11. Although S-MAC is energy efficient, it may introduce significant packet delivery latency, 

since a packet can only be forwarded to a 1-hop distance in each operational cycle. The improved  

S-MAC with adaptive listening [4] can improve latency by delivering packets up to a 2-hop distance in 

each cycle. But the latency is still significant and the use of adaptive listening can significantly 

increase energy consumption.  

Several protocols have been proposed to mitigate packet delivery latency without sacrificing energy 

efficiency of duty-cycling (e.g., RMAC [5], T-MAC [6] and DW-MAC [7]). Take RMAC for example. 

Similar to S-MAC, RMAC divides the operational cycle of a sensor node into three periods: SYNC, 

DATA and SLEEP. But the difference lies in the fact that RMAC delivers a pioneer frame (PION) over 

multiple hops during the DATA period to set up a multi-hop schedule for subsequent data forwarding 

during the SLEEP period. Therefore, this approach can forward a data packet over several hops within 

a single cycle, thus improving delivery latency. Note that the PION frame has a dual function, one is to 

request communication like RTS, and the other is to confirm a request like CTS. This PION relaying 

process continues until either the PION frame has reached the final destination or the current DATA 

period has ended. 

Although the improved duty-cycling mechanisms mitigate the delivery latency problem, they were 

designed independently without considering routing. For example, RMAC assumes a routing protocol 

has been deployed over it to provide the routing information it needs. But the application of a routing 

protocol would cause significant performance degradation of these MAC protocols. This paper designs 

and evaluates a new cross-layer duty cycle MAC protocol with data forwarding supporting a pipeline 

feature (P-MAC). 

P-MAC divides the whole network into several groups around the sink, each with different grades. 

At the network layer, each sensor node identifies its grade according to its logical hop distance to the 

sink and simultaneously establishes a sleep/wakeup schedule based on its grade information. The sink 
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is in grade zero and the lower a node’s grade, the fewer hops it needs to send packets to the sink. The 

wakeup period of a node is divided into two parts, the first one is used for receiving data from the 

upper grade node, and the second one is used for sending the received data to the lower grade node. 

Those nodes in the same grade keep the same schedule, which is staggered with the schedule of the 

nodes in the adjacent grade. Then at the MAC layer, a variation of the RTS/CTS handshake 

mechanism is used to forward data continuously from the higher grade to lower grade nodes and 

finally to the sink. 

P-MAC does not need an extra independent routing mechanism to support it, thus the 

communication overhead in the network can be reduced considerably without increasing delivery 

latency and sacrificing energy efficiency. In addition, each node only maintains a grade and a schedule, 

which improves the scalability with respect to network topology changes such as nodes dying over 

time, the later addition of new nodes or nodes moving to different locations. And multiple sinks can be 

used to partition a large-scale WSN into several independent sub-networks to increase the network 

manageability and balance energy dissipation. 

The remainder of the paper is organized as follows. In Section 2, we discuss the related work in the 

area of duty cycle MAC designs for WSNs. In Section 3, the details of P-MAC are presented, 

including the network scalability discussion. Section 4 gives the performance evaluation and analysis 

based on simulation using the OPNET modeler. Finally, Section 5 concludes the paper. 

2. Related Work 

The original duty cycle MAC protocols for WSNs (e.g., S-MAC [3,4]) introduce significant end-to-end 

delivery latency. Many researchers have proposed other scheduled MAC schemes to mitigate this 

problem without sacrificing the energy-efficiency of the duty-cycling mechanism. These approaches 

can be approximately divided into two categories: synchronous and asynchronous, according to their 

synchronization requirements. Synchronous schemes (e.g., S-MAC [3], T-MAC [6], RMAC [5] and 

DW-MAC [7]) require synchronization among neighboring nodes, ensuring that they can cooperate for 

communication, whereas asynchronous schemes (e.g., B-MAC [8], WiseMAC [9], X-MAC [10] and 

RI-MAC [11]) allow each node to establish and maintain its own schedule independently, usually 

using preamble schemes. 

T-MAC [6] follows S-MAC using synchronization and virtual clustering schemes. It dynamically 

ends the active part of the listen/sleep duty cycle to further save energy when there are no packets to 

receive. However, the higher delivery latency problem still exists in T-MAC, since a data packet can 

only be forwarded a 1-hop distance within a single cycle. After becoming aware of this latency 

problem, the designers of S-MAC mitigated the problem by introducing the adaptive listening 

technique [4]. In the improved S-MAC with adaptive listening, if a node overhears an RTS or CTS, it 

won't go to sleep when the SLEEP period begins but instead will keep awake for a short time. Thereby, 

if this node is the next-hop node, it can immediately receive data from its neighbor instead of waiting 

for the next cycle. Thus, a packet can be delivered up to a 2-hop distance within a single cycle. However, 

the improvement is minor and this technique also consumes more energy, because many neighboring 

nodes need to keep awake during adaptive listening, but only one of them will be the next hop. 
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RMAC uses a PION frame to reserve a channel over several hops during the DATA period, then, it 

transmits a data packet through the reserved channel during the SLEEP period. Therefore, the data 

packet can be forwarded across multiple hops within a single cycle, which not only reduces delivery 

latency significantly but also handles traffic contention efficiently. The recently proposed PRMAC [12] 

inherits this advantage and exploits it further by using PION to schedule multi-hop transmission of 

multiple data packets, enabling multiple packets to be transmitted over multiple hops within a single 

cycle, thus ensuring that PRMAC can respond to traffic load changes better than RMAC. 

Unlike the above synchronous duty cycle MAC protocols, asynchronous schemes [8-10,13] using 

the preamble sampling technique [14] were introduced into the MAC layer design for WSNs. The 

basic idea of this strategy is that prior to data transmission, a sender transmits a long enough preamble 

lasting at least as long as the receiver's sleep period. The receiver periodically wakes up and checks for 

activity on the channel. If a preamble is detected, the receiver keeps awake long enough to receive the 

data, otherwise it goes back to sleep. RI-MAC [11] differs from this original asynchronous strategy 

since it uses the receiver-initiated mechanism, which is similar to that proposed in [15] for general 

wireless networks, to achieve better performance, in which the sender keeps active until the receiver 

explicitly informs the sender when to start data transmission by sending a short beacon frame. 

Hybrid approaches with channel polling scheme, such as SCP [16] and LEMR [17] have also been 

proposed. Compared with these duty cycle MAC protocols, P-MAC fully integrates routing into a 

wake-up scheduling algorithm. In P-MAC, the whole network is divided into several grades, which are 

used to guide data transmission. The schedules between two adjacent grades are staggered so that data 

can be transmitted continuously to the sink in a pipeline fashion, thus ensuring that the delivery latency 

is more acceptable. Actually, this pipeline scheduled pattern scheme for reducing latency is not original. 

For example, DMAC [18] allows continuous packet forwarding by offsetting a sensor node’s sleep 

schedule (like a pipeline) based on a tree communication structure. Li et al. [19] and Cao et al. [20] 

also proposed a similar pipelining scheme. Keshavarzian et al. [21] evaluated several existing 

scheduling schemes including a staggered ladder pattern scheme. P-MAC combines this scheduling 

scheme with grade division for routing to achieve high energy efficiency and low delivery latency. 

3. P-MAC Design Integrated with Routing 

The conventional duty cycle MAC protocols were designed independently neglecting the impact of 

the network layer. P-MAC considers cross-layer optimization with the goal of minimizing the 

communication overhead and maintaining the superiority of duty-cycling schemes. It divides all sensor 

nodes into different grades according to their logical hop distances to the sink. The lower a node’s 

grade, the fewer hops it needs to send packets to the sink.  

3.1. Network Model 

P-MAC is proposed for WSNs deployed for rare events detection with prompt reporting. 

Applications including fire or other hazards detection fall into this category. Such a network consists 

of many sensor nodes randomly deployed in a sensing area with one (or a few) sink(s) collecting 

information for an outside system. All nodes are assumed to be homogeneous with the same 

transmission range. 
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3.2. Grade Division and Schedule Assignment (GDSA) 

Before starting data transmission, each node need to find a grade it belongs to, and choose a 

schedule for periodically listening and sleeping. This is implemented by operating the GDSA 

mechanism at the network layer of each node. 

GDSA is initiated from the sink. In GDSA, each node maintains grade information (denoted by Gn) 

with an initial value of −1, except that the sink’s grade is zero (Gn = 0) at all times. The sink first 

chooses a schedule according to its grade (the schedule choosing rule will be introduced in detail in 

Section 3.5). Then it generates a GRADE message containing a field denoted by Gm. After setting Gm 

to one, the sink broadcasts this message. A node receiving a GRADE message with Gm = i sets its 

grade to i (Gn = i), chooses a schedule corresponding with its grade, and rebroadcasts the message after 

increasing Gm by one, unless it has already joined an equal or a lower grade. The pseudo-code of the 

algorithm used by a node for processing the received GRADE message is shown in Algorithm 1.  

Algorithm 1. GDSA: processing the received GRADE message. 

  1: if  Gn < 0  then 

  2:     Gn  Gm 

  3:     choose a corresponding schedule 

  4:     Gm  Gm + 1 

  5:     rebroadcast the GRADE message 

  6: else if  Gn > Gm  then 

  7:     Gn  Gm 

  8:     update the node’s schedule 

  9:     Gm  Gm + 1 

10:     rebroadcast the GRADE message 

11: else 

12:     discard the GRADE message 

13: end if 

 

After the grade division using the above scheme, the whole network is divided into several annular 

grades similar to concentric circles with the center at the sink, as shown in Figure 1(a). But this is not 

absolute. For example, if node A and A′ do not exist, the network may be divided into the formation 

shown in Figure 1(b). 

As stated above, each node simultaneously establishes a periodical sleep/wakeup schedule 

according to its grade information during the grade division process. Those nodes in the same grade 

keep the same schedule, but schedules are staggered between two adjacent grade nodes. Suppose a 

node is in grade i (i > 0), it repeatedly experiences three periods: receiving data from the (i+1)th grade 

node (the RECEIVE DATA period), sending data to the (i-1)th grade node (the SEND DATA period), 

and sleeping (the SLEEP period). If the upper grade nodes are in the SEND DATA period, their 

adjacent lower grade nodes must be in the RECEIVE DATA period (the duration of each period will be 

analyzed in Section 3.4). Thereby, data frames can be forwarded continuously in a pipeline way from 

the source node to the sink, thus making the delivery latency acceptable. Those adjacent nodes in the 

same grade contend with each other for the shared medium while those in different grades cooperate 

with each other for data transmission. 
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Figure 1. (a) After grade division, the network is divided into several annular grades 

similar to concentric circles centered at the sink; (b) if A′ and A do not exist, S′ and S are in 

grade 4 and 5, respectively. 

   

(a)      (b) 

 

The pipelining concept cited in this paper is defined as follows: 

Definition 1 (Pipelining): In duty-cycling MAC protocols, a node generally can complete receiving 

a data frame from one of its upstream nodes and then sending this data frame to one of its downstream 

nodes within one cycle. This is called pipeline data transmission. 

3.3. Data Transmission 

After completing GDSA, a sensor node with pending data will not be aware of any concrete routing 

paths to the sink, but it can use a variation of the RTS/CTS handshake mechanism at the MAC layer to 

determine the next-hop node from its adjacent lower grade nodes. There are two differences between 

the variation and the original RTS/CTS handshake in IEEE 802.11. First, in P-MAC, the RTS sent by a 

source node contains the node’s grade information passed down from the network layer instead of a 

concrete next-hop address. All nodes in the adjacent lower grade can reply to the source node with 

CTS if they receive the RTS. Second, the Contention Window (CW) is also used when a node replies 

with CTS in P-MAC, because several lower grade nodes will simultaneously receive the RTS, and 

there will be contention for data relaying among these nodes. 

Consider the network shown in Figure 1(a). When nodes in grade 3 are in the SEND DATA period, 

those nodes in grade 2 are in the RECEIVE DATA period. Suppose node S has data to send to the sink. 

S first broadcasts the RTS frame in its SEND DATA period after contending with its neighboring nodes 

in the same grade (e.g., S′) and winning the medium. Both node A and A′ can receive this RTS in their 

RECEIVE DATA periods. They contend with each other for replying with CTS. If node A’s CTS is first 

received by node S, S will send its data to A. After A receives the data, it sends an ACK frame to S. 

Then A waits to enter its SEND DATA period. After receiving the ACK, S enters sleep mode. Those 

nodes (e.g., S′ and A′) that failed in the channel contention will go to sleep and wait to enter their 

subsequent periods. In the same manner, node A finds its next relaying node B and sends data to B in 

its SEND DATA period. Figure 2 shows this data transmission process. 
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Figure 2. P-MAC integrated with routing. Node S has data to send to the sink. 

 

 

Note that the Network Allocation Vector (NAV) in IEEE 802.11-style MAC protocols for virtual 

carrier sense is not used in P-MAC, because each node in P-MAC only receives data during its 

RECEIVE DATA period and only sends data during its SEND DATA period, respectively. If a node 

fails in the contention for receiving/sending data or it has waited a long enough time without receiving 

RTS/CTS, the node will go to sleep. Thus, the virtual carrier sense used for collision avoidance is not 

necessary in P-MAC. 

3.4. Duration of Each Period 

An analysis on the duration of each period in the P-MAC cycle follows: 

(1) SEND/RECEIVE DATA period: As shown in Figure 2, the duration of the SEND DATA period 

in node S is identical to the duration of the RECEIVE DATA period in node A, if node S and A are 

involved in the current data transmission. The maximum time of the SEND/RECEIVE DATA period, 

TS/R, is calculated as follows: 

,2SIFSDIFS22 durACKdurDATAdurCTSdurRTSCWTS/R   (1)  

where durRTS, durCTS, durDATA and durACK are the transmission duration of RTS, CTS, DATA and 

ACK, respectively. 

(2) SLEEP period: In P-MAC, the duration of the SLEEP period is determined by the following 

equation: 

,_ / RSSLEEP TfactorsleepT   (2)  

where sleep_factor is a positive integer. The whole cycle duration is given by: 

,)2_( / S/RRScycle TTfactorsleepT  
 

(3) 

where  is called cycle coefficient. Next we discuss how to determine the value of sleep_factor. 

Figure 3 shows an example used for analysis. For simplicity, the RTS/CTS handshake process is not 

shown. There are four nodes, where node 0’s grade is zero (it is the sink node), node 1’s grade is one, 
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and so on. Node 3 has data to send to node 0. Td is the actual duration time for a node to finish its  

one-hop data transmission process. Note that Td ≤ TS/R, since the node may not select the last slot in 

CW. Thus the node’s actual sleep time is ΔT + TSLEEP, whereΔT = TS/R − Td. Anyway, each node can 

sleep for at least TSLEEP time in each cycle. 

Figure 3. An example illustration of sleep_factor, data transmission route: 3210. 

 

 

If sleep_factor is a positive integer, for example, sleep_factor = 1, when the ith (i > 0) grade nodes 

wake up, the (i − 1)th grade nodes are still in the SLEEP period, and the (i + 2)th grade nodes will go 

to sleep for at least sleep_factor TS/R = TS/R time. Therefore, the communications between the ith 

grade nodes and the (i + 1)th grade nodes will not be interfered with by the (i − 1)th and (i + 2)th grade 

nodes. Considering that the interference range is about two times the transmission range, the value of 

sleep_factor needs to be at least 2. Figure 3 shows the case of sleep_factor = 2. 

3.5. Schedule Choosing Rule and Synchronization 

Suppose the time needed to finish the GDSA process is within Tg time. The transmission duration of 

a GRADE message is denoted by durGRADE. Once a node receives a GRADE message and updates 

its grade to i, it uses the following rules to choose an initial schedule: 

(1) if i % = 0, the node will enter the RECEIVE DATA period after (Tg − idurGRADE) time. 

(2) if i % = 1, the node will enter the SEND DATA period after (Tg − idurGRADE) time. 

(3) if i % ≥ 2, the node will enter the SLEEP period after (Tg − idurGRADE) time. And its sleep 

duration should be:  

RSRSSLEEP TiTiTtime // )%()2%(    (4)  

Note that Tg should be long enough to enable each node in the network to get its grade and 

corresponding schedule after the GDSA process. 

Similar to S-MAC [3] and RMAC [5], synchronization is also required among neighboring nodes in 

P-MAC to solve the problem of clock drift as time advances. However, the difference is that P-MAC 

doesn’t use an extra period (e.g., SYNC) to achieve this goal. In P-MAC, each frame contains the 
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relative start time of the current period. When a sensor node receives a frame, it will adjust its schedule 

if the clock drift is too serious. If a node fails to receive correct data for a long enough time, it will stay 

active and listen to the channel for some time to revise its grade and/or schedule. This loose 

synchronization mechanism is used because in P-MAC, a node with pending data to send may have 

several adjacent lower grade nodes, any of which may become the relay node. We suppose this 

mechanism will guarantee reliability for data forwarding. 

3.6. Scalability Discussion 

P-MAC is a cross-layer duty cycle MAC protocol seamlessly integrated with routing function. It not 

only reduces the protocol overhead, but also helps enhance scalability when there are changes in 

network topology: 

(1) If a new node is added to the network, it will identify which grade it should join and the 

corresponding schedule it should choose after listening to its neighbors for some time. 

Subsequently, it can join the network for data transmission. 

(2) It is relatively easy for P-MAC to support node mobility. A mobile node needs to redefine its 

grade and schedule if it moves out of its original grade area. Like a newly added node, it can 

rejoin the network later, unless it moves out the network and thus becomes isolated. 

(3) In a large-scale WSN, multiple sinks are needed to increase the network manageability and 

balance energy dissipation. P-MAC can partition the whole network into several sub-networks 

using its grade division mechanism. Each sink serves one sub-network independently. Figure 4 

shows a two-sink case. For a data-gathering network, all sinks are expected to be connected to 

an outside system. Hence, it is irrelevant which exact sink receives the data information. 

No further elaboration on these issues is presented in this paper, but we believe these issues are 

reasonable and provide a guideline for future exploration. 

Figure 4. Two-sink case. Each number denotes a corresponding grade. 

 

4. Simulation Evaluation 

4.1. Simulation Parameters 

In this section, we evaluate the P-MAC design in comparison with S-MAC and RMAC using the 

OPNET modeler. For fairness, we give the simulation result of both the basic P-MAC without the 
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routing function and the full P-MAC that is seamlessly integrated with routing. In comparison with the 

full P-MAC, the difference is that in the basic P-MAC, the RTS is sent to a concrete next node, which 

has its address passed down by the networking layer. So only the node for which the RTS is destined 

will reply with CTS without waiting for CW time. Figure 5 illustrates the basic P-MAC, and the 

maximum time of the SEND/RECEIVE DATA period, TS/R, is shown below. This result differs from 

that calculated by Equation (1): 

.3SIFSDIFS durACKdurDATAdurCTSdurRTSCWTS/R   (5)  

Figure 5. Basic P-MAC without routing function. 

 

 

Each node uses the two-ray ground radio propagation model and has a single omni-directional 

antenna. Table 1 shows the key networking parameters used in our simulation. These parameters are 

the default settings in the standard S-MAC simulation module distributed with the ns-2.29 package. 

The sizes and transmission latencies of different types of packets are shown in Table 2, and the settings 

are the same as in [5]. 

Table 1. Networking Parameters. 

Bandwidth 20 Kbps Tx Range 250 m 

Idle Power 0.45 W Carrier Sensing Range 550 m 

Sleep Power 0.05 W Contention Window (CW) 64 ms 

Rx Power 0.5 W DIFS 10 ms 

Tx Power 0.5 W SIFS 5 ms 

Table 2. Transmission Duration Parameters. 

 Frame Size (bytes) Tx Latency (ms) 

RTS/CTS 10 11.0 

ACK 10 11.0 

PION (RMAC) 14 14.2 

DATA 50 43.0 
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Table 3. Cycle Duration Parameters. 

 TSYNC TDATA TSLEEP Tcycle 

RMAC 55.2 ms 168.0 ms 3,520.8 ms 3,744.0 ms 

S-MAC 55.2 ms 104.0 ms 2,511.2 ms 2,670.4 ms 

 TS/R sleep_factor TSLEEP Tcycle 

Basic P-MAC 234.0 ms 21 3,465.0 ms 3,795.0 ms 

Full P-MAC 234.0 ms 14 3,276.0 ms 3,744.0 ms 

 

PION relaying number N in RMAC defines the distance (hops) a PION frame can be forwarded in 

the DATA period. In our simulation, we set N = 4, as in [5]. The cycle related parameters are shown in 

Table 3. Both S-MAC and RMAC keep the same duty cycle (about 6%). Because the cycle division in 

P-MAC is different from that of both S-MAC and RMAC, the full P-MAC is set with sleep_factor = 14 

to have the same cycle duration as RMAC and the basic P-MAC is set with sleep_factor = 21 to have a 

similar cycle duration to the full P-MAC. 

4.2. Simulation Topology 

We use two types of topologies in our simulations: chain topology and random topology. Figure 6 

shows the chain topology. All nodes are equally spaced in a straight line with a 200 meter interval 

between neighboring nodes. Node 0 sends packets to node n through a single CBR (constant bit rate) 

flow. The hop length of the chains varies from 1–24 hops. For S-MAC, RMAC and the basic P-MAC, 

the routes for data transmission are assigned manually. 

Figure 6. Chain topology. 

 

 

Figure 7 shows an example of the random topology, which consists of 200 sensor nodes and a sink 

node (not shown in the figure). The 200 sensor nodes are randomly distributed in a 2,000 × 2,000 m
2
 

square area, and the sink node is located at the top-left corner of the square.  

Figure 7. Random topology with 200 sensor nodes in 2,000 × 2,000 m
2
 area. 
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The full P-MAC integrated with routing needn’t consider the routing issue. For fairness, we propose 

a routing mechanism for S-MAC, RMAC and the basic P-MAC by modifying the GDSA process in  

P-MAC, since it is not convenient to assign routes manually in the random topology. In the modified 

GDSA process, each node maintains a routing table containing only one field to record its next-hop 

nodes’ IDs. The process has the following steps: 

(1) The sink node with its grade set to zero initiates this process by generating a GRADE message 

packet. The packet contains two fields denoted by Gm and IDph. After setting IDph to its own 

ID and Gm to one, the sink node broadcasts this message. 

(2) Upon receiving a GRADE message, each node decides whether to update its routing table 

and/or rebroadcast the message, as shown in Algorithm 2.  

Algorithm 2. The modified GDSA: processing the received GRADE message. 

  1: if  Gn < 0 || Gm < Gn then 

  2:     if  Gm < Gn  then 

  3:         clear the current node’s routing table 

  4:     end if 

  5:     Gn  Gm 

  6:     add IDph into the current node’s routing table 

  7:     Gm  Gm + 1 

  8:     IDph  the current node’s ID 

  9:     rebroadcast the GRADE message 

10: else if  Gn == Gm  then 

11:     add IDph into the current node’s routing table  

12:      discard the GRADE message 

13: else 

14:     discard the GRADE message 

15: end if 

Figure 8. The number of nodes in each grade in the random topology network. 
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The completion of this process will result in one or more entries in the routing table of each node. 

During data transmission, the current node randomly chooses one entry and extracts the ID from the 

entry as the next-hop ID. Also, each node maintains a grade representing the path length from it to the 

sink. Figure 8 shows the number of nodes in each grade. 

In addition, we make the following assumptions. For S-MAC and RMAC, all nodes have already 

been synchronized to use a single schedule. There is no synchronization traffic during the simulation, 

but the SYNC period is still contained in the cycle. The original or modified GDSA process is 

executed only once during the initial phase and the corresponding overhead is not considered during 

the comparison among S-MAC, RMAC and P-MAC. 

4.3. Simulation Result 

We first evaluate the performance of the end-to-end delivery latency. For the chain topology,  

node 0 generates a CBR flow at the rate of 1 packet every 10 seconds. The simulation time is set as 

1,200 seconds. For the random topology, a random sensor node is selected every 10 seconds to send 

one packet to the sink. The simulation time is set as 19,200 seconds. 

Figure 9 shows the growth trend of the average packet delivery latency with respect to the increase 

in path length in the chain topology and random topology, respectively. Both figures show that the 

delivery latency in P-MAC increases at a much lower rate than S-MAC and RMAC. This is because  

S-MAC only forwards a packet to a 1-hop distance in each operational cycle and RAMC has to wait 

for the start of the next DATA period to forward data again if the path length exceeds the PION 

relaying number, while P-MAC can forward data in a pipeline fashion.  

Figure 9. (a) Delivery latency in the chain topology. (b) Delivery latency in random topology. 

   

(a)       (b) 

 

Provided the path length does not exceed the PION relaying number, data transmission can be 

completed within a single cycle in RMAC, spending about TDATA time. For P-MAC, the data frame 

moves to a 1-hop distance per SEND DATA period, spending about TS/R time. In our simulation, TDATA 
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(168.0 ms) is 66.0 ms less than TS/R (234.0 ms), so Figure 9 shows that RMAC has slightly less 

delivery latency when the path length is within 4 hops, as N = 4 in our simulation. 

Figure 9 also shows that the basic P-MAC has lower delivery latency than the full P-MAC with 

routing, since the RTS is sent to a certain node during data transmission in the basic P-MAC, which 

reduces network congestion and improves the data delivery ratio.  

Next, we evaluate the network throughput and energy efficiency for P-MAC. The network 

throughput is recorded in terms of the average number of packets successfully received by the sink per 

second. For the chain topology, we keep n = 24, and the data input interval for node 0 varies from 10–1 

seconds. For the random topology, the interval for randomly selecting a sensor node to send data varies 

from 10-1 seconds. In both topologies, the simulation time is set as 1,200 seconds. 

In the chain topology, Figure 10(a) shows that when the input interval is less than 8 seconds, the 

output rate in S-MAC decreases rapidly, since S-MAC has poor traffic contention handling due to its 

weakness of forwarding a packet to a 1-hop distance in each operational cycle. Because the network 

throughput of S-MAC decreases when the input interval is less than 8 seconds, the corresponding 

energy consumption also decreases, as shown in Figure 10(b).  

For P-MAC and RMAC, Figure 10(a) shows that the output rate follows the input rate until the 

input interval is less than 5 seconds, and finally reaches the steady state. When the network throughput 

reaches its peak point, the incoming injected packets cannot continue to be sent, and the network 

energy consumption will not be increased, as shown in Figure 10(b). When the input interval is smaller 

than 4 seconds, P-MAC with routing will have higher energy consumption than RMAC because of its 

higher throughput. The basic P-MAC has almost the same throughput as the full P-AMC but has lower 

energy consumption, since it doesn’t consider the routing issue. 

Figure 10. (a) Throughput in the chain topology. (b) Average power consumption per 

sensor node in the chain topology. 

  

 (a)       (b) 

 

In the random topology, Figure 11(a) shows that RMAC has better performance than the P-MAC 

integrated with routing in terms of throughput. But the basic P-MAC has better throughput than 

RMAC when the input interval is less than 4 seconds. Figure 11(b) shows that P-MAC is more energy 
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efficient than RMAC and S-MAC in the random topology. For all protocols, the range of improvement 

of the average power consumption is not obvious as the input interval decreases. This is because each 

point on the curve represents the average of 200 nodes, many of which did not participate in packet 

relaying as much as the nodes in the chain topology.  

Figure 11. (a) Throughput in the random topology. (b) Average power consumption per 

sensor node in the random topology. 

  

 (a)      (b) 

 

Finally, we evaluate how the variation of sleep_factor in P-MAC integrated with routing affects the 

network performance. The value of sleep_factor determines the length of the SLEEP period (see 

Equation 2). Increasing sleep_factor increases the length of the SLEEP period time and the whole 

cycle time. Increasing the sleeping time of sensor nodes can save more energy. However, when a 

packet is not generated at the start of the SEND DATA period in the current cycle, a longer cycle time 

makes the packet wait longer for the next cycle. 

For the chain topology, it is still the case that n = 24. The input interval of a CBR flow in node 0 

varies from 10–1 seconds. Each simulation runs for 1,200 seconds. Table 4 shows the different values 

of sleep_factor we used in our simulation, as well as their corresponding SLEEP period time and cycle 

time. The average packet delivery latency, the average power consumption per sensor node and the 

data throughput are observed, and the simulation results are shown in Figure 12. 

Table 4. Cycle duration with different sleep_factor. 

sleep_factor TS/R (ms) TSLEEP (ms) Tcycle (ms) 

2 234 468 936 

5 234 1,170 1,638 

8 234 1,872 2,340 

11 234 2,574 3,042 

14 234 3,276 3,744 

17 234 3,987 4,446 
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Figure 12. The impact evaluation of sleep_factor in the chain topology, (a) Packet 

delivery latency. (b) Average power consumption. (c) Output rate. 

  

 (a)       (b) 

 

 

(c) 

 

Note that Figure 12(a) shows the delivery latency that only varies with respect to the input interval 

from 10–5 seconds. This is because when the input interval is less than 5 seconds, the latency in the 

network with sleep_factor = 17 will be too large to be displayed. Figure 12(a) implies that the packet 

delivery latency increases as the sleep_factor increases for the reason stated above. But a greater 

sleep_factor ensures that nodes save more energy, as shown in Figure 12(b). When the network 

throughput is considered, a small sleep_factor is expected if the network traffic load is high, as shown 

in Figure 12(c). Figure 12(c) also shows that the cycle time is almost equal to the lowest input interval, 

which can still ensure that the output rate follows the input rate. For example, when sleep_factor = 17, 

the cycle duration is about 5 seconds, which is the lowest input interval ensuring that the network has 

100% throughput, as shown in Figure 12(c). 

Figure 13 shows the impact evaluation of sleep_factor in the random topology. The result is in 

accord with that in the chain topology. Note the evaluation doesn’t include a delivery latency 
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evaluation, which is not convenient to be given for the random topology. Designers can select the 

value of sleep_factor according to the network traffic load. For example, if the network input rate 

doesn’t exceed 0.2 packets/second (the input interval is not less than 5 seconds), sleep_factor = 17 

should be chosen, since the throughput can reach 100% with the lowest energy consumption. But if the 

input rate reaches 1 packet/second or higher, the minimum value of sleep_factor = 2 should be chosen. 

Figure 13. The impact evaluation of sleep_factor in the random topology, (a) Average 

power consumption. (b) Output rate. 

  

 (a)       (b) 

5. Conclusions 

Conventional duty cycle MAC protocols are energy-efficient and some of them also have mitigated 

other existing problems such as the delivery latency problem, but they have been designed independently 

without considering routing. Adding a routing protocol would cause significant performance degradation 

of the whole network. The P-MAC design presented in this paper is a cross-layer duty cycle MAC 

protocol seamlessly integrated with routing function. It uses the Grade Division and Schedule 

Assignment (GDSA) scheme at the network layer to assign all sensor nodes into different grades around 

the sink and ensures that nodes maintain staggered schedules between any two adjacent grades. Then a 

variation of the RTS/CTS handshake mechanism is used at the MAC layer to forward data 

continuously in a pipeline fashion from the higher grade to lower grade nodes and finally to the sink. 

The communication overhead in the network can be significantly reduced while maintaining the 

superiority of duty-cycling schemes. The simulation evaluations show that P-MAC achieves better 

performance in terms of energy efficiency, latency reduction and throughput improvement. Future 

research needs to study network scalability, which was not adequately addressed. 
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