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Abstract: Mobile Laser Scanning data were collected simultaneously with hyperspectral 

data using the Finnish Geodetic Institute Sensei system. The data were tested for tree 

species classification. The test area was an urban garden in the City of Espoo, Finland. 

Point clouds representing 168 individual tree specimens of 23 tree species were determined 

manually. The classification of the trees was done using first only the spatial data from 

point clouds, then with only the spectral data obtained with a spectrometer, and finally with 

the combined spatial and hyperspectral data from both sensors. Two classification tests 

were performed: the separation of coniferous and deciduous trees, and the identification of 

individual tree species. All determined tree specimens were used in distinguishing 

coniferous and deciduous trees. A subset of 133 trees and 10 tree species was used in the 

tree species classification. The best classification results for the fused data were 95.8% for 

the separation of the coniferous and deciduous classes. The best overall tree species 

classification succeeded with 83.5% accuracy for the best tested fused data feature 

combination. The respective results for paired structural features derived from the laser 

point cloud were 90.5% for the separation of the coniferous and deciduous classes and  

65.4% for the species classification. Classification accuracies with paired hyperspectral 

reflectance value data were 90.5% for the separation of coniferous and deciduous classes 

and 62.4% for different species. The results are among the first of their kind and they show 

that mobile collected fused data outperformed single-sensor data in both classification tests 

and by a significant margin. 
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1. Introduction 

We propose the use of mobile hyperspectral data together with mobile laser-scanning (MLS) data in 

tree species classification. The Sensei system constructed at the Finnish Geodetic Institute (FGI) 

integrates laser and hyperspectral data, but it has not yet been demonstrated in practical  

applications [1]. The rapid development of laser scanning has shifted since the middle of the first 

decade of the new millennium from airborne and terrestrial systems towards the development of 

mobile laser scanning, although the concept was first already proposed in 1996 [2]. A MLS system 

integrates navigation and data acquisition sensors on a rigid moving platform for collecting point 

clouds from the surroundings of the mapping system. A MLS system is, thus, similar to airborne laser 

scanning (ALS) systems, but typically applied MLS platforms include a van or a car. An increasing 

number of MLS systems based on commercial vans or cars are being used in urban and suburban 

environments, and described by, for example, El-Sheimy [3], and Graham [4]. Several research 

systems have been introduced recently [e.g., Geomobil (ICC), GeoMaster (University of Tokyo),  

Lara-3D (Ecoles des Mines de Paris), Roamer (FGI), Sensei (FGI)] [1,5-8]. A large number of studies 

looking into different types of MLS systems, their accuracies, and suitability for different applications, 

including environmental modeling, have been published in recent years [4,8-24]. Compared to airborne 

laser systems, which typically collect point clouds with a resolution of 0.5–40 pts/m
2
 from an altitude 

of 100–3000 m, MLS provides point clouds with a resolution of hundreds or even thousands of 

points/m
2
 from a distance of some dozens of meters. ALS and MLS data sets complement each other 

in several ways as they have different viewing geometries. For example, ALS data provides mainly 

horizontal structures in urban environments, such as the roofs of buildings, while MLS is at its best in 

detecting vertical objects, e.g., walls of buildings, trees, and lampposts [15,25,26]. MLS is also used in 

road line and pavement mapping studies to provide very high resolution spatial surface data [14,17]. 

In ALS systems, the simultaneous use of laser scanning alone or in combination with multi- or 

hyperspectral imagery has been studied actively, especially for the purpose of forest assessment and 

ecological studies [27-43]. ALS is also used for commercial and operative forest inventories especially 

in Scandinavia and Finland (a.k.a. the Nordic region) where there are only a few dominant and 

commercially significant tree species [44,45]. 

In recent years, several ALS-based methods have been developed for single tree species classification 

in the Nordic region [46-49]. These include the use of laser point cloud shape distributions, full 

waveform measurements, ALS intensity, computational geometry approach, data fusion with aerial 

imagery, and their combinations. The presented methods have proved to be successful in dominant tree 

species classification. However, in temperate regions the species number exceeds ten and the canopy 

structure is denser and more complex than in Nordic region. Thus, tree species classification, especially 

on the individual tree level, becomes a significant task. Dalponte et al. [30] tested combined 

hyperspectral imagery and multiple-return ALS data to classify 23 forest classes and obtained over  

85% class-wise classification accuracies for dominant classes.  
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MLS is used in conjunction with urban and suburban photorealistic city models [7,23]. There is also 

an increasing need to automatically obtain detailed tree data on trees and forests in city areas [50,51]. 

This is being currently studied using laser point clouds and imaging data obtained from cameras. 

However, additional image data containing RGB data does not necessarily yield significantly improved 

data in tree species classification if a relatively dense point cloud is already obtained from each tree 

and its vertical structure. Thus, in this paper, we deal with simultaneously collected laser point clouds 

and hyperspectral data from mobile mapping for the purpose of tree species classification and report of 

the first results. Classification of tree species was performed in three different phases. First, only the 

spatial data from point clouds were used in classification. Second, only the hyperspectral data from the 

spectrometer were used in classification. Third, combined data set consisting of both spatial data and 

hyperspectral data were used in classification. 

We found that tree species classification is a challenging task due to the inherent variations in shape 

and colouring between and within the individual trees of different species. However, the study results 

also show that the collected MLS data classified 133 tree specimen from 10 different species with over  

80% overall classification accuracy in the best tested study case. The result implies that combined 

MLS data could provide a practical basis for other environmental and urban monitoring and 

management studies. Furthermore, MLS data has also potential to be applied in a wide range of 

different applications; for example, in forestry, agriculture, urban planning, and building detection. 

2. Measurement System, and the Test Area Description 

Section 2.1 describes the sensors mounted on the Sensei measurement system. Section 2.2 gives an 

overview of the test area characteristics, the measurement, and the tree specimen within the test area. 

2.1. Sensors Mounted on the Sensei Measurement System 

The Finnish Geodetic Institute‘s Sensei is a measurement system able to carry a number of different 

measurement instruments [1]. These include a GPS/IMU positioning system, two laser scanners, a 

CCD camera, a spectrometer and a thermal camera. The Sensei measurement system has a modular 

structure, which means that only the instruments required for the specific measurement campaign need 

to be mounted and new sensors can be easily added to the system. In the present study, data collected 

with the Ibeo Lux laser scanner (Ibeo Automotive Systems GmbH, Germany), we used the Specim 

V10H spectral line camera (Spectral Imaging Ltd., Finland), and NovAtel SPAN-CPT inertial 

navigation system (NovAtel Inc., Canada). Figure 1 shows the measurement system in its mobile 

mapping configuration. 

The Ibeo Lux scanner measures points from four different layers simultaneously and it has a 

theoretical scan rate of up to 38,000 points/second if only one return per laser pulse and per layer is 

assumed. The scanner is able to record up to three returns per laser pulse and per layer. This allows it 

to get hits from the ground or building walls even when covered by nearby trees or vegetation. Its 

distance measurement range is from 0.3 to 200 m (50 m for targets with 10% remission), its ranging 

accuracy is 10 cm, its angular resolution is 0.25°. The divergence of the laser beam is 0.8° horizontally 

and 0.08° vertically with respect to the scanner body in the current instrument configuration. This 

indicates that objects may appear extended in the horizontal direction. This elongation caused by the 
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wide footprint of the laser scanner could be mitigated by applying some kind of thinning method to the 

data. However, as the elongation effect is moderate at short distances, it did not have a significant 

effect on the classification results. On the other hand, the wide laser beam also allows the laser scanner 

to cover the target area extensively and acquire points from thin targets as there are no gaps between 

the layers of the laser scanner. Figure 2 shows an indicative schematic of the measurement geometry. 

Figure 1. The Sensei measurement system in its mobile mapping configuration mounted 

on a car. The sensors are as follow: (A). A Specim V10H line spectrometer and a mirror 

for viewing the Spectralon
TM

 reference panel (not shown in figure); (B). An AVT Pike  

F-421C CCD camera (not used in this study); (C). A Novatel 702 GG GPS receiver;  

(D). An Ibeo Lux laser scanner; (E). A NovAtel SPAN-CPT Inertial Measurement Unit. 

 

Figure 2. An indicative top-down view schematic of the measurement geometry and 

principle of the Ibeo Lux laser scanner (not to scale). The different colours show the 

different layers of the laser beam and point measured by these layers. The colours in figure 

are not related to hyperspectral data. 
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The Specim V10H spectrometer is a spectral line camera with an instantaneous field of view of 

about 0.067° and a spectral resolution of 8.5 nm. The spectral range of the spectrometer is  

397–1,086 nm and the opening angle of the optics is 44.4° in the vertical direction when mounted on 

the Sensei system. The spectrometer measures the incoming light by passing it through a diffraction 

grating to a monochromatic CCD sensor, which produces a line of spectral data with a spatial 

resolution of 659 pixels and 493 spectral channels. The spectral channels were averaged during the 

data acquisition by binning the pixels on the CCD sensor into 123 channels to reduce the measurement 

noise and amount of data to be stored and processed. The reflectance spectra were normalised with 

using a Spectralon
TM

 reference panel (Labsphere, Inc., North Sutton, NH, USA). The panel was 

attached on the Sensei system so that the outermost 10 pixels of the line camera measured its 

reflectance during every spectrum collection operation. 

The integration of laser scanning data and spectral data was done by direct georeferencing based on 

the post-processed data of the inertial navigation system. The post-processing was done through 

Kalman filtering using Waypoint Inertial Explorer software and GPS base station data from Geotrim‘s 

VRS network. Exact information about the accuracy of the data is not available as no control points 

were measured, but based on the error metrics (e.g., standard deviation and separation between 

forward and reverse solutions) it is assumed to be better than 10 cm. Additional information about the 

system and data processing can be found in Jaakkola et al. [1]. 

2.2. Test Area, Measurements, and Data Sets 

The test area used in the present study is located in southern Finland in the city of Espoo (60.209°N, 

24.658°E); it consists of an experimental garden and the side of the street leading to it. The garden has 

over 200 tree and shrub specimens representing over 20 different species. The specimens represent a 

wide spectrum of species commonly used in Finnish parks and gardens. The studied specimens are 

mainly planted with small distances to each other and the study area was clear of understory. The test 

area overlay is shown in Figure 3. 

The data were collected at the beginning of September in 2010. The date of the data collection was 

in the late summer in Finland and the leaves of trees were still green. The time of the data collection 

was after 9 o‘clock in the morning. This meant that the sun‘s zenith angle was close to 71° from nadir. 

This wide zenith angle meant that the shading effects were emphasized in the hyperspectral data 

making the classification more difficult. Peltoniemi et al. [52] and Suomalainen et al. [53] have 

studied the effects of directional light scattering in different ground types and in low vegetation. Their 

results showed that the difference between the minimum and the maximum reflectance measured from 

the same target can be over hundred percents depending on the viewing geometry. Therefore, it is 

likely that the measured hyperspectral data would have variations of at least of similar order in them. 

The data were measured over a time span of 7 min and it consisted of five million laser points and 

10,000 line spectra. The data were collected by driving along the street and the paths around and 

within the experimental garden. 
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Figure 3. The Vanttila test area location is shown on a map of Finland (a) and an overview is 

presented of the test area (b). The overview image is drawn with the measured point cloud. 

The red and magenta objects are the determined trees used in classifications. Magenta 

objects have been included both in tree species classification and in coniferous-deciduous 

tree separation while red objects are only used in coniferous-deciduous tree separation. 

Blue areas represent the rest of the data (the map of Finland was retrieved from Wikipedia, 

created by user Care).  

 

(a)       (b) 

3. Data Processing Steps, Classification Features, and Data Classification Procedures 

Data processing steps, including specimen selection and determination, and the fusion of laser point 

cloud and hyperspectral data, are given in Section 3.1. All classification features and their extraction 

from specimen-wise fused data are presented in Section 3.2. Classification procedure used in specimen 

classification is described in Section 3.3. 

3.1. Data Fusion Steps 

Data processing and classification were done using the MATLAB 7.11 software (Mathworks, 

Natick, MA, USA). Individual trees and shrubs were determined manually from the laser point cloud. 

The determination was carried out in two steps: first, the tree specimen was outlined roughly from the 

bird-eye view. Second, the outlined tree specimen was determined more accurately repeating the 

outlining from different viewpoints in three dimensions. After all tree specimens were determined 

from the point cloud data they were fused with the hyperspectral line image data. 

The data fusion process was as follow: The IMU locations were first interpolated by using the time 

stamps of the laser points. Then, the point cloud data were transformed into the Sensei inertial frame 

coordinates. After the transformation, possible overlap between the spectrometer line images and the 

laser points was tested first in the Sensei‘s driving direction (horizontal). Next, the overlap test was 
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repeated in the vertical direction for the pixels of each spectrometer line found within a laser spot. The 

colour values of every pixel located in a single laser spot were normalized against the reference 

spectrum measured from the Spectralon
TM

 reference plate. The colour values of hyperspectral pixels 

were averaged if more than one pixel was found within a single laser point. An example of a manual 

tree specimen determination is shown in Figure 4. 

Figure 4. Data fusion process. (a) A part of the laser point cloud presenting a single tree 

specimen (Sorbus hybrida) set in the origin. (b) The same tree specimen after manual 

determination. The blue points represent the situation after 2D determination and the red 

points represent the outcome after an accurate 3D determination. These points are used in 

derivation of the height statistics of the tree specimen that were used in LiDAR-derived 

feature classification (Section 4.1). (c) A fused point cloud. Overlap between each 

determined laser point and hyperspectral pixels has been tested and all overlapping laser 

points have been given an individual colour spectrum. The average of all mapped spectra 

were used in hyperspectral classification (Section 4.2). 

 

(a)     (b)     (c) 

The processed data were saved into a new data structure which contained the original laser point 

cloud and the hyperspectral data mapped on it. Spectral information could not be mapped on all laser 

points because the field-of-vision of the spectrometer did not extend the tree tops in the near range. 

The limited field-of-view of the line spectrometer did not have a significant effect on the data analysis 

as it could be detected only in the largest trees close to road in the data set. Also, spectral data was 

averaged over each tree specimen further diminishing the effect. Two datasets were formed from the 

fused data: one for coniferous and deciduous tree separation, comprising of 168 tree specimens, and 

the other for individual tree species classification comprising of 133 tree specimen representing 10 tree 

species. The dataset sizes differed from each other as the specimen numbers of some tree species was 

below five, which was set as the threshold value. Another reason for the dataset discrepancy was that 

in some cases two or more coniferous or deciduous tree specimens were growing in the immediate 

proximity of each other, thus preventing accurate determination of the species. The examined tree 

species and their numbers in the dataset are listed in Table 1. It should be noted that the number of tree 

specimens of different species is unequal, which is likely to have an effect during the classification 

procedure.  
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Table 1. Classified tree species and their specimen numbers. All listed tree specimen were 

used in coniferous-deciduous tree separation. The tree species with the specimen number in 

bold were also used in individual tree species classification. Five of the specimens labelled 

as unidentified were deciduous and two specimens were coniferous. 

Index Common name Latin name Number of specimens 

1 Finnish Whitebeam Sorbus hybrida 6 

2 Swedish Whitebeam Sorbus intermedia 8 

3 European Rowan Sorbus aucuparia 21 

4 Common Whitebeam Sorbus aria 9 

5 American Mountain-ash Sorbus americana 23 

6 Pedunculate Oak Quercus robur 18 

7 Norway Maple Acer platanoides 4 

8 Apple Malus domestica 3 

9 Hungarian Lilac Syringa josikea 1 

10 Common Alder Alnus glutinosa 4 

11 Camperdown Elm Ulmus glabra camperdownii 5 

12 Crack Willow Salix fragilis, ‘Bullata’ 8 

13 Colorado Blue Spruce Picea pungens, 'Iseli Fastigiate' 5 

14 Black Spruce Picea mariana 4 

15 White Fir Abies concolor 2 

16 Siberian Fir Abies sibirica 30 

17 Balsam Fir Abies balsamea 2 

18 Common Juniper Juniperus communis 2 

19 European Yew Taxus baccata 2 

20 Northern Whitecedar Thuja occidentalis, 'Danica' 1 

21 Common Douglas-fir Pseudotsuga menziesii 1 

22 Silver Birch Betula pendula 1 

23 Scots Pine Pinus sylvestris 1 

* Unidentified tree species -- 7 

 Total number of trees  168 (133) 

3.2. Feature Extraction for Classifications 

Certain Light Detection and Ranging LiDAR-derived features and hyperspectral features were 

extracted from the fused tree datasets for classification. In all 34 LiDAR-derived features and  

123 hyperspectral features were calculated for each tree specimen point cloud. 

The classification feature extraction process followed the one presented in Puttonen et al. [54]. The 

LiDAR-derived features, were calculated from the height distributions of the laser-scanned point 

clouds of each determined tree specimen. The point cloud height distributions were used in feature 

extraction as the viewing geometry of the measurement was horizontal. Thus, an accurate vertical 

profile of each tree specimen was collected as there was little or no occlusion in the determined data. 

Table 2 presents all of the LiDAR-derived features used in the classification. The first twenty  

LiDAR-derived features described the proportions of laser hits found within the normalized height 

fractions in a tree specimen. Skewness and kurtosis were the third and the fourth standardized 

moments of the laser point height distribution. Maximum tree height was defined as the entire length 
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of a tree specimen. The mean height of a single tree specimen was calculated from all laser hits coming 

from that tree specimen. The height coefficient of variation was the standard deviation of a  

single-tree-laser-point-cloud height that was divided by its mean height. The use of LiDAR-derived 

features describing the ratios of point cloud height distribution over a selected normalized height 

threshold (PR) and the height quantiles (hq) have been inspired by the area-based study of Naesset and 

Gobakken [55], who used canopy height distributions obtained from small-footprint airborne laser 

scanner data to estimate forest growth in both young and mature boreal forests. They found out that 

canopy height parameters that were obtained from lower, intermediate and the top parts of trees were 

the best estimators. Furthermore, the first return pulse information was better suited for forest growth 

estimation than the last pulse information in their study. 

Table 2. LiDAR-derived tree point cloud height distribution features and their descriptions. 

LiDAR-derived feature index 

PR, hN < 0.33 PR, hN > 0.2 hq 30 

PR, 0.33 < hN < 0.67 PR, hN > 0.3 hq 40 

PR, hN > 0.67 PR, hN > 0.4 hq 50 

PR, 0.1 < hN < 0.2 PR, hN > 0.5 hq 60 

PR, 0.2 < hN < 0.3 PR, hN > 0.6 hq 70 

PR, 0.3 < hN < 0.4 PR, hN > 0.7 hq 80 

PR, 0.4 < hN < 0.5 PR, hN > 0.8 hq 90 

PR, 0.5 < hN < 0.6 PR, hN > 0.9 Max 

PR, 0.6 < hN < 0.7 Skewness Mean 

PR, 0.7 < hN < 0.8 Kurtosis CV 

PR, 0.8 < hN < 0.9 hq 10  

PR, hN > 0.1 hq 20  

PR(hN) = Proportion of laser hits within a shown normalized height interval in a 

tree specimen; Skewness = Skewness of the height distribution of a tree specimen 

point cloud; Kurtosis = Kurtosis of the height distribution of a tree specimen point 

cloud; n:th hq = n:th height quantile in percents, from the base of the tree;  

Max = Maximum height of the laser hits in a tree specimen; Mean = Mean height 

of the laser hits in a tree specimen; CV = Coefficient of variation 

The hyperspectral classification features were formed by averaging the intensities of all of the 

measured fused points of an individual tree specimen point cloud. Each tree specimen point cloud was 

described using the total of 123 spectral values after averaging. The intensity value averaging reduced 

the total amount of the data significantly. Also, the large single point reflectance variations still present 

in the data after intensity normalization were further attenuated in conjunction with intensity 

averaging. However, intensity averaging over a whole tree specimen meant that the information about 

the directional lighting effects and the spectral differences in different parts of the tree specimen were 

lost. This did most likely have a negative effect on the overall classification accuracies. 
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3.3. Classification Procedure 

The extracted features were first used for more general classification between deciduous and 

coniferous trees and then separately for individual tree species classification. The classifications were 

performed using the LibSVM software package developed by Chang and Lin [56]. LibSVM is a 

Support Vector Machine (SVM) classifier [57]. It uses an improved Sequential Minimal Optimization 

algorithm in SVM training [58]. SVMs have been successfully applied in several studies for 

conducting various remote sensing classifications [30,59,60]. 

The LibSVM classification was done following the guideline given in Chang and Lin [56]. First, the 

values of the features chosen for classification were scaled between −1 and 1. Scaling is necessary to 

avoid possible numerical problems. Another reason for the scaling is to set the different classification 

features on an equal level in regards to one with another. A Radial Basis Function (RBF) was used as 

the kernel. The optimization of the two kernel parameters was carried out by cross-validating the data 

several times while changing the kernel parameter values by several orders of magnitude during the 

process. 

All classifications and SVM kernel parameter optimizations were done applying the leave-one-out 

cross-validation (LOOCV) setup. Each tree specimen was classified using the rest of the specimens as 

a training set for a classifier. Individual specimen results were then collected together to provide the 

overall result. The LOOCV setup was applied despite it being computationally intensive as the total 

number of classified trees was small (see Table 1). 

The classification feature testing procedure has been presented in Puttonen et al. [54], where three 

tree species were classified in laboratory conditions. Both the separation of coniferous and deciduous 

species and the classifications of individual tree species were carried out several times while 

systematically testing the classification features and their combinations. All LiDAR-derived and 

hyperspectral features were used one at time in the first classifications. All possible feature pairs, 

consisting of the LiDAR-derived and the hyperspectral features, were also tested in the same manner. 

Finally, a selected set of both LiDAR-derived and hyperspectral feature pairs were combined 

together to make new feature quadruples for a new classification round. The feature quadruples were 

selected by choosing the best-performing 10% from both LiDAR-derived and hyperspectral feature 

pairs. This selection was carried out to reduce the total amount of possible feature combinations. 

3.4. Validation of the Selected Classifier and the Feature Selection 

The validity of the classifier and feature selection was tested in three ways. First, the classification 

was repeated for the best single, paired, and combined classification features and their sets with a 

linear discriminant classifier. The linear discriminant classifier was chosen as a reference to justify the 

use of a computationally more complex SVM classifier. The second method of testing feature selection 

was performed by conducting the classification using all of the LiDAR-derived features and 

hyperspectral features at the same time in the classification. This was done to see if there was any clear 

improvement in the overall classification accuracy. If the classification results, with all possible 

features available in the study, did not yield the best outcome with a wide margin compared to smaller 

feature subsets, then their use as a whole feature set was not recommended. The reason for not to use a 
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large feature set with a size close to or larger than the specimen number was that the obtained result 

became susceptible to overfitting. In an overfitting situation, the classifier classifies given training data 

with high accuracy, and this includes fluctuations and noise. Thus, its predictive power for the whole 

dataset is weak [61]. Furthermore, the classification efficiency is improved when as minimal number 

of classification parameters as possible are used to obtain an accurate classification result. The 

classification efficiency improves as less data and processing time are needed. 

And third, we tested the validation of the classification feature selection by using a forward 

selection method where the classification was performed in iterative steps. The forward selection 

approach was chosen as the third validation method as it has been suggested in literature as a good 

starting point when launching a new classification project [62]. First, the best-tested LiDAR-derived or 

hyperspectral feature was selected. This was followed by repeating the classification with all of the 

other shape and hyperspectral features paired with the best one. The best feature pair was then selected 

and it was used with the rest of the features in the following iteration round. A total of four iterations 

with different LiDAR-derived feature and hyperspectral feature combinations were tested. 

4. Classification Results 

The classification results are presented in five parts: (i) The overall results of both single and paired 

LiDAR-derived features; (ii) The overall results of both single and paired hyperspectral features; 

(iii) The comparison of the results obtained from the LiDAR-derived and the hyperspectral features; 

(iv) The detailed classification results of combined feature quadruples consisting of two hyperspectral 

features at different wavelengths and of two LiDAR-derived features; (v) Different classification 

feature selection methods are compared in order to validate the presented results.  

4.1. Classification Results with LiDAR-Derived Features 

The classification was performed with 34 LiDAR-derived features and with all possible (561) 

LiDAR-derived feature pairs formed out of them. The best classification result for coniferous and 

deciduous tree separation with a single LiDAR-derived feature was 84.5% and it was obtained with a 

LiDAR-derived feature describing the relative number of points over the midpoint of the normalized 

tree height (PR, hN > 0.5 in Table 2). The best paired classification result was 90.5% and it was 

obtained with LiDAR-derived features that were the relative number of points over 10% of the 

normalized tree height (PR, hN > 0.5) and the kurtosis of the point cloud height distribution. The 

classification result with all LiDAR-derived features was 89.9%.  

It should be borne in mind that the measurements were conducted in an experimental garden where 

the specimen trees had not yet reached full maturity. This caused additional variance in the  

shape-based classification between deciduous and coniferous trees. Also, it should be emphasized here 

that the features, both LiDAR-derived and hyperspectral, specifically labeled in the text were not the 

only features giving the best classification results. There were several other possible features that 

achieved the same classification accuracy. This was especially the case with the paired features and 

with the feature quadruples. 

The tree species were classified in a similar manner. The best classification results for single and 

paired LiDAR-derived features were 51.1% and 65.4%. The best found single feature described the 
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relative number of points over 40% of the normalized tree height (PR, hN > 0.5). The best feature pair 

consisted of the relative number of points below 33% of the normalized tree height (PR, hN < 0.33) and 

of the 20% height quantile (hq20). The species-wise classification result with all LiDAR-derived 

features was 67.7%. 

A fraction of the best-performing LiDAR-derived feature pairs were selected for the four-feature 

classification. The number of LiDAR-derived feature pairs selected for coniferous and deciduous tree 

separation was 73 and these represented 13.0% of all pairs. For tree species classification, the 

corresponding number was 62 pairs from a total of 561 (11.1%). The mean classification performance 

of the selected LiDAR-derived feature pairs and their standard deviations are shown in Tables 3 and 4. 

The LiDAR-derived features separate coniferous trees from deciduous trees with a relatively high 

accuracy. The best single LiDAR-derived features were able to achieve this with an accuracy of over 

80%. The best performing single LiDAR-derived features were the relative number of points over 10% 

of the normalized tree height (PR, hN > 0.1), the relative number of points over 40% of the normalized 

tree height (PR, hN > 0.4), and the relative number of points over the midpoint of the normalized tree 

height (PR, hN > 0.5). The best-performing LiDAR-derived features in this case are all point ratios 

over a certain height threshold. Thus, the result implies that there was a systematic shape difference 

between coniferous and deciduous trees in the data. The result is logical as most of the coniferous 

species included in the data had a conical shape (especially young specimens), while the deciduous 

tree species had a more clear division between their canopies and trunks. 

The LiDAR-derived feature pair results were more accurate than the results obtained with 

individual LiDAR-derived features. Especially, deciduous trees were separated on average with an 

accuracy of over 90% within the selected pair set (Table 3). The standard deviation was below 3%, 

which implied that the results were consistent. The result obtained using all of the LiDAR-derived 

features in the classification showed that no separation improvement was gained when its results were 

compared with the performance of the best single and paired LiDAR-derived features. 

Table 3. The mean deciduous and coniferous tree separation results of the selected  

LiDAR-derived and hyperspectral feature pairs, and all of the feature quadruples thus 

formed. The number of the LiDAR-derived feature pairs was 73, the number of 

hyperspectral feature pairs was 754, and the number of selected feature quadruples was 

55,042.  

 

LiDAR-derived 

feature pairs 

Hyperspectral 

feature pairs 

Feature quadruples 

(2 LiDAR and 2  

hyperspectral features) 

Mean Std Mean Std Mean Std 

 % % % % % % 

Deciduous 92.3 2.7 93.9 2.0 94.1 1.8 

Coniferous 75.0 5.8 68.9 4.8 83.6 3.6 

--- --- --- --- --- --- --- 

Total 86.9 3.6 86.2 2.9 90.9 2.4 
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The LiDAR-derived tree species classification results showed a more obvious accuracy 

improvement between single and paired LiDAR-derived features when compared to the  

coniferous-deciduous separation results. This was to be expected as the number of different classes 

rose to ten from previous two. However, Table 4 shows a clear ambivalence in species classification 

results: Three of the tree species have been classified on average with an accuracy of over 80%, 

namely Sorbus americana, Quercus robur, and Abies sibirica. These were also the three most 

numerous species in the dataset. The classification accuracies for the other species ranged from 0% to 

60.2% in the selected feature pair sets. The main constituents of the classification errors were 

misclassifications within the genus Sorbus (Table 1) and with Quercus robur. Other misclassifications 

occurred between the other deciduous species and between the two coniferous species. The 

misclassifications occurred systematically, which means that the classifier favoured the species 

providing more specimens. 

Table 4. The average species classification results of the selected LiDAR-derived and 

hyperspectral feature pairs, and all of the feature quadruples thus formed. The species 

indexing is given in Table 1. The number of the LiDAR-derived feature pairs was 73, the 

number of hyperspectral feature pairs was 786, and the number of selected feature 

quadruples was 48,732. 

 
LiDAR-derived feature 

pairs 

Hyperspectral 

feature pairs 

Feature quadruples 

(2 LiDAR and 2 

hyperspectral features) 

Species index 
Mean Std Mean Std Mean Std 

% % % % % % 

Sorbus hybrida 22.6 20.7 33.6 22.8 77.7 12.6 

Sorbus intermedia 0.0 0.0 48.2 6.8 53.0 11.0 

Sorbus aucuparia 39.5 11.3 60.4 12.1 57.2 9.5 

Sorbus aria 12.9 13.7 25.6 18.9 14.8 17.5 

Sorbus americana 83.9 6.1 37.0 14.5 84.3 7.0 

Quercus robur 83.6 4.3 93.3 6.7 98.3 3.4 

Ulmus glabra 

camperdownii 
45.2 33.4 28.8 19.3 34.1 29.0 

Salix fragilis 61.3 13.5 77.2 15.7 70.2 16.5 

Picea pungens 16.1 16.5 0.0 0.7 17.3 15.6 

Abies sibirica 93.2 4.9 72.0 6.4 95.1 3.3 

--- --- --- --- --- --- --- 

Total 61.0 9.1 56.7 11.2 72.2 9.0 

4.2. Classification Results with Hyperspectral Features 

The classification was performed with 123 different hyperspectral feature values and with all 

possible hyperspectral feature pairs (7,503) formed from them. The best classification result for 

coniferous and deciduous tree separation with a single hyperspectral feature was obtained with a 

wavelength channel centered at 988 nm and was 79.2%. The best paired classification result was 

90.5%. The result was obtained with wavelength channels centered at 932 nm and at 994 nm, whereas 



Sensors 2011, 11                            

 

 

5171 

the classification accuracy utilizing the full spectrum (all of the hyperspectral features) was 93.2%. All 

listed hyperspectral features with the best prediction power are located in the infra-red (IR) part of the 

spectrum. This is expected as the deciduous tree species in this study are brighter in general in the IR 

region than the coniferous species. 

The best tree species classification results for single and paired hyperspectral features were 43.6% 

and 62.4%. The best single hyperspectral feature was the wavelength channel centered at 954 nm) and 

the best hyperspectral feature pair was consisted of wavelength channels centered at 489 nm and at  

781 nm. The species-wise classification result with full spectrum was 66.9%. The best single 

hyperspectral feature was located again in the IR region. The best hyperspectral feature pair, however, 

was selected around 700 nm where vegetation spectrum is known to have significant brightening. 

Thus, this implies that for several different tree species the spectral information from the IR region 

alone is not enough to distinguish tree species from each other. As in Section 4.1, a fraction of the best 

performing hyperspectral-feature pairs were selected for the four-feature classification. The number of 

hyperspectral-feature pairs selected for coniferous and deciduous tree separation was 754, which 

represented 10.0% of all pairs. The corresponding numbers were 786 pairs of a total of 7,503 (10.5%) 

for the tree-species classification. The mean classification performance of the selected hyperspectral 

feature pairs and their standard deviations are shown in the Tables 3 and 4. The coniferous and 

deciduous tree separation succeeded with classification accuracy similar to that of LiDAR-derived 

shape-feature-based case. Deciduous tree separation succeeded better than in the shape-based case, but 

the coniferous tree separation result was several percentage points lower than in the shape-based 

separation. The total coniferous and deciduous tree separation result was on par with the shape-based 

case. The standard deviation within the selected hyperspectral feature set was low, below 3% in the 

overall classification result. The use of all hyperspectral features yielded a better overall separation 

result when compared to the average results of the hyperspectral feature pairs. This means that the 

redundancy between spectral channels was relatively small. 

4.3. Comparison between the LiDAR-Derived and the Hyperspectral Classification Results 

The results of the classification using hyperspectral and LiDAR-derived features differed in a 

couple of ways: First of all, only one species, Quercus robur, was classified with an average accuracy 

of over 80% when using the hyperspectral features. Another issue is that the species classification 

performance differed from the shape-based classification. For example, Sorbus intermedia was fully 

confused with the other Sorbus species in the shape-based classification was subsequently classified 

correctly in almost half of the cases. On the other hand, several species received significantly more 

incorrect results when compared to the shape-based classification: The classification accuracy of 

Sorbus americana dropped almost 50% points due to it being confused with the other Sorbus species. 

Also Ulmus glabra, Picea pungens, and Abies sibirica were misclassified more often than other 

species in shape-based classification. The average overall classification performance of the selected 

hyperspectral feature pairs was close to 5% points lower than in the shape-based classification. 

Additionally, the full spectrum classification gave better results in species classification than did the 

selected hyperspectral feature pairs. The performance difference between the average of the selected 

hyperspectral feature pairs and the full spectrum was over 10% points, which would appear to imply 



Sensors 2011, 11                            

 

 

5172 

that using more than two hyperspectral features in tree species classification would be better for this 

dataset. However, when coupled with LiDAR-derived shape features, even two separate hyperspectral 

features could yield significant improvements in the overall species classification. Also, in reality, 

where training the classifier is based on a practical number of reference trees, the practical results 

using several features more will not yield significantly higher accuracies. 

4.4. Classification Results Based on both the LiDAR-Derived and the Hyperspectral Features 

The fused data classification was carried out by forming feature quadruples from the best-performing 

feature pairs selected in Sections 4.1 and 4.2. Each feature quadruple consisted of one shape-feature pair 

and one hyperspectral-feature pair. The total number of combined feature quadruples was 55,042 unique 

sets for the coniferous and deciduous tree separation, and 48,732 unique feature quadruples for the tree 

species classification. The total number of selected feature quadruples was limited to constrain the 

processing time within practical limits. 

The best overall coniferous and deciduous tree separation result was 95.8%. The average separation 

accuracy of feature quadruples was 90.9% (Table 3). The averaged accuracy was a few percentage 

points higher than the one obtained using only the LiDAR-derived shape or hyperspectral feature pairs, 

but no significant separation advantage was gained. The overall separation accuracy improved mainly 

as conifers were detected more effectively than in the earlier pair-wise separations. The standard 

deviation of the overall result was under 3% and this implies that the feature selection within this 

group should have yielded close to 90% separation accuracy in most cases. 

The best tree species classification resulted in 83.5% accuracy, while the average classification 

result for all 48,732 tested feature quadruples was 72.2% with a standard deviation of 9.0% (Table 4). 

The average result shows that combining well-performing feature pairs into new quadruples results in 

a further improvement in overall tree-species classification accuracy. 

Three species, Sorbus aria, Ulmus glabra, and Picea pungens were still confused with other 

species, which resulted in their species-wise accuracy falling below 40%. On the other hand, the  

classification accuracy of Sorbus hybrida improved significantly, up to 77.7% when compared to  

pair-wise classification accuracy (LiDAR 22.6%, hyperspectral 33.6%). The improvement in the 

overall classification accuracy was also significant when compared to the pair-wise results; this 

supports the use of combined feature sets in species-wise classification. 

Table 5 contains the error matrix of the best species-wise result obtained with a feature quadruple 

consisting of the LiDAR-derived features that were the 90% height quantile (hq90) and the mean 

height of a single tree specimen, and the hyperspectral features that were channels centered at 428 nm 

and at 982 nm. The table shows that the species represented by the most specimens were classified 

correctly or close to correctly. There was clear confusion between the species of the genus Sorbus. On 

the other hand, only a few Sorbus specimens were misclassified as other tree species. All Quercus 

robur and Salix fragilis specimens were classified correctly. Deciduous Sorbus aria and coniferous 

Picea pungens were classified with the lowest accuracies. They were also the species represented by 

the smallest number of specimens. Sorbus aria was confused in three cases with the Sorbus aucuparia, 

which is a member of the same genus. Picea pungens was misclassified as being several different 

species. Table 4 shows that the classification of Picea pungens was based almost completely on the 
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LiDAR-derived shape information. This could mean that no reliable spectral data were collected on 

them. Possible reason for non-reliable spectra for these trees could have been poor local lighting 

conditions caused by shading and the sun being located close to the horizon at the time. Another 

possible reason is that the reference plate has been illuminated at the time while the tree specimen has 

been in a shade at the time. This would have resulted in very dark normalized spectra. 

Table 5. The error matrix of the species-wise classification result of the best selected 

feature quadruple (LiDAR-derived features were the 90% height quantile (hq90)andthe 

mean height of a single tree specimen, and hyperspectral features that were the channels 

centered at 428 nm and at 982 nm). Bolded numbers in the diagonal are the numbers of 

correctly classified tree specimens. All classification accuracies are given in percents. 
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User 

accuracy 

Sorbus hybrida 5 1 0 0 0 0 0 0 0 1 71.4 

Sorbus intermedia 0 5 2 0 0 0 0 0 0 0 71.4 

Sorbus aucuparia 0 1 15 3 1 0 0 0 0 0 75.0 

Sorbus aria 0 0 3 5 0 0 0 0 0 0 62.5 

Sorbus americana 1 0 0 0 22 0 0 0 0 0 95.7 

Quercus robur 0 0 0 0 0 18 0 0 0 0 100.0 

Ulmus glabra 

camperdownii 
0 0 0 0 0 0 3 0 1 0 75.0 

Salix fragilis 0 0 0 0 0 0 2 8 1 0 72.7 

Picea pungens 0 0 0 1 0 0 0 0 1 0 50.0 

Abies sibirica 0 1 1 0 0 0 0 0 2 29 87.9 

 
Total 

accuracy 

Producer accuracy 83.3 62.5 71.4 55.6 95.7 100.0 60.0 100.0 20.0 96.7 83.5 

4.5. Classification Method Comparisons 

The classification efficiency between LibSVM and a linear discriminant analyser (LDA) was tested 

to justify the use of the more complex and computationally more intensive SVM. The testing was 

performed using the best feature pairs and quadruples in comparison. The comparison results are 

shown in Table 6. Overall, the results showed a clear difference between the classification accuracies 

in favour of the LibSVM. The LibSVM outperformed the LDA by over 5% points in all of the paired 

test cases. Moreover, the classification performance of the LDA is more sensitive to the number of 

classes determined and the number of classification features than the LibSVM. However, the best 

feature quadruples resulted in LDA results show that for coniferous and deciduous tree separation 

almost equal classification accuracy (94.1%) could be achieved when compared with the best SMV 

result. Also, while there was still a clear difference, the best tree species classification result with the 
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LDA (79.7%) was relatively close to the best obtained SVM classification result. Thus, the best results 

imply that the feature selection works for both types of classifiers. 

Table 6. Classification accuracy comparison between the results of a Linear Discriminant 

Analyser (LDA) and the LibSVM. The best result of each case is reported. 

 LDA LibSVM 

% % 

Coniferous-deciduous separation --- --- 

LiDAR-derived feature pair 86.3 90.5 

Hyperspectral feature pair 81.0 90.5 

Fused feature quadruple 94.1 95.8 

Tree species classification --- --- 

LiDAR-derived feature pair 54.9 65.4 

Hyperspectral feature pair 54.1 62.4 

Fused feature quadruple 79.7 83.5 

Another classification efficiency test was also performed to test the effect of different feature 

selection methods on overall tree-species classification accuracy. In the test, three different types of 

forward-selected four-feature comparison sets were formed: One set with four LiDAR-derived shape 

features, one with four hyperspectral features, and a feature set with two shape features and two 

hyperspectral features giving the best overall classification result. The forward selection test was 

chosen, because its implementation is straightforward and it has a low computational complexity. The 

comparison results are shown in Figure 5. The forward-selection test was performed only for the 

species classification. 

The results showed that the best feature quadruple (case (A) in Figure 5) of the tested 48,732 feature 

quadruples gave the highest overall classification accuracy. Moreover, the average classification result 

of all of the tested feature quadruples (B) exhibited higher classification performance than the  

four-feature sets based only on LiDAR-derived shape (C) or hyperspectral features (D). This result 

emphasizes the efficiency of feature quadruples combined from different types of data sources over the 

feature sets that had been derived using single sensor data. 

However, the best forward-selected four-feature sets, both the LiDAR-derived (C) and the 

hyperspectral one (D), yielded significantly better overall classification results than their paired 

counterparts (see Table 4). The margin between the classification accuracies was several percentage 

points. This was to be expected as the number of classification features doubled from what it was with 

the paired cases. Moreover, these two results also show that the use of more than four features of the 

same data type does not improve the classification accuracy for these data. This is seen when 

comparing them against the classification result obtained with all of the LiDAR-derived shape features 

(67.7%) and against the result obtained with all of the hyperspectral features (66.9%). The reasons for 

not gaining further improvement in classification accuracy were most likely in the relatively high 

variation within the data as well as the redundancy within the classification features themselves. 

The best result was obtained with the mixed forward-selected four-feature set (E) that classified tree  

species with an overall accuracy of 79.7%. The average classification accuracy of the tested six  

forward-selected four-feature sets was 77.3% and their standard deviation was 1.5%. This implies that 
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the selection order of the forward-selected four-feature set does not have a significant role in the 

outcome of the classification. However, the best results were obtained when at least one  

LiDAR-derived shape feature was selected in the first iteration. The average overall classification 

score within all of the tested forward-selected four-feature sets and its low variation suggested that the 

forward-selected feature sets provided a straightforward way to achieve relatively high classification 

accuracy. However, the best overall classification accuracy obtained with the feature set (A) was over 

five percentage points higher than the average of the forward-selected four-feature sets. This implies 

that forward selection of the features limits the chances of finding the best possible classification 

feature combination as it locks the previous features during iteration. 

Figure 5. Classification accuracy comparison between different four-feature classification 

parameter sets. Bars A and B were obtained from the feature quadruples formed in  

Section 4.3. Bar A shows the best classification result of the feature quadruples while  

bar B represents their average classification result and its standard deviation (see Table 4). 

Bar C is the overall classification result obtained with four forward-selected hyperspectral 

features. Bar D is the overall classification result of four forward-selected shape features. 

Bar E is the best overall classification result obtained with two forward-selected  

LiDAR-derived shape features and two hyperspectral features. 

 

Heinzel et al. [32] have reported similar results with forward selection when they classified tree 

species using features derived from ALS waveform data. There were clear classification accuracy 

improvements in their study during the first forward selected iterations. However, the classification 

accuracy did not significantly change when more features were included in classification. 

 



Sensors 2011, 11                            

 

 

5176 

5. Conclusions 

The study presents the first results of using mobile laser scanning and hyperspectral tree data in tree 

species classification. Tree species classification and the separation of coniferous and deciduous trees 

were performed in a city experimental garden in the City of Espoo, Finland. The results showed that a 

fused data set consisting of LiDAR-derived and hyperspectral features outperformed single-source data 

sets by a significant margin. The best overall coniferous and deciduous tree separation result was  

95.8% when two LiDAR-derived shape and two hyperspectral features were applied using a Support 

Vector Machine (SVM) as a classifier. The corresponding best tree species classification result 

including 10 species in the analysis was 83.5%. The results were obtained using a low number of 

predictors to give a more realistic and practical view of the potential of the data. 

The SVM is a powerful classification tool. Thus, it is difficult to have an idea of the complexity of 

the classification task when it is used alone. Therefore, we used a Linear Discriminant Analyser (LDA) 

as a reference. The results of the LDA indicated how well the different classes were separated in the 

feature space and thus what was the minimum level of separation to be expected when other classifiers 

were used. The results obtained with the LDA and the SVM showed that the overall classification 

results could be improved with a more sophisticated classifier when the number of classification 

features was limited to a few and several classes were classified. 

The best obtained classification accuracy for these data is close to a level where its use could be 

considered for larger scale studies. Before this however, there is a need for more comprehensive result 

validation with a more even tree specimen variety. Also, more studies that cover longer time spans are 

needed to detect phenology-related changes in trees. Furthermore, the workflow optimization and the 

automatization level of the feature extraction both need improvement before data processing on an 

operational level will be feasible. Overall, it should be kept in mind that the suitability of this type of 

data and the possibly obtainable classification accuracy are always application-specific and that their 

range needs to be considered separately for each individual study case.The lighting conditions were 

observed to play an important role in the hyperspectral response. Thus, it was found to be necessary to 

take directional lighting factors better into account in order to further improve the classification 

accuracy in future analyses. A possible solution for better hyperspectral detection might be in active 

multi-wavelength laser systems that are capable of simultaneous range and intensity detection [63]. 

They would significantly simplify the detection geometry and negate most of the issues related to 

diffuse lighting and shading effects. Overall, mobile mapping is seen to be a feasible application of 

technology utilizing directional lighting effects. 

The results presented here are also among the first of their kind. Therefore, direct comparison with 

other similar studies is not possible. However, corresponding studies have been done with fused data 

where ALS data and hyperspectral data have been combined together. Dalponte et al. [30] reported on 

classification results for 23 land-cover classes. The first feature set consisting of 40 hyperspectral 

features gave equal explanatory power compared to the use of a single feature from the ALS, i.e., the 

elevation of the first return. They also observed that for some dominant classes accuracy was of the 

order of 85%–90%, whereas, for the minority classes, a dramatic decrease in accuracy was observed 

when the data were analyzed with SVM class-by-class accuracy. 
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In another study, Asner et al. [28] reported of the detection of three invasive tree species in 

Hawaiian rainforests. They used LiDAR data in shadow removal and tree-crown quantification. Then, 

they proceeded to collect the full-range hyperspectra of over 200 spectral channels of the tree crowns 

and analysed the data applying a spectral mixture in several stages. The results showed that the 

invasive species could be detected within ~2 m
2
 and ~7 m

2
 minimum canopy thresholds with error 

rates of less than 18.6% and 6.8%. 

The classification accuracies of the results presented in this study are comparable. However, several 

differences do apply to the data and their collection. The main difference between this study and the 

others is in the different measurement geometry, which results in significantly varying directional 

lighting conditions. The lighting conditions in mobile terrestrial survey are challenging as the 

measurements are sometimes done towards and away from the sun. Directional lighting effects, such 

as bidirectional reflectance [64], and their calibration have to be considered in future, as these effects 

are more severe in mobile than in airborne use. In addition to the directional lighting effects, the 

viewing geometry is sensitive to the lateral occlusion. Therefore, the viewing depth in horizontal 

direction is limited in the case of densely packed vegetation. This problem can be diminished if 

waveform data is available. 

However, the point density of the study was higher than in the previous examples, a low-cost laser 

scanner and spectrometer were applied, and only a small number of classification predictors were used.  

The presented system and classification method can be applied in several ways in the future. For 

example, city authorities need information on park and road-side trees for planning and management 

purposes. Mobile mapping methods could position trees automatically while collecting other important 

main stand attributes, such as stem diameters and volumes, and tree height and tree species. Tree 

health monitoring could also be a possible new application area. Also, the classification results 

presented here were accurate enough to imply that the presented system should be also capable of 

collecting data for more general object recognition. 

In near future, we anticipate that data collected with MLS systems will find increasing use in urban 

planning. Another application of mobile mapping systems could involve the creation of virtual 

environments when integrated with ALS and aerial images. Recently, the authorities of the City of 

Helsinki in Finland have shown interest in presenting virtual models of eastern Helsinki in computer 

games to enable the public to take part in the planning of new building areas. This would allow more 

citizens to participate in the planning and voting for different solutions, and this would give the public 

more powers of influence in urban decision-making. Consequently, the work needed in urban planning 

would become easier. 
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