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Abstract: The development of biosensors using electrochemical methods is a promising 
application in the field of biotechnology. High sensitivity sensors for the bio-detection of 
proteins have been developed using several kinds of nanomaterials. The performance of the 
sensors depends on the type of nanostructures with which the biomaterials interact. One 
dimensional (1-D) structures such as nanowires, nanotubes and nanorods are proven to 
have high potential for bio-applications. In this paper we review these three different kinds 
of nanostructures that have attracted much attention at recent times with their great 
performance as biosensors. Materials such as polymers, carbon and zinc oxide have been 
widely used for the fabrication of nanostructures because of their enhanced performance in 
terms of sensitivity, biocompatibility, and ease of preparation. Thus we consider polymer 
nanowires, carbon nanotubes and zinc oxide nanorods for discussion in this paper. We 
consider three stages in the development of biosensors: (a) fabrication of biomaterials into 
nanostructures, (b) alignment of the nanostructures and (c) immobilization of proteins. Two 
different methods by which the biosensors can be developed at each stage for all the three 
nanostructures are examined. Finally, we conclude by mentioning some of the major 
challenges faced by many researchers who seek to fabricate biosensors for real time 
applications. 
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1. Introduction 

A biosensor is in general an analytical device that responds to biological detection of proteins in the 
form of electrical signals [1]. It can also be defined as a device in which the response of some chemical 
biomatrix such as antibodies, enzymes etc. is modified into an electrical signal depending on the 
concentration of the analyte used [2]. Typically, a biosensor is comprised of a transducer part and a 
sensing part. The detector part is the one that detects the target cells in the body and the transducer 
collects the information from the detector and transmits a signal to the output system. The detector part 
is usually a protein or an enzyme that captures the target cells, while the major part of the sensor is the 
transducer which changes the characteristics of the whole sensor and allows researchers to develop an 
effective biosensor so that it can be implanted into a human body. The structure of the transducer part 
is the main factor that will decide the number of available protein binding sites.  

In recent times, one dimensional nanostructures such as nanowires, nanotubes and nanobelts have 
attracted a great attention in the construction of biosensors due to their unique properties and potential 
to be fabricated as sensors [3]. With a large surface/volume ratio and a Debye length comparable to the 
nanostructure radius, the electronic properties of these nanostructures are strongly influenced by 
surface processes, giving rise to superior sensitivity than their thin film counterparts. In comparison 
with 2-D films, where the charges are accumulated on the surface, the charge accumulation in 1-D 
nanostructures occurs in the bulk of the material, which ensures good electrical properties during 
detection. The 1-D nanostructures are most commonly fabricated by a bottom-up approach using 
synthesis processes. A bottom-up approach is nothing but a chemical reaction that is done using 
particular reactants under specific conditions. It basically requires a catalyst, a vapor phase reactant 
(nanostructure material) and a thermal environment to effectively synthesize the nanomaterials. These 
1-D nanostructures are chosen particularly due to their high response to external stimulus that can be 
used for real time monitoring applications [4-11].  

In this paper we review three main kinds of 1-D nanostructures, as mentioned above. The review 
concentrates particularly on materials such as polymers, carbon and zinc oxide (ZnO) that can be 
fabricated in these 1-D nanostructure forms. The materials that can be molded into these 
nanostructures play a key role, especially, for bio-applications. There are various methods by which 
these nanomaterials can be fabricated, aligned and used to immobilize proteins. Here we first discuss 
the materials used for fabricating nanostructures, followed by the techniques used during the three 
different stages of biosensor fabrication.  

Conducting polymers (CPs) that possesses high electrical conductivity due to their π conjugated 
electrons are one of the more promising biocompatible materials and have been used in various 
applications [12-15]. Thus, they have been used as a transducer in biological sensors because of their 
attractive properties such as high stability at room temperature, good conductivity output and facile 
polymerization [16]. Another important advantage of using CPs is that the biomolecules can be 
immobilized onto the nanowire structure in a single step rather than the multiple steps that are required 
when other non-polymeric materials are used. In addition, the electrochemically prepared CPs can be 
grown with controlled thickness using lower potential and they also have an excellent enzyme-entrapping 
capability [17-20].  
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Another successful 1-D nanostructure in the field of biosensors is the carbon nanotube (CNT). 
These exhibit very long and slender shaped structures with high surface area, hexagonal networks, and 
unique C-C covalent bonding which makes them attractive in the field of biosensors [21]. The CNTs 
were used in the field of biosensor in order to introduce a new material than the ones that already 
exists. This led to the preparation of CNTs using chemical methods so that the immobilization of 
biomolecules could be done in a reliable manner [22]. Additionally, organic molecules integrated with 
nanotubes are believed to offer new research fields and applications such as in vivo implantation of the 
device [23]. 

Zinc oxide is a fairly recent material on which the research is being concentrated to develop it as a 
biosensor. ZnO had some different issues when fabricated in nanostructures than when used in a planar 
device. Since the nanostructures that are built using the bottom-up approach can be made to work as a 
biosensor system, many attempts in this direction have been made at recent times [24,25]. Properties 
such as the high isoelectric point (9.5) and fast electron transfer [26] observed in ZnO nanowires are 
also a reason for these attempts. Thus, it is believed that the usage of this material as a biosensor will 
also be successful in the coming years.  

2. Biosensor Development Using Polymer Nanowires 

Polypyrrole, a conducting polymer which is more conductive, stable and biocompatible than other 
polymer materials is reviewed in this paper. In 1916, polymerization of the monomer was first done by 
a research group [27] who oxidized it into a fine black amorphous powder and named it “pyrrole 
black”. Later, these monomers were grown by controlling the thickness of the polymer film [28], which 
attracted a great deal of attention from many researchers in the biomedical applications field [29]. At 
present, nanosize polypyrrole is grown, which allows even a very low current to pass through, making 
the device even compatible with the human body. According to [30], electrochemically prepared 
pyrroles are more conductive and stable when compared to the chemically prepared ones.  

2.1. Synthesis of Polymer Nanowires 

In 1991, Wei et al. followed a method which led to the production of polypyrrole powder. After this 
attempt, they tried to prepare the powder at an increasing rate and as a doped and conductive form 
using chemical polymerization techniques [30]. This kindled the notion of upgrading the material  
and using it in various applications. They were initially prepared using the slip casting and sol gel 
methods [31], involving very complex and time consuming processes, but nowadays the synthesis of 
the polymers is done electrochemically since the fabrication process is simple and cost effective, 
requiring just a porous template of some electrically insulating material. According to [32], the growth 
of polymer nanowires can also be done using the track edge method, printing techniques, 
photochemical lithography, edge lithography and micromolding [33]. However, these techniques are 
all very complex and require very costly equipment for the preparation of nanowires. 

For instance, micromolding is one of the most effective techniques for fabricating nanowires with 
high aspect ratio [33]. In this method, an initial polydimethylsiloxane (PDMS) mold which is the 
master is produced with the desired length, radius and pitch (distance between nanowires) using a 
photolighraphy process. Then an antisticking layer—PDMS or paraffin—is poured into the master and 
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cured for a few hours and later peeled off. This antisticking layer is shown in the Figure 1(D). A SEM 
image of the negative PDMS mold onto which the polymer solution is poured along with a supporting 
liquid metal such that the holes are filled up with the liquid can be seen in Figure 1(E).  

Figure 1. Micromolding process for fabricating polymer nanowires with high aspect ratio, 
(A) SEM image of Silicon master bearing square array posts grown using photolithography 
process, (B) Silicon master with liquid PDMS , treated with antisticking agent, (C) Cured 
PDMS peeling off from master, (D) Negative PDMS containing high aspect ratio hollows, 
(E) SEM image of hollow negative PDMS mould, (F) Polymer and liquid metal being 
cured in the mould, (G) Negative PDMS peeled off from actual polymer nanowire,  
(H) SEM image of nanostructured replica fabricated from epoxy resin (reprinted with 
permission from Wiley-VCH Verlag GmbH & Co. KGaA) [33]). 

 
 
Once the solution is cured, the negative PDMS mold is peeled off leaving behind the polymer 

nanowires. As the procedure sounds, it is a very lengthy and time consuming process. The article 
reports that the stability of the structures must be taken into consideration while fabricating nanoposts 
with high aspect ratio. Collapse of nanoposts due to their own weight, adhesion forces between 
adjacent nanoposts and the surface morphology needed to support the posts may cause problems, 
which can be solved by varying the length or the radius of the nanoposts with an appropriate selection 
of the supporting liquid metal. 
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In the track-etch method, a thin polycarbonate film was initially spin coated, irradiated with Ar9+ 
ions at 220 MeV, and UV, followed by chemical etching to finally form pores of 15 and 100 nm with 
lengths ranging from a few nm to µm. Polypyrrole (ppy) doped with perchlorate electrolyte was used 
for the synthesis of the nanowires on the track etched membrane of a nanoporous polycarbonate 
template [34,35]. The synthesis was done using different conditions to control the growth of the 
polymer layer [35]. The deposition conditions with which the polymer was completely filled the 
polycarbonate template up to the top was chosen as the best one, since the intention was to avoid any 
overgrowth of the material outside the template, as it may form like a film layer that would cause a 
problem during the time of immobilization of the antibody-antigen. This method of preparing polymer 
nanowires with certain parameters was shown to be the best method as per [36], but it has been 
mentioned that it is an expensive and time consuming method which involves a very complex 
procedure.  

The preparation of alumina templates plays a major role in the synthesis of nanowires. According to 
one report [31], alumina templates having high thermal and electrical stability properties were 
prepared using an anodic oxidation process, It was mentioned that this 99.8% pure alumina membrane 
was prepared as a challenge to the previous issue that the alumina membranes had, whereby they 
displayed high pore density and uniform pore diameter, but were not able to react with water at 
temperatures over 80 °C without making holes through the pores and thus offering less resistance to 
attack by acids and alkali. They were then oxidized to form a very good porous membrane. The final 
membrane was ready after giving it a heat treatment and it was checked for its corrosion and chemical 
resistance.  

The procedure for preparing the template was very lengthy and involved a lot of chemicals, even 
starting from the thermal oxidation of the alumina plate. Although this process is used even nowadays for 
preparing templates, it remains a very expensive and time consuming process, thus commercially available 
alumina templates are preferred as they have all the characteristics of the ones prepared in the lab. 

Several methods were being used to synthesize ppy nanowires in the past, but the three electrode 
cell method is now widely used by many researchers due to the ease of growing nanowires and also 
because it is cheaper in comparison with other methods. The synthesis of ppy nanowires using a three 
electrode cell as reported in [16,37,38] was done using an alumina template that is commercially 
available on the market. They used an alumina template of 200 nm diameter and 60 µm thickness 
(Whatmann International). A gold layer was initially sputtered onto the back side of the template 
which serves as a base to the nanowire that is going to be developed. The three electrode cell method 
for the electrodeposition of the nanowires employed the substrate as the working electrode, platinum 
mesh as the counter electrode and Ag/AgCl as the reference electrode using a potentio/galvanostat. 
They used a mixture of 0.5 M pyrrole and 0.2 M LiClO4 as the electrolyte solution. 

The whole electrodeposition process was done potentiostatically at 0.9 V for 30 min. After deposition, 
the gold seed layer was removed using 0.15 M KI in 0.1 M I2 gold etchant solution and the alumina 
templates were dissolved using 3 M NaOH solution. The obtained nanowires were analyzed using a 
SEM instrument. Figure 2 shows a SEM image of polypyrrole nanowires grown using the three 
electrode method. These nanowires were then suspended on the electrodes for aligning it into 
individual threads. This will make the system to be devised in a uniform manner and also effective for 
the subsequent immobilization of proteins. 
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Figure 2. SEM images of polypyrrole nanowires grown using a three electrode system. 

 

2.2. Alignment of Nanowires 

Electrochemically synthesized nanowires will be distributed randomly all over the surface of the 
substrate. These nanowires are then made to align in a uniform fashion so that there is no interlinking 
between them because the nanowires interlinked one on top of the other would lead to a situation 
where the proteins cannot be immobilized on the nanowires that are present below. The surface of the 
layer will also be non-uniform all over the device, making protein binding impossible. This would be a 
barrier to improving the sensitivity of any device, so the nanowires are first aligned before binding the 
proteins. Several methods are used for aligning nanowires among which the dielectrophoresis 
technique has attracted a great deal of attention due the fact that each and every nanowire can be 
effectively aligned. The so called mechanical break junction method was one of the methods that was 
earlier used for aligning polymer nanowires. 

This method works in a way that allows the material to be synthesized and aligned at the same time. 
The material to be polymerized (aniline, as a monomer) was first attached to a sharp tunneling 
microscope tip (STM) separated by an insulation layer to focus the growth of the nanowire. A mixture 
of 0.1 M aniline + 0.5 M Na2SO4 was used for growing the nanowire. It was first electrodeposited on 
the tip of an insulator at ~1 V (versus Ag/AgCl reference electrode) followed by applying a potential 
along the tip of the substrate where the polymer starts to grow as a thin wire. It was reported that an 
increase in current was observed when this wire hits the substrate as seen in Figure 3, and was further 
stretched to reduce the thickness using a dc motor [39].  

The conductance of the grown nanowire was observed using a graph plot [Figure 3(B)] and the 
stretching process was continued to improve the conductance of the nanowire. Although a polymer 
nanowire of calculated conductance can be obtained using this method, there are many drawbacks of 
using this method. One of these drawbacks is that only one nanowire can be grown at a time. 
Obviously it is desirable for fabrication processes to be faster to allow the production of multiple 
devices at a given particular time.  

The dielectrophoresis method of aligning the nanowires was used at recent times since the 
alignment is easier and also because comparatively, a greater amount of nanowires can be aligned and 
tested at the same time. First, interdigitated electrodes were fabricated on a SiO2 wafer using a 
photolithography process with chromium and gold. The polymer nanowires were then dispensed all 
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over the electrodes in a random fashion. The presence of nanowires was verified by measuring the I-V 
characteristics of the electrodes, so a potential was applied across the ends of the electrodes and the 
current was measured with the use of a potentiostat. Figure 4 clearly shows the amount of potential 
applied to the electrodes making the nanowires align with a small amount of current passing through 
them [44]. The nanowires present in a 2 µL diluted suspension were dispensed on 16 pairs of well 
aligned interdigitated electrodes [40]. A 1 V potential from peak to peak and 5 MHz frequency was 
applied to the electrodes allowing the nanowires to align along the corresponding electric charges of 
the material. This means that the nanowires are present in between the electrodes with their ends 
touching the electrodes [37]. 

Figure 3. (A) Growth of nanowires using break junction method and (B) Graph showing 
the conductance of the polymernanowires during stretching process (reprinted with 
permission from the American Institute of Physics [39]). 

  
     (A)      (B) 

Figure 4. I-V characteristics of an aligned single polymer nanowire (reprinted with 
permission from Elsevier [44]).  

 
 
The electrodes act as a capacitor before the nanowires are suspended on them. The potential applied 

to the electrodes flows in the air medium making no electrical contact between the electrodes. These 
electrodes later act as a resistor after the suspension of the nanowires which makes the electrodes come 
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in contact with each other. Usually, a probe station was used by most researchers for applying the 
voltage and measuring the current at the same point. After aligning the nanowires in the desired 
position, selective deposition of the metal was done using the three electrode cell method making an 
ohmic contact on the electrodes which was helpful in immobilizing the biomolecules in a easier way. 
The ohmic contact was also helpful in measuring the I-V characteristics. The output current depends 
on the number of nanowires present on the electrodes which shows that the amount of current flowing 
through the nanowires gets shared and the sensitivity of the sensor depends on the number of 
nanowires present. The next step involved in developing the biosensor is the immobilization of the 
biomolecules. 

2.3. Immobilization of Proteins 

The immobilization of protein constitutes the sensing part of the sensor that captures the affected 
cells and transmits the output in the form of an electrical signal. In 1962, Clark and Lyons [40] were 
the first to demonstrate a biosensor integration using an enzyme and an electrode together which had 
many advantages in building the sensor with high selectivity and ease of use in complex media. The 
immobilization was done using various methods in which the entrapment process involved fixing of 
proteins onto the nanowires at some constant voltage. It was later realized that the antibodies were just 
barely sticking onto the nanowires and were not firmly attached [41,42]. EDC crosslinking is a recent 
technique that involves covalent bonding between the proteins and the transducer. The immobilization 
in general, is said to be effective since the proteins firmly bind onto the nanowires at specific spots. 
The more activated sites on the nanowires and bonds to the captured proteins there are increases the 
sensitivity of the device.  

The entrapment method of immobilizing biomolecules on the nanowire surface is well explained  
in [41]. According to this report, nanowires of ~320 nm diameter and ~2 nm long were used for the 
binding of proteins. Protein modified nanowires were mostly used for binding. Biotin-FITC solution in 
a mixture with PBS (pH 7.4) was agitated constantly at 25 °C. This mixture was then entrapped onto 
the nanowires by incubating the protein modified nanowires with the biotin-FITC solution. The 
amount of biotins attached to the nanowires was determined by a signal generated at the output. Using 
this method, the biomolecules were just physically entrapped onto the nanowires, which does not result 
in much effectiveness during sensing as a strong attachment of proteins is needed for the sensing of the 
antigens. 

In [43] the EDC cross-linking technique was used, serving as the reaction layer in between the 
nanowire and the antibody bonding it together. A known quantity of protein was mixed with a buffer 
solution containing EDC and NHS, and centrifuged after agitation of the solution for 1.5 h. According to 
the authors the EDC/NHS will activate the carboxyl groups which are already present in the polymer 
nanowires, and later bond with the amine residues that are present at the ends of all the antibodies 
forming a strong covalent bond between the nanowires and proteins. The bonding could also be done 
in the reverse manner. Figure 5 shows the reactions involved in the EDC cross-linking between the 
nanowires and the proteins. The mixing of the buffer solution with the nanowires can either be done in 
a centrifuge tube [43] or also on the top of the lithographically fabricated electrodes. The presence of 
proteins on the nanowires was observed by the change of solution to a fluorescent color. 
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Figure 5. EDC cross linking showing (A) activation of carboxylic group in biomolecules 
and (B) activation of amine group in polypyrrole nanowires (reprinted with permission 
from the American Chemical Society [43]). 

 
(A)       (B) 

3. Electropolymerization of Carbon Nanotube Biosensor 

The synthesis of carbon nanotube (CNT)-based biosensors using chemical vapor deposition is being 
followed at recent times due to unique properties of this material in biomedical applications [45]. It is 
believed that the electrochemical reactivity of the CNTs can enhance the bio-molecule binding, and 
also that the electron transfer reactions of proteins can be well promoted [45-48]. In 1993, Iijima and 
Ichihashi [49] and Bethune et al. [50] were the first to synthesize single walled carbon nanotubes after 
the discovery of CNTs in 1991. CNTs are classified into single wall (SWNTs) and multi-wall 
nanotubes (MWNTs). SWNT is a cylindrical shaped structure on which a layer of graphite sheet is 
spread and makes it appear as a tube shape, whereas, MWNTs consist of multiple graphene sheets 
interspaced by 3.4 Å [51,52]. Synthesis of CNTs by arc discharge evaporation, laser ablation and 
chemical vapor deposition are reviewed in this paper. Electrochemical detection of CNTs has also been 
reported using the three electrode cell method, which is believed to be a very effective process that 
prepares the material in such a way that the immobilization of the proteins will be excellent in comparison 
with the material prepared using other processes. This may also lead to production of a multi-sensing 
biosensor.  

3.1. Synthesis of CNTs 

In 1991, a needle like tube structure was first reported by Iijima, which was later produced using an 
arc discharge evaporation technique [53]. Later, the same technique was done by applying a direct 
current to the negative end of the carbon electrode to further grow the needle-like tube from 4 nm to  
30 nm in diameter. The evaporation of carbon was done using an arc discharge chamber that had two 
vertical thin electrodes at the centre of the chamber filled with methane and argon gas. The lower 
chamber had a small dip at the lower electrode onto which the evaporation iron metal was placed and 
the arc discharge was applied. Argon, methane and iron were the three main constituents responsible 
for the synthesis of the SWNTs and MWNTs.  
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In 1996, Smalley and co-workers used the so-called laser ablation technique to grow SWNTs. It 
was developed by vaporizing graphite rods with small amounts of Ni and Co at 1,200 °C [54]. The 
nanotube started to grow bigger in size after this treatment. The excess particles got detached from the 
surface leaving out sufficient amounts of carbon that can poison the catalysis and also allowing it to 
terminate with a fullerene-like tip or catalyst particles.  

Although high yields (>70%) of SWNTs can be obtained using these two techniques, there are some 
drawbacks which hinder the applications of CNTs in biosensors. These are: (a) high temperature is 
applied during evaporation of material onto the carbon atoms, and (b) the prepared nanotubes get 
tangled within the solution, making it difficult to deposit them effectively on a substrate.  

Recently, chemical vapor deposition has become the preferred technique for the synthesis of CNTs 
because of the two main advantages that the nanotubes can be prepared at a lower temperature and also 
that the prepared catalyst can be deposited on the working samples. The chemical vapor deposition 
was done on platinum wafers to grow the SWNTs without extraction of the oxide layer from the 
substrate. A mixture of 20 mg Fe(NO3)·9H2O, 5 mg MoO2(acac) and 15 mg alumina added to 15 mL 
of methanol solution was prepared. The reagents were stirred for 24 h and sonicated for 1hour and then 
suspended on the PMMA substrate. The substrate was heated at 170 °C for 5 min after the solvent got 
evaporated at room temperature. Then the CVD process was done at 1,000 °C using methane to move 
out the CNTs. These nanotubes were arranged on the chip for electrochemical detection [59], as shown 
in the Figure 6. The three electrode system was used for the detection of the nanotubes which was 
considered to be the most effective method that can make the CNTs highly sensitive. The setup also 
was used for selective binding of gold after the deposition of nanotubes. The three electrodes are the 
working electrode which is the CNT array, Pt wire as the counter electrode and Ag/AgCl as the 
reference electrode. A chamber with K3[Fe(CN)6] and amino acid as the electrolyte solution were 
arranged with the three electrode setup where the investigation of electrochemical characteristics of the 
device was successfully done.  

3.2. Alignment of Nanotubes 

We have discussed so far different methods of synthesis of nanowires, and how these nanowires are 
then aligned to make good contacts during the time of immobilization of the proteins. The alignment of 
CNTs was done using various methods such as the flow cell method [55], growth from catalyst 
patterns [56] and electro-spinning [57]. However, electric field assisted alignment of the nanotubes on 
metal electrodes is considered to be a good method since the nanotubes can be made to settle at a 
desired point of interest by applying an electric field. Electro-spinning and DC electric field and  
DC-AC electric field based methods for aligning the CNTs are reviewed in this paper.  

Electro-spinning of SWNTs using the electrostatic method is one of the older techniques used for 
aligning them. Most researchers mix a polymer composite with CNTs for alignment and later remove 
it after the alignment of the structure is done. As per the report [57], poly(vinylpyrrolidone) (PVP) was 
doped with SWNT because of the good compatibility of the polymer with the nanotubes. This mixture 
was considered to be more homogenous. A thin sheet of aluminum foil was used at either ends of the 
fibers to drive the charge of the substrate to ground. A single piece of SWNT-PVP composite fiber was 
electrospun, which aligned the fiber along the aluminum ends. The PVP was later removed by heating 
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the fiber at 600 °C, leaving the SWNT aligned. The major disadvantage of this method is that the size 
of fibers that are aligned decreases after decomposition of the polymer composite from the SWNT, 
which will increase the local charge density of the nanotubes. Another simple method is mentioned  
in [58] where they use micro or nanomanipulators to make an electric contact with the electrodes and 
move the nanotubes from one place to another for attachment. One end of the tweezer will be in 
contact with one of the nanotubes and the other end in contact with the other nanotube .When a voltage 
is applied across the nanotubes, they move closer to each other making a contact making a clamp 
between the tweezers.  

DC field-assisted alignment of the nanotubes has been reported [59] in which the nanotubes can be 
formed wherever needed. According to the report, they developed an electrode having finger-like 
structures using photolithography and a lift off process. The alignment was performed by suspending 
the freshly prepared CNTs on the top of the electrode and varying the voltage for different conditions. 
The authors modified the nanowire density by varying the amount of nanotubes being dispersed on the 
electrodes. This was done by varying the concentration of the solution containing the nanotubes. I-V 
characteristics were used for analyzing the amount of current passing through the electrodes, as shown 
in Figure 6(B). 

Figure 6. (A) Alignment of carbon nanotube at various voltages and (B) V-I characteristic 
of the aligned nanotubes (reprinted with permission from Elsevier [59]). 

  
(A)        (B) 

 
The characteristics of this process have been well analyzed and it was found that the dc electric 

fields increased due to the increase in density of the carbon nanotubes deposited on the electrodes. It 
was also observed that the ends of the carbon nanotubes came in contact with each other as they were 
rotating towards the applied field. This lead to combinations of many nanotubes, to become a single 
nanotube. It has also been reported that the nanotubes were mainly found to be present on the top of 
the electrodes in comparison to the nanotubes present in-between the electrodes. According to the 
authors, this might have occurred due to the non-uniform distribution of current to the electrodes.  
Liu et al. have proposed that the alignment of the nanotubes using an ac field [60] depends on the 
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length of the nanowires that are being aligned in correspondence with the electrode gap that it is 
aligned. Their experimental results prove that longer nanotubes get aligned faster than shorter 
nanotubes when they are dropped in a 2 µm gap electrode and the explanation they provide for this 
kind of behavior is that the dielectrophoretic force will be greater on the longer nanowires in 
comparison to the smaller ones.  

Chung et al. have reported that by applying a combined ac and dc field [61], nanotubes can be 
easily aligned and deposited along the electrodes leaving behind the unwanted particles. It has been 
emphasized that the nanotubes respond very slowly when a dc electric field is applied, whereas the 
unwanted particles present in the solution respond more quickly. A schematic diagram for applying 
both the ac and dc electric fields has been proposed [Figure 7(A)] which has a resistor of high value in 
series. This resistor allows the dc potential to flow across the large resistance. There is also a capacitor 
present in parallel to the resistor without which a large resistance would have been resulted due to low 
impedance of the electrode gap. Now three different kinds of tests were performed where initially a dc 
voltage was applied alone to the electrodes, and it was found that the waste particles also got attracted 
towards the electrodes and when a pure ac voltage was applied, many nanotubes aligned together by 
attaching themselves to the ends of other nanotubes. The SEM image in Figure 7(B) shows the 
individual nanotubes that were aligned along the electrodes due to the effect of both the ac and dc 
voltage being applied together. A similar kind of result is published in [62], where the nanotubes are 
aligned using only ac, only dc and both ac and dc, but there the authors have attempted to align the 
nanotubes in an array fashion with single nanotubes between each gap on an electrode containing 100 
such electrodes.  

Figure 7. (A) Circuit model for single CNT deposition, (B) SEM image of CNT aligned 
using AC-DC electric field (reprinted with permission from Elsevier [61]). 

 
 (A)        (B) 

3.3. Immobilization of Antibodies 

Many conventional methods are available for immobilization of proteins onto nanotubes such as 
enzyme linked immune-absorbent assay (ELISA) and electrophoretic immunoassay. However, since 
these techniques use very costly equipments to build the biosensors, electrochemical impedance 
spectroscopy and covalent attachment [38] of antibodies have been of much interest to effectively bind 
proteins. The binding of CNT using the ELISA process and covalent linking using EDC as cross-linker 
are reviewed. The main part of the biosensor is the attachment of the proteins to the nanowires which 
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detects the affected cells and sends a signal as output. This part of the biosensor should be carefully 
devised. There are many techniques available for immobilization of the proteins onto the nanowires 
such as the one reported in [63,64] using three dimensional intra-molecular hydrogen bonds. A similar 
kind of method was followed by [65,66] in which immobilization of proteins was done by hydrogen 
bonding on the nanotube template by incubating both for several hours. Adsorption of antibody  
by non-covalent attachment onto the SWNT in a graphite disk electrode was reported by  
O’Connor et al. [67]. Kam et al. [68] also discussed the non-covalent attachment of biomolecules onto 
nanowires which they assumed to be successful by observing the enhanced attachment of poly-L-lysine 
(PLL) with the proteins in a hydrophobic surface of heat treated nanofibers.  

The ELISA process is a complex one which consumes a lot of time just in cleaning the antibody or 
the proteins. It is considered to be ubiquitous in biomedical applications and clinical testing. There are 
two kinds of processes that can be done using the ELISA method: (a) the direct ELISA process that 
employs monoclonal antibodies to detect the presence of particular antigens in a sample and (b) the 
indirect ELISA process in which is used to determine the presence of a specific antibody in a specimen 
such as a serum. Huang et al. have reported the binding using a direct ELISA process [69]. In this 
process initially the antibodies are treated with water, and washed several times so that the protein 
surface becomes activated to bind it on the nanowires. Then the antibodies are just dispersed on the top 
of the carbon nanotubes for 2 h at room temperature. Later bovine serum albumin which is a blocking 
agent is dispersed in between the gaps of the antibodies so that the testing of the system can be done 
easily. After three complete washings the antigen, namely Salmonella typhirium, was incubated onto 
the antibodies for 1 h for testing the device. Finally, the binding reaction was stopped by adding 2 M 
NaOH solution and the binding efficiency of the antigens to the antibodies were calculated. Although 
the process is similar to covalent linkage during the binding process, the washing of the antigens is an 
added burden in the ELISA process.  

An electrochemical microelectrode containing platinum along with modified SWCNTs has been 
reported (Figure 8) [74] for label free detection of analytes. Electrochemical signals at various 
concentrations were recorded using differential pulse voltammograms. An increase in current was 
noticed due to the increase in concentration of the T-PSA. After many trials, it was confirmed that the 
addition of T-PSA onto the antibody-attached SWCNTs lead to the increase in the current. A slight 
defect occurred in the monolayer due to the compact packaging of the antibody on the SWCNT surface 
that could cause a very high electron transfer rate along the electrolyte and the CNT. 

The covalent bonding of antibodies provides very strong attachment to the nanotubes. There are 
many reports that have been discussed on the covalent bonding of proteins [70-72]. The assembled 
SWNTs were found laying on the electrodes ready to be immobilized. Functionalized FITC along with 
antibody were washed and incubated with the SWNT for several hours [73]. The conjugation between 
them was realized by the appearance of fluorescent color in the solution bath. Figure 9 shows the SEM 
images that were taken after the immobilization of the antibodies onto the carbon nanotubes. The 
nanotube with conjugated FITC shown in the same figure exhibits a fluorescent color due to the 
presence of FITC [74].  
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Figure 8. (A) I-V characteristics measured during the immobilization of antibodies on to 
the CNTs and (B) Schematic representation of three electrode cell for selective binding of 
metal for ohmic contact along with the calibration curve for T-PSA based on electrochemical 
signal (reprinted with permission from John Wiley & Sons [74]). 

 
 (A)        (B) 

Figure 9. SEM images and pictures showing the presence of antibodies due to 
immobilization (reprinted with permission from John Wiley & Sons [69]). 

 
 
It is reported that the SWNT-immobilized protein detection is a very promising and straightforward 

method for use as a biosensor. Many research groups have successfully demonstrated the working of 
immobilized SWNT biosensor [75-77]. This kind of covalent linking using EDC is also reported in the 
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biotin streptavidin binding [78-80]. The authors also reported that the amino group of the protein 
linking with the carboxyl group of the nanotubes showed a greater response than the biosensor without 
MWNTs. According to this, the electrochemical reaction in the MWNT-COOH would be well 
enhanced and would behave as a good promoter. 

4. Electropolymerization of ZnO Biosensors 

Zinc oxide is also a promising material that can be used in advanced sensor technologies due to its 
unique physical and chemical properties. ZnO nanorods were immobilized with protein for biosensor 
applications only using the FET concept. Very recently, electropolymerized ZnO nanorods for real 
time bio-sensing have been proposed for the first time by Liu et al. [81], and may be developed as 
biosensors for protein detection in the future. ZnO nanorods were mainly used for building solar  
cells [82-84], gas sensors [85], LEDs [86] and piezo-electric devices [87-89]. Although the synthesis 
of ZnO nanorods was done using various methods [90-92], they all require very expensive equipment. 
ZnO nanorods were also be synthesized using cheaper methods such as chemical bath and spray 
pyrolysis [93,94], but electrodeposition using the three electrode method in an AAO template is the 
easiest and cheapest method in comparison. The immobilization of biomolecules can also be achieved 
using this material. 

4.1. Synthesis of ZnO Nanorods 

Synthesis of ZnO nanorods was first reported in 1996 by Peulon et al. [95] who developed based on 
an electrodeposition method. They had observed that the oxidation needs an oxygen atom and the zinc 
metal cannot be deposited as it is onto the substrate. They performed the electrodeposition of ZnO 
nanorods using ZnCl2 solution with a KCl electrolyte on a glass substrate at the rate of 0.1–1 µm/h. 
Preparation of ZnO nanorods have also been reported by a method [96] in which the oxidation by 
spray pyrolysis was done using a mixture of triethanolamine and Zn (CH3COO)2·2H2O, and were 
ground with NaOH for half an hour. The so-called ZnO nanorods were then obtained by drying this 
chemical combination at 80 °C for 2 h. Preparation of ZnO nanorods has also been done using a quasi-
spherical method in which Zn(CH3COO)2·2H2O was stirred with methanol at 60 °C to which drops of 
methanol were later added, and then dried for 24 h. These types of preparation of ZnO nanorods cannot 
be used for the development of flexible biosensors due to the high temperatures required for the 
fabrication of nanorods.  

The fabrication of ZnO nanorods at lower temperatures using aqueous solutions is also currently 
being done by a lot of researchers. Kumar et al. has proposed the growth of ZnO nanorods at a lower 
temperature of 95 °C [97] using zinc nitrate, Zn(NO3)·xH2O and hexamethylenetetramine for 10 h. 
These nanorods are actually grown on a silicon substrate having a seed layer that was coated using an 
ALD growth method. It is mentioned that irrespective of the seed layer charge, the nanorods will grow 
in an aligned manner depending on the distribution of the layer. The Figure 10 shows the SEM image 
of the ZnO nanorods that were grown on the silicon substrate containing the seed layer. It is also said 
that the ZnO nanorods will grow in an aligned manner on a sapphire surface rather than on the silicon 
substrate. Lee et al. has proven this by growing well aligned ZnO nanorods on a sapphire substrate 
using periodic polar inverted templates [98]. It is reported that nanorods grow well on the sapphire 
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layer rather without any seed layer, but better growth has been reported on the silicon substrate containing 
the ZnO seed layer in comparison to that grown on a sapphire substrate. These kinds of aligned and 
patterned ZnO nanorods can also be grown using printing methods at a low temperature [99]. The 
nanorods grown at different heights by increasing the time period is an expected result, but it was 
found that the diameter of the nanorods even varied depending on the temperature at which it was 
grown. It is confirmed that the diameter of the nanorods increased as the solution temperature was 
decreased. It is also said that the diameter of the nanorods varies depending on the concentration of 
zinc nitrate and HMTA. This process as can be seen is very time consuming and also the sizes of the 
nanowires grown are very short.  

Figure 10. SEM image of ZnO nanorods grown on top of silicon substrate containing the 
seed layer (reprinted with permission from the American Chemical Society [97]). 

 
 
Preparation of ZnO nanorods using a three electrode cell was reported by Peulon et al. [100]. 

According to the report, analysis of the mechanism of ZnO growth was done with aqueous zinc 
chloride solution using an electrodeposition method [101] which was a turnaround for the researchers 
who were working with ZnO nanorods. Electrodeposition of nanorods has been widely preferred since 
as mentioned for the polymer nanowires, it is an easy and cheaper fabrication method. It was shown 
that the use of potassium chloride (KCl) as an electrolyte solution caused a strong adsorption by the 
presence of anions (Cl-) that acted as a capping agent [101]. The electrodeposition was done using a 
three electrode arrangement containing a glass substrate as the working electrode, Pt wire as the 
counter electrode and saturated calomel electrode (SCE) as the reference electrode with KCl acting as 
an electrolyte solution. The process was done in two series in which the first series involved 
electrodeposition using different concentrations of 100 mL KCl electrolyte solution at 2 °C/cm2 charge 
density. In the second series, 3.4 M KCl solutions were used by varying the values of the charge 
density. The surface morphology was analyzed by taking scanning electron microscopy (SEM) images 

ZnO nanorods for bio-sensing applications have been reported in [81], who were the first to attempt 
this. Synthesis of ZnO nanorods was done using a vapor solid process in which the furnace was 
attached to an alumina tube and a rotary pump. A polycrystalline Al2O3 boat and the purchased ZnO 
powder were placed inside the alumina tube which was later introduced to the furnace chamber. ZnO 
nanorods on polycrystalline Al2O3 was formed at a temperature of 1,400 °C with argon gas inside the 
chamber for 2 h. The process was repeated for different time periods to observe the effective growth of 
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the nanowires. Figure 11(a–f) shows the SEM images of zinc oxide nanowires that were taken after the 
growth for different time periods. They developed a label free detection system in which amperometric 
sensing of analytes were done [102]. The main advantage of this report is the attachment of analytes to 
the nanorods, but it is a more time consuming process than the method explained above.  

Figure 11. (a–f) Zinc oxide nanorods grown using deposition process at 90 degrees at 
different time periods (reprinted with permission from The American Chemical Society [94]). 

 

4.2. Alignment of Nanorods and Immobilization of Proteins 

The synthesized nanorods were made to align along the electrodes as done for the other two 
materials. For the alignment of the ZnO nanorods, gold electrodes were prepared using a lift off 
process. The nanorods were then transferred to the Au patterned substrate using micro positioning and 
focused ion beam technology. They were arranged in such a way that the nanorods are in contact with 
the Au electrodes. Although no exact process was followed for aligning the nanorods, a micro-positioner 
tip of 200 nm diameter was used to separate the nanowires from each other. An ohmic contact was 
produced by selectively depositing a metal layer over the Au electrodes through which electric charges 
were applied. In the same report a similar process using a silicon substrate was also demonstrated. The 
analytes were integrated by injecting them with the use of a syringe and then analyzing the output. The 
next step after the alignment of the nanorods is the immobilization of the proteins to use as a biosensor.  

The immobilization of proteins onto ZnO nanorods can be effectively done by covalent attachment 
using either a single or a double cross-linker. For attachment via a single cross-linking layer [103], first 
the nanorods were immersed into a solution mixture containing ethanol with 3-(trimethoxysilyl)propyl 
aldehyde dissolved in water and acetic acid. The substrate containing the nanorods was treated with N2 
gas three times at 120 °C. The antibody was activated using amine functional groups. Then the 
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aldehyde layer present in the nanorods was made to react with the amine group-functionalized 
antibodies forming a very strong covalent attachment. The antibody attachment was analyzed by 
attaching FITC to the antibody and inspected using a fluorescence microscope. Figure 12(A,B) below 
show the microscopic image of nanowires with biotin and fluorescent microscopic image of nanowires 
with biotin, respectively. As an improvement to this method, Hunt et al. have done the covalent 
attachment of the antibodies using a double-linking layer [104]. Two samples containing the ZnO 
nanorods were treated with ethanol to clean the surface followed by addition of (3-glycidyloxy-
propyl)trimethoxysilane (GPS) to one of the samples. The other sample was treated initially with  
(3-mercaptopropyl)trimethoxysilane (MTS) followed by treatment with N-γ-maleimidobutyryloxy-
succinimide ester (GMBS) which is the second covalent linker. Finally, the antibodies were attached to 
both the samples which had a uniform distribution all over the surface. The activation of the layer 
using the cross linkers were confirmed by taking AFM images as shown in Figure 12(C,D). It is said 
that the fluorescence content on the GPS was comparatively less than the florescence present on the 
sample containing MTS, which proves that the antibody immobilization can be improved by using 
MTS rather than GPS. 

Figure 12. (A) Microscopic image and (B) Fluorescent microscopic image of nanowires 
with biotin, (C) AFM image of GPS+Ab and (D) MTS+GMBS+Ab (reprinted with 
permission from Elsevier [103,104]). 

 
(A)         (B) 

 
(C)         (D) 

5. Conclusions and Future Directions 

In this paper we have reviewed different methods for the synthesis, alignment and immobilization 
of proteins on nanowires, nanotubes and nanorods. All three materials reviewed in this paper are 
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widely used in the bio-sensing application field due to their promising applications. The usage of all 
the three materials is relatively new to this field and research using zinc oxide nanorods has only just 
started recently. In the future, a stable process for the identification of immobilization has to be 
developed. The identification using fluorescent techniques does not sound reasonable. Also the 
immobilization of antibodies on specific sites can be concentrated which will improve the sensitivity 
of the devices more. The biosensor as a whole is still facing a major challenge of implantation of the 
device on human as a real time device which has environmental and health issues. A lot of effort is 
under way to develop a device in such a way that the biosensors can be used for real time detections.  
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